Mathematical Analysis I: Lecture 39

Lecturer: Yoh Tanimoto

26/11/2020 Start recording...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- Tutoring (by Mr. Lorenzo Panebianco): Tuesday 10:00-11:30.
- Office hour: Tuesday 11:30–12:30.
- Basic Mathematics: first few lessons on
 - Tuesday (14:00 16:00 CET): Inequalities, Limits and Derivatives
 - Wednesday (14:00 16:00 CET): Study of function

and then upon request.

• Today: Apostol Vol. 1, Chapter 5, 6.8, 7.5,

When the function contains $\sin x$ and $\cos x$, it is often useful to do the change of variable $x = \varphi(t) = 2 \arctan t$, or $t = \tan \frac{x}{2}$. Indeed, we have $\varphi'(t) = \frac{2}{1+t^2}$, while $\frac{1}{\cos^2 \frac{x}{2}} = \frac{\cos^2 \frac{x}{2} + \sin^2 \frac{x}{2}}{\cos^2 \frac{x}{2}} = 1 + t^2$ and $\sin x = \sin(2 \cdot \frac{x}{2}) = 2 \sin \frac{x}{2} \cos \frac{x}{2} = \frac{2t}{1+t^2}$ and $\cos x = \cos^2 \frac{x}{2} - \sin^2 \frac{x}{2} = \frac{1-t^2}{1+t^2}$. For example,

$$\int \frac{1}{\sin x} dx = \int \frac{t^2 + 1}{2t} \cdot \frac{2}{1 + t^2} dt = \log|t| + C = \log\left|\tan\frac{x}{2}\right| + C.$$

Corollary

Let f be continuous on [a, b], φ differentiable and φ' continuous on $[\alpha, \beta]$, and $\varphi([\alpha, \beta]) \subset [a, b]$, $\varphi(\alpha) = a, \varphi(\beta) = b$. Then

$$\int_a^b f(x) dx = \int_\alpha^\beta f(\varphi(t)) \cdot \varphi'(t) dt$$

Proof.

Let
$$F(x) = \int_a^x f(x) dx$$
. Since $\frac{d}{dt}(F(\varphi(t))) = f(\varphi(t)) \cdot \varphi'(t)$,

$$\int_{\alpha}^{\beta} f(\varphi(t)) \cdot \varphi'(t) dt = [F(\varphi(t))]_{\alpha}^{\beta} = [F(x)]_{a}^{b} = \int_{a}^{b} f(x) dx.$$

< □ > < 凸

→ ∃ >

Example

• Note that $\sqrt{1 - \sin^2 t} = |\cos t|$ and this is equal to $\cos t$ if $|t| < \frac{\pi}{2}$, hence with $x = \sin t$,

$$\int_0^1 \sqrt{1 - x^2} dx = \int_0^{\frac{\pi}{2}} \sqrt{1 - \sin^2 t} \cos t \, dt = \int_0^{\frac{\pi}{2}} \cos^2 t \, dt$$
$$= \int_0^{\frac{\pi}{2}} \frac{\cos(2t) + 1}{2} dt = \left[\frac{\sin(2t)}{4} + \frac{t}{2}\right]_0^{\frac{\pi}{2}}$$
$$= \frac{\pi}{4}.$$

∃ ≻

• If
$$f(x) = f(-x)$$
, then by the change of variables $x = -t$,
 $\int_{-a}^{0} f(x) dx = \int_{a}^{0} f(-t)(-t)' dt = \int_{0}^{a} f(t) dt$, hence
 $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$.
For example, $\int_{-1}^{1} \sqrt{1 - x^{2}} dx = 2 \int_{0}^{1} \sqrt{1 - x^{2}} dx = \frac{\pi}{2}$.
• If $f(x) = -f(-x)$, then by the change of variables $x = -t$,
 $\int_{-a}^{0} f(x) dx = \int_{a}^{0} f(-t)(-t)' dt = -\int_{0}^{a} f(t) dt$, hence $\int_{-a}^{a} f(x) dx = 0$.
For example, $\int_{-1}^{1} e^{x^{2}} \sin x dx = 0$.

メロト メポト メヨト メヨト

Figure: Integral of symmetric and antisymmetric functions.

Logarithmic differentiation: If f(x) is difficult to differentiate but log f(x) is easy, then we have D(log f(x)) = f'(x)/f(x), hence we have f'(x) = f(x)D(log f(x)).
 For example, f(x) = x^x (for x > 0) is not a simple product or a composition. But log f(x) = x log x, hence D(log f(x)) = log x + 1, hence f'(x) = x^x(log x + 1).

Theorem

If f is differentiable n + 1 times in an neighbourhood of x_0 , then for x in that neighbourhood,

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + R_n(x, x_0),$$

where $R_n(x, x_0) = \frac{1}{n!} \int_{x_0}^x f^{(n+1)}(y)(x-y)^n dy$.

This is interesting, because for some functions, we can prove that the Taylor series *converges* to the original function.

Proof.

This is true for n = 0, because

$$f(x_0) + \int_{x_0}^{x} f'(y) dy = f(x_0) + [f(y)]_{x_0}^{x} = f(x).$$

To prove the formula by induction, assume the claim for *n* and let *f* be n+2 times differentiable, then $f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + R_n(x, x_0)$,

$$\begin{aligned} R_n(x,x_0) &= \frac{1}{n!} \int_{x_0}^x f^{(n+1)}(y)(x-y)^n dy \\ &= -\frac{1}{(n+1)!} \left[f^{(n+1)}(y)(x-y)^{n+1} \right]_{x_0}^x \\ &+ \frac{1}{(n+1)!} \int_{x_0}^x f^{(n+2)}(y)(x-y)^{n+1} dy \\ &= \frac{1}{(n+1)!} f^{(n+1)}(x_0)(x-x_0)^{n+1} + \frac{1}{(n+1)!} \int_{x_0}^x f^{(n+2)}(y)(x-y)^{n+1} dy \end{aligned}$$

Taylor formula with remainder

Let us take $x_0 = 0$ and consider the interval (-R, R).

•
$$e^x = \sum_{k=0}^n \frac{x^k}{k!} + \frac{1}{(n+1)!} \int_0^x e^y (y-x)^n dx$$
. As $|x| < R$, we have $e^y < e^R$ and $|(y-x)^n| < R^n$. Altogether, the remainder term is

$$\frac{1}{(n+1)!} \left| \int_0^x e^y (y-x)^n dx \right| \le \frac{1}{(n+1)!} \left| \int_0^x e^R R^n dx \right| \le \frac{e^R R^{n+1}}{(n+1)!}$$

Note that for any R, $\frac{R^{n+1}}{(n+1)!} \to 0$ because for sufficiently large n we have n > 2R, hence from that point the sequence decreases more than by $\frac{1}{2}$. This means that $e^x - \sum_{k=0}^n \frac{x^k}{k!} \to 0$, that is, the Taylor series converges to e^x for $x \in (-R, R)$, and this is denoted by

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}.$$

Furthermore, R was arbitrary, hence this holds for any x.

• The same argument holds for sin x, cos x, because $|D^n(\sin x)| \le 1$, $|D^n(\cos x)| \le 1$. That is,

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!},$$
$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!},$$

in the sense that for each x the series converges to the original function.

More properties of Taylor series will be studied in Mathematical Analysis II.

We can also find the approximate value of $e = e^1$ using the Taylor formula with remainder. We know that $e < (1 + \frac{1}{n})^{n+1}$ for any *n*. In particular, e < 4. Therefore, by

$$e^{1} = \sum_{k=0}^{12} \frac{1^{k}}{k!} + \frac{1}{13!} \int_{0}^{1} e^{y} (1-y)^{12} dy$$

and the error term satisfies $0 < \frac{1}{13!} \int_0^1 e^y (1-y)^{12} dy < \frac{4}{13!} < 0.0000002$. Therefore, the approximation of e,

$$\sum_{k=0}^{12} \frac{1^k}{k!} \cong 2.71828182,$$

is correct up to the 7-th digit.

We can define integral for (some) functions that are not bounded and on an interval not bounded.

Definition

Let (a, b) be an interval, $a \in \mathbb{R}$ or $a = -\infty$ and $b \in \mathbb{R}$ or $b = +\infty$. Let f be a function integrable on all $[\alpha, \beta]$, where $a < \alpha < \beta < b, \alpha, \beta \in \mathbb{R}$. If there exists the limit $\lim_{\alpha \to a} \int_{\alpha}^{\beta} f(x) dx$, then we denote it by

$$\int_{a}^{\beta} f(x) dx = \lim_{\alpha \to a} \int_{\alpha}^{\beta} f(x) dx.$$

It also holds that $\int_a^{\gamma} f(x) dx = \int_a^{\beta} f(x) dx + \int_{\beta}^{\gamma} f(x) dx$ for $\gamma \in (a, b)$. Analogously if there exists the limit $\lim_{\beta \to b} \int_{\alpha}^{\beta} f(x) dx$, then we write $\int_{\alpha}^{b} f(x) dx = \lim_{\beta \to b} \int_{\alpha}^{\beta} f(x) dx$. If both limits exist, then we denote $\int_a^{b} f(x) dx = \int_a^{x_0} f(x) dx + \int_{x_0}^{b} f(x) dx$ for some $x_0 \in (a, b)$. This definition does not depend on $x_0 \in (a, b)$. Indeed,

$$\int_{a}^{x_{0}} f(x)dx + \int_{x_{0}}^{b} f(x)dx$$

= $\int_{a}^{x_{0}} f(x)dx + \int_{x_{0}}^{x_{1}} f(x)dx + \int_{x_{1}}^{x_{0}} f(x)dx + \int_{x_{0}}^{b} f(x)dx$
= $\int_{a}^{x_{1}} f(x)dx + \int_{x_{1}}^{b} f(x)dx.$

Example

• Consider (0,1) and the function $f(x) = x^{\alpha}, \alpha \in \mathbb{R}$. For $\varepsilon > 0$, if $\alpha \neq -1$,

$$\int_{\varepsilon}^{1} x^{lpha} dx = rac{1}{lpha+1} [x^{lpha+1}]_{arepsilon}^{1} = rac{1}{lpha+1} (1-arepsilon^{lpha+1}),$$

and as $\varepsilon \to +0$, this tends to $\frac{1}{\alpha+1}$ if $\alpha > -1$, and diverges if $\alpha < -1$. If $\alpha = -1$, $\int_{\varepsilon}^{1} x^{-1} dx = [\log x]_{\varepsilon}^{1} = -\log \varepsilon,$

and this tends to ∞ as $\varepsilon \to 0+.$ Therefore, for $\alpha>-1, \int_0^1 x^\alpha dx = \frac{1}{\alpha+1}.$

Example

• Consider $(1,\infty)$ and the function $f(x) = x^{\alpha}, \alpha \in \mathbb{R}$. For $\beta > 1$, if $\alpha \neq -1$,

$$\int_{1}^{\beta} x^{\alpha} dx = \frac{1}{\alpha + 1} [x^{\alpha + 1}]_{1}^{\beta} = \frac{1}{\alpha + 1} (\beta^{\alpha + 1} - 1)$$

and as $\beta \to +\infty$, this tends to $-\frac{1}{\alpha+1} = \frac{1}{|\alpha+1|}$ if $\alpha < -1$, and diverges if $\alpha > -1$. For $\alpha = -1$,

$$\int_{1}^{\beta} x^{-1} dx = \left[\log x\right]_{1}^{\beta} = \log \beta,$$

and this tends to ∞ as $\beta \to +\infty$. Therefore, $\int_1^{\infty} f(x) dx = \frac{1}{|\alpha+1|}$ for $\alpha < -1$.

- Calculate the integral. $\int_{-1}^{1} \sin(\sin x) dx$.
- Calculate the indefinite integral. $\int_0^2 \sqrt{8-x^2} dx$.
- Calculate the inproper integral. $\int_0^\infty x e^{-x} dx$.