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Annoucements

Tutoring (by Mr. Lorenzo Panebianco): Tuesday 10:00–11:30.
Office hour: Tuesday 11:30–12:30.

Basic Mathematics: first few lessons on
Tuesday (14:00 – 16:00 CET): Inequalities, Limits and Derivatives
Wednesday (14:00 – 16:00 CET): Study of function

and then upon request.

Today: Apostol Vol. 1, Chapter 5, 6.8, 7.5,
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Change of variables

When the function contains sin x and cos x , it is often useful to do the
change of variable x = ϕ(t) = 2 arctan t, or t = tan x

2 . Indeed, we have
ϕ′(t) = 2

1+t2 , while 1
cos2 x

2
= cos2 x

2 +sin2 x
2

cos2 x
2

= 1 + t2 and
sin x = sin(2 · x

2 ) = 2 sin x
2 cos x

2 = 2t
1+t2 and

cos x = cos2 x
2 − sin2 x

2 = 1−t2

1+t2 .
For example,∫ 1

sin x dx =
∫ t2 + 1

2t · 2
1 + t2 dt = log |t|+ C = log

∣∣∣∣tan x
2

∣∣∣∣+ C .
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Change of variables

Corollary
Let f be contiunous on [a, b], ϕ differentiable and ϕ′ continuous on [α, β],
and ϕ([α, β]) ⊂ [a, b], ϕ(α) = a, ϕ(β) = b. Then∫ b

a
f (x)dx =

∫ β

α
f (ϕ(t)) · ϕ′(t)dt

Proof.
Let F (x) =

∫ x
a f (x)dx . Since d

dt (F (ϕ(t))) = f (ϕ(t)) · ϕ′(t),∫ β

α
f (ϕ(t)) · ϕ′(t)dt = [F (ϕ(t))]βα = [F (x)]ba =

∫ b

a
f (x)dx .
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Change of variables

Example
Note that

√
1− sin2 t = | cos t| and this is equal to cos t if |t| < π

2 ,
hence with x = sin t,∫ 1

0

√
1− x2dx =

∫ π
2

0

√
1− sin2 t cos t dt =

∫ π
2

0
cos2 t dt

=
∫ π

2

0

cos(2t) + 1
2 dt =

[sin(2t)
4 + t

2

]π
2

0

= π

4 .
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Some remarks

If f (x) = f (−x), then by the change of variables x = −t,∫ 0
−a f (x)dx =

∫ 0
a f (−t)(−t)′dt =

∫ a
0 f (t)dt, hence∫ a

−a f (x)dx = 2
∫ a

0 f (x)dx .
For example,

∫ 1
−1
√

1− x2dx = 2
∫ 1

0
√

1− x2dx = π
2 .

If f (x) = −f (−x), then by the change of variables x = −t,∫ 0
−a f (x)dx =

∫ 0
a f (−t)(−t)′dt = −

∫ a
0 f (t)dt, hence

∫ a
−a f (x)dx = 0.

For example,
∫ 1
−1 ex2 sin xdx = 0.
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Figure: Integral of symmetric and antisymmetric functions.
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Some remarks

Logarithmic differentiation: If f (x) is difficult to differentiate but
log f (x) is easy, then we have D(log f (x)) = f ′(x)

f (x) , hence we have
f ′(x) = f (x)D(log f (x)).
For example, f (x) = xx (for x > 0) is not a simple product or a
composition. But log f (x) = x log x , hence D(log f (x)) = log x + 1,
hence f ′(x) = xx (log x + 1).
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Taylor formula with remainder

Theorem
If f is differentiable n + 1 times in an neighbourhood of x0, then for x in
that neighbourhood,

f (x) =
n∑

k=0

f (k)(x0)
k! (x − x0)k + Rn(x , x0),

where Rn(x , x0) = 1
n!
∫ x

x0
f (n+1)(y)(x − y)ndy.

This is interesting, because for some functions, we can prove that the
Taylor series converges to the original function.
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Proof.
This is true for n = 0, because

f (x0) +
∫ x

x0
f ′(y)dy = f (x0) + [f (y)]xx0 = f (x).

To prove the formula by induction, assume the claim for n and let f be
n + 2 times differentiable, then f (x) =

∑n
k=0

f (k)(x0)
k! (x − x0)k + Rn(x , x0),

Rn(x , x0) = 1
n!

∫ x

x0
f (n+1)(y)(x − y)ndy

= − 1
(n + 1)!

[
f (n+1)(y)(x − y)n+1

]x
x0

+ 1
(n + 1)!

∫ x

x0
f (n+2)(y)(x − y)n+1dy

= 1
(n + 1)! f (n+1)(x0)(x − x0)n+1 + 1

(n + 1)!

∫ x

x0
f (n+2)(y)(x − y)n+1dy
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Taylor formula with remainder

Let us take x0 = 0 and consider the interval (−R,R).
ex =

∑n
k=0

xk

k! + 1
(n+1)!

∫ x
0 ey (y − x)ndx . As |x | < R, we have

ey < eR and |(y − x)n| < Rn. Altogether, the remainder term is

1
(n + 1)!

∣∣∣∣∫ x

0
ey (y − x)ndx

∣∣∣∣ ≤ 1
(n + 1)!

∣∣∣∣∫ x

0
eRRndx

∣∣∣∣ ≤ eRRn+1

(n + 1)! .

Note that for any R, Rn+1

(n+1)! → 0 because for sufficiently large n we
have n > 2R, hence from that point the sequence decreases more
than by 1

2 . This means that ex −
∑n

k=0
xk

k! → 0, that is, the Taylor
series converges to ex for x ∈ (−R,R), and this is denoted by

ex =
∞∑

n=0

xn

n! .

Furthermore, R was arbitrary, hence this holds for any x .
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Taylor formula with remainder

The same argument holds for sin x , cos x , because
|Dn(sin x)| ≤ 1, |Dn(cos x)| ≤ 1. That is,

sin x =
∞∑

n=0

(−1)nx2n+1

(2n + 1)! ,

cos x =
∞∑

n=0

(−1)nx2n

(2n)! ,

in the sense that for each x the series converges to the original
function.

More properties of Taylor series will be studied in Mathematical Analysis II.
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Taylor formula with remainder

We can also find the approximate value of e = e1 using the Taylor formula
with remainder. We know that e < (1 + 1

n )n+1 for any n. In particular,
e < 4. Therefore, by

e1 =
12∑

k=0

1k

k! + 1
13!

∫ 1

0
ey (1− y)12dy

and the error term satisfies 0 < 1
13!
∫ 1

0 ey (1− y)12dy < 4
13! < 0.0000002.

Therefore, the approximation of e,

12∑
k=0

1k

k!
∼= 2.71828182,

is correct up to the 7-th digit.
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Improper integral

We can define integral for (some) funtions that are not bounded and on an
interval not bounded.

Definition
Let (a, b) be an interval, a ∈ R or a = −∞ and b ∈ R or b = +∞. Let f
be a function integrable on all [α, β], where a < α < β < b, α, β ∈ R. If
there exists the limit limα→a

∫ β
α f (x)dx , then we denote it by∫ β

a
f (x)dx = lim

α→a

∫ β

α
f (x)dx .

It also holds that
∫ γ

a f (x)dx =
∫ β

a f (x)dx +
∫ γ
β f (x)dx for γ ∈ (a, b).

Analogously if there exists the limit limβ→b
∫ β
α f (x)dx , then we write∫ b

α f (x)dx = limβ→b
∫ β
α f (x)dx . If both limits exist, then we denote∫ b

a f (x)dx =
∫ x0

a f (x)dx +
∫ b

x0
f (x)dx for some x0 ∈ (a, b).
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Improper integral

This definition does not depend on x0 ∈ (a, b). Indeed,∫ x0

a
f (x)dx +

∫ b

x0
f (x)dx

=
∫ x0

a
f (x)dx +

∫ x1

x0
f (x)dx +

∫ x0

x1
f (x)dx +

∫ b

x0
f (x)dx

=
∫ x1

a
f (x)dx +

∫ b

x1
f (x)dx .
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Improper integral

Example
Consider (0, 1) and the function f (x) = xα, α ∈ R. For ε > 0, if
α 6= −1, ∫ 1

ε
xαdx = 1

α + 1[xα+1]1ε = 1
α + 1(1− εα+1),

and as ε→ +0, this tends to 1
α+1 if α > −1, and diverges if α < −1.

If α = −1, ∫ 1

ε
x−1dx = [log x ]1ε = − log ε,

and this tends to ∞ as ε→ 0+. Therefore, for
α > −1,

∫ 1
0 xαdx = 1

α+1 .
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Improper integral

Example
Consider (1,∞) and the function f (x) = xα, α ∈ R. For β > 1, if
α 6= −1, ∫ β

1
xαdx = 1

α + 1[xα+1]β1 = 1
α + 1(βα+1 − 1),

and as β → +∞, this tends to − 1
α+1 = 1

|α+1| if α < −1, and diverges
if α > −1. For α = −1,∫ β

1
x−1dx = [log x ]β1 = log β,

and this tends to ∞ as β → +∞. Therefore,
∫∞

1 f (x)dx = 1
|α+1| for

α < −1.
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Exercises

Calculate the integral.
∫ 1
−1 sin(sin x)dx .

Calculate the indefinite integral.
∫ 2

0
√

8− x2dx .
Calculate the inproper integral.

∫∞
0 xe−x dx .

Lecturer: Yoh Tanimoto Mathematical Analysis I 26/11/2020 18 / 18


