Mathematical Analysis I: Lecture 37

Lecturer: Yoh Tanimoto

23/11/2020 Start recording...

Annoucements

- Tutoring (by Mr. Lorenzo Panebianco): Tuesday 10:00–11:30.
- Office hour: Tuesday 11:30–12:30.
- Basic Mathematics: first few lessons on
 - ullet Tuesday (14:00 16:00 CET): Inequalities, Limits and Derivatives
 - Wednesday (14:00 16:00 CET): Study of function and then upon request.
- Today: Apostol Vol. 1, Chapter 5.

	•	- 1 17 (- 1	,,	-~	^	_	
f(x)	f'(x)	$\int f(x)dx$					
c (constant)							

f(x)	f'(x)	$\int f(x)dx$	X	
c (constant)	0			

			,, ,,
f(x)	f'(x)	$\int f(x)dx$	
c (constant)	0	cx + C	
x^{α}			

			X X
f(x)	f'(x)	$\int f(x)dx$	
c (constant)	0	cx + C	
x^{α}	$\alpha x^{\alpha-1}$		'

			X X
f(x)	f'(x)	$\int f(x)dx$	
c (constant)	0	cx + C	
x^{α}	$\alpha x^{\alpha-1}$	$\frac{x^{\alpha+1}}{\alpha+1}+C$	for $\alpha \neq 0, -1$,
			$x \neq 0$ for negative power
x^{-1}			

			**
f(x)	f'(x)	$\int f(x)dx$	
c (constant)	0	cx + C	
x^{α}	$\alpha x^{\alpha-1}$	$\frac{x^{\alpha+1}}{\alpha+1}+C$	for $\alpha \neq 0, -1$,
			$x \neq 0$ for negative power
x^{-1}	$-\frac{1}{x^2}$		

f(x)	f'(x)	$\int f(x)dx$	
c (constant)	0	cx + C	
x^{α}	$\alpha x^{\alpha-1}$	$\frac{x^{\alpha+1}}{\alpha+1}+C$	for $\alpha \neq 0, -1$,
x_1^{-1}	$-\frac{1}{x^2}$	$ \log x + C$	$x \neq 0$ for negative power $x \neq 0$
$\frac{1}{x^2+1}$	Α	•	•

f(x)	f'(x)	$\int f(x)dx$	
c (constant)	0	cx + C	
x^{α}	$\alpha x^{\alpha-1}$	$\frac{x^{\alpha+1}}{\alpha+1}+C$	for $\alpha \neq 0, -1$,
			$x \neq 0$ for negative power
x^{-1}	$-\frac{1}{x^2}$	$\log x + C$	$x \neq 0$
$\frac{1}{x^2+1}$	$-\frac{2x}{(x^2+1)^2}$		

			X X
f(x)	f'(x)	$\int f(x)dx$	
c (constant)	0	cx + C	
x^{α}	$\alpha x^{\alpha-1}$	$\frac{x^{\alpha+1}}{\alpha+1} + C$	for $\alpha \neq 0, -1$,
		α 1	$x \neq 0$ for negative power
x^{-1}	$-\frac{1}{\sqrt{2}}$	$\log x + C$	$x \neq 0$
$\frac{1}{x^2+1}$	$-\frac{\frac{-\sqrt{2}}{x^2}}{(x^2+1)^2}$	$\log x + C$ arctan $x + C$	
1 1	(// 12)	I	1
$\sqrt{1-x^2}$			

	•	,	· · · · · · · · · · · · · · · · · · ·
f(x)	f'(x)	$\int f(x)dx$	
c (constant)	0	cx + C	
x^{α}	$\alpha x^{\alpha-1}$	$\frac{x^{\alpha+1}}{\alpha+1} + C$	for $\alpha \neq 0, -1$,
		α 1	$x \neq 0$ for negative power
x^{-1}	$-\frac{1}{\sqrt{2}}$	$\log x + C$	$x \neq 0$
$\frac{1}{x^2+1}$	$-\frac{2x}{(x^2+1)^2}$	$\arctan x + C$	
1	<u> </u>		1
$\sqrt{1-x^2}$	$(1-x^2)^{\frac{3}{2}}$		

f(x)	f'(x)	$\int f(x)dx$	
c (constant)	0	cx + C	
x^{α}	$\alpha x^{\alpha-1}$	$\frac{x^{\alpha+1}}{\alpha+1}+C$	for $\alpha \neq 0, -1$,
			$x \neq 0$ for negative power
x^{-1}	$-\frac{1}{\overset{\times}{2}_{X}}$	$\log x + C$	$x \neq 0$
$\frac{1}{x^2+1}$	$-\frac{2x}{(x^2+1)^2}$	arctan x + C	
$\frac{1}{\sqrt{1-x^2}}$	$\frac{x}{(1-x^2)^{\frac{3}{2}}}$	arcsin x + C	-1 < x < 1
e ^x	,	'	

f(x)	f'(x)	$\int f(x)dx$	
c (constant)	0	cx + C	
x^{α}	$\alpha x^{\alpha-1}$	$\frac{x^{\alpha+1}}{\alpha+1}+C$	for $\alpha \neq 0, -1$,
		·	$x \neq 0$ for negative power
x^{-1}	$-\frac{1}{x^2}$	$\log x + C$	$x \neq 0$
$\frac{1}{x^2+1}$	$-\frac{2x}{(x^2+1)^2}$	arctan x + C	
$\frac{1}{\sqrt{1-x^2}}$	$\frac{x}{(1-x^2)^{\frac{3}{2}}}$	arcsin x + C	-1 < x < 1
e ^x	$e^{(1-x^2)^2}$		

	•	- ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	-
f(x)	f'(x)	$\int f(x)dx$	
c (constant)	0	cx + C	
x^{α}	$\alpha x^{\alpha-1}$	$\frac{x^{\alpha+1}}{\alpha+1}+C$	for $\alpha \neq 0, -1$,
			$x \neq 0$ for negative power
x^{-1}	$-\frac{1}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset$	$\log x + C$	$x \neq 0$
$\frac{1}{x^2+1}$	$-\frac{2x}{(x^2+1)^2}$	arctan x + C	
$\frac{1}{\sqrt{1-x^2}}$	X	arcsin x + C	-1 < x < 1
e^{x}	$\frac{\overline{(1-x^2)^{\frac{3}{2}}}}{e^x}$	$e^{x} + C$	
$\log x$			
log x			

	`	- ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	// -X X
f(x)	f'(x)	$\int f(x)dx$	
c (constant)	0	cx + C	
x^{α}	$\alpha x^{\alpha-1}$	$\frac{x^{\alpha+1}}{\alpha+1}+C$	for $\alpha \neq 0, -1$,
			$x \neq 0$ for negative power
x^{-1}	$-\frac{1}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset$	$\log x + C$	$x \neq 0$
$\frac{1}{x^2+1}$	$-\frac{2x}{(x^2+1)^2}$	arctan x + C	
$\frac{1}{\sqrt{1-x^2}}$	` ` ′	arcsin x + C	-1 < x < 1
e^{x}	$ \begin{array}{c} \frac{x}{(1-x^2)^{\frac{3}{2}}} \\ e^x \end{array} $	$e^{x} + C$	
	1		
log x			

			$-\chi$ χ
f(x)	f'(x)	$\int f(x)dx$	
c (constant)	0	cx + C	
x^{α}	$\alpha x^{\alpha-1}$	$\frac{x^{\alpha+1}}{\alpha+1}+C$	for $\alpha \neq 0, -1$,
			$x \neq 0$ for negative power
x^{-1}	$-\frac{1}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset$	$\log x + C$	$x \neq 0$
$\frac{1}{x^2+1}$	$-\frac{2x}{(x^2+1)^2}$	arctan x + C	
$\frac{1}{\sqrt{1-x^2}}$	$\frac{x}{(1-x^2)^{\frac{3}{2}}}$ e^x	arcsin x + C	-1 < x < 1
e ^x	e^{x}	$e^x + C$	
$\log x$	$\frac{1}{x}$	$x \log x - x + C$	see below, $x \neq 0$
sin x			

			$-\chi$ χ
f(x)	f'(x)	$\int f(x)dx$	
c (constant)	0	cx + C	
x^{α}	$\alpha x^{\alpha-1}$	$\frac{x^{\alpha+1}}{\alpha+1}+C$	for $\alpha \neq 0, -1$,
			$x \neq 0$ for negative power
x^{-1}	$-\frac{1}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset$	$\log x + C$	$x \neq 0$
$\frac{1}{x^2+1}$	$-\frac{2x}{(x^2+1)^2}$	arctan x + C	
$\frac{1}{\sqrt{1-x^2}}$	X	arcsin x + C	-1 < x < 1
e^{x}	$\frac{1-x^2)^{\frac{3}{2}}}{e^x}$	$e^x + C$	
$\log x$	$\frac{1}{x}$	$x \log x - x + C$	see below, $x \neq 0$
sin x	cos x		

,	,	011) (0(-x x 0
f(x)	f'(x)	$\int f(x)dx$	
c (constant)	0	cx + C	
x^{α}	$\alpha x^{\alpha-1}$	$\frac{x^{\alpha+1}}{\alpha+1}+C$	for $\alpha \neq 0, -1$,
			$x \neq 0$ for negative power
x^{-1}	$-\frac{1}{\overset{2}{\overset{2}{2}}_{x}}$	$\log x + C$	$x \neq 0$
$\frac{1}{x^2+1}$	$-\frac{1}{(x^2+1)^2}$	arctan x + C	
$\frac{\frac{1}{x^2+1}}{\frac{1}{\sqrt{1-x^2}}}$	$\frac{x}{(1-x^2)^{\frac{3}{2}}}$	arcsin x + C	-1 < x < 1
e^{x}	$\frac{x}{(1-x^2)^{\frac{3}{2}}}$ e^x	$e^x + C$	
$\log x$	$\frac{1}{x}$	$x \log x - x + C$	see below, $x \neq 0$
sin x	cos x	$-\cos x + C$	
cos x		•	

,	,	011) (0($-\chi$ χ χ
f(x)	f'(x)	$\int f(x)dx$	
c (constant)	0	cx + C	
x^{α}	$\alpha x^{\alpha-1}$	$\frac{x^{\alpha+1}}{\alpha+1} + C$	for $\alpha \neq 0, -1$,
			$x \neq 0$ for negative power
x^{-1}	$-\frac{1}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset$	$\log x + C$	$x \neq 0$
$\frac{1}{x^2+1}$	$-\frac{1}{(x^2+1)^2}$	arctan x + C	
$\frac{1}{\sqrt{1-x^2}}$	$\frac{\frac{x}{x^2}}{(1-x^2)^{\frac{3}{2}}}e^x$	arcsin x + C	-1 < x < 1
e ^x	e^{x}	$e^{x} + C$	
log x	$\frac{1}{x}$	$x \log x - x + C$	see below, $x \neq 0$
sin x	cos x	$-\cos x + C$	
cos x	— sin <i>x</i>		

	/	0 1) (-0($-\chi$ χ
f(x)	f'(x)	$\int f(x)dx$	
c (constant)	0	cx + C	
x^{α}	$\alpha x^{\alpha-1}$	$\frac{x^{\alpha+1}}{\alpha+1}+C$	for $\alpha \neq 0, -1$,
		,	$x \neq 0$ for negative power
x^{-1}	$-\frac{1}{\stackrel{\times}{2}}$	$\log x + C$	$x \neq 0$
$\frac{1}{x^2+1}$	$-\frac{1}{(x^2+1)^2}$	arctan x + C	
$\frac{\frac{1}{x^2+1}}{\frac{1}{\sqrt{1-x^2}}}$	$ \frac{\frac{x}{x^2}}{(1-x^2)^{\frac{3}{2}}} $ $ e^x $	arcsin x + C	-1 < x < 1
e ^x	e ^x	$e^x + C$	
$\log x$	$\frac{1}{x}$	$x \log x - x + C$	see below, $x \neq 0$
sin x	cos x	$-\cos x + C$	
cos x	— sin <i>x</i>	$\sin x + C$	
sinh x		,	'

	, _ (0 1 1 1 1 1 1 1 1 1	$-\chi$ χ
f(x)	f'(x)	$\int f(x)dx$	
c (constant)	0	cx + C	
x^{α}	$\alpha x^{\alpha-1}$	$\frac{x^{\alpha+1}}{\alpha+1}+C$	for $\alpha \neq 0, -1$,
		,	$x \neq 0$ for negative power
x^{-1}	$-\frac{1}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset$	$\log x + C$	$x \neq 0$
$\frac{1}{x^2+1}$	$-\frac{1}{(x^2+1)^2}$	arctan x + C	
$\frac{\frac{1}{x^2+1}}{\frac{1}{\sqrt{1-x^2}}}$	$\frac{\frac{x}{x^{1}}}{(1-x^{2})^{\frac{3}{2}}}e^{x}$	arcsin x + C	-1 < x < 1
e ^x	e ^x	$e^x + C$	
log x	$\frac{1}{x}$	$x \log x - x + C$	see below, $x \neq 0$
sin x	cos x	$-\cos x + C$	
cos x	− sin <i>x</i>	$\sin x + C$	
sinh x	cosh x		

	/	0) ('0($-\chi$ χ
f(x)	f'(x)	$\int f(x)dx$	
c (constant)	0	cx + C	
x^{α}	$\alpha x^{\alpha-1}$	$\frac{x^{\alpha+1}}{\alpha+1}+C$	for $\alpha \neq 0, -1$,
		,	$x \neq 0$ for negative power
x^{-1}	$-\frac{1}{\overset{\times}{2}_{x}^{2}}$	$\log x + C$	$x \neq 0$
$\frac{1}{x^2+1}$	$-\frac{1}{(x^2+1)^2}$	arctan x + C	
$\frac{1}{\sqrt{1-x^2}}$	$\frac{\frac{x}{x}}{(1-x^2)^{\frac{3}{2}}}$ e^x	arcsin x + C	-1 < x < 1
e ^x	e ^x	$e^x + C$	
log x	$\frac{1}{x}$	$x \log x - x + C$	see below, $x \neq 0$
sin x	cos x	$-\cos x + C$	
cos x	− sin <i>x</i>	$\sin x + C$	
sinh x	cosh x	$\sinh x + C$	
cosh x			'

	, _ (0 1 1 1 1 1 1 1 1 1	-x x
f(x)	f'(x)	$\int f(x)dx$	
c (constant)	0	cx + C	
x^{α}	$\alpha x^{\alpha-1}$	$\frac{x^{\alpha+1}}{\alpha+1}+C$	for $\alpha \neq 0, -1$,
			$x \neq 0$ for negative power
x^{-1}	$-\frac{1}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset$	$\log x + C$	$x \neq 0$
$\frac{1}{x^2+1}$	$-\frac{1}{(\sqrt{2}\pm 1)^2}$	arctan x + C	
$\frac{1}{\sqrt{1-x^2}}$	$\frac{\frac{x}{x}}{(1-x^2)^{\frac{3}{2}}}$ e^x	arcsin x + C	-1 < x < 1
e ^x	$e^{x'}$	$e^x + C$	
$\log x$	$\frac{1}{x}$	$x \log x - x + C$	see below, $x \neq 0$
sin x	cos x	$-\cos x + C$	
cos x	— sin <i>x</i>	$\sin x + C$	
sinh x	cosh x	$\sinh x + C$	
cosh x	sinh x		'

	/	0) (-0($-\chi$ χ
f(x)	f'(x)	$\int f(x)dx$	
c (constant)	0	cx + C	
x^{α}	$\alpha x^{\alpha-1}$	$\frac{x^{\alpha+1}}{\alpha+1}+C$	for $\alpha \neq 0, -1$,
			$x \neq 0$ for negative power
x^{-1}	$-\frac{1}{x^2}$	$\log x + C$	$x \neq 0$
$\frac{1}{x^2+1}$	$-\frac{2x}{(x^2+1)^2}$	arctan x + C	
		arcsin x + C	-1 < x < 1
e^{x}	$e^{(1-x^2)^2}$	$e^{x} + C$	
log x	$\frac{1}{x}$	$x \log x - x + C$	see below, $x \neq 0$
sin x	cos x	$-\cos x + C$	
cos x	− sin <i>x</i>	$\sin x + C$	
sinh x	cosh x	$\sinh x + C$	
cosh x	sinh x	$\cosh + C$	
	$c \text{ (constant)}$ x^{α} x^{-1} $\frac{1}{x^2+1}$ $\frac{1}{\sqrt{1-x^2}}$ e^x $\log x$ $\sin x$ $\cos x$ $\sinh x$	$c \text{ (constant)} \qquad 0 \\ x^{\alpha} \qquad \alpha x^{\alpha-1} \\ \\ x^{-1} \\ \frac{1}{x^2+1} \\ \frac{1}{\sqrt{1-x^2}} \\ e^x \qquad e^x \\ \log x \\ \sin x \qquad \cos x \\ \cos x \\ \sinh x \qquad \cosh x \\ \\ \\ c \text{ (constant)} \\ -\frac{1}{x^2} \\ -\frac{2x}{(x^2+1)^2} \\ \frac{2x}{(1-x^2)^{\frac{3}{2}}} \\ e^x \\ e^x \\ -\sin x \\ \cos x \\ \cos x \\ \cosh x \\ \\ \\ \\ c \text{ (observed)} \\ \\ \frac{1}{x} \\ \\ \cos x \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{array}{c cccc} c \ (\text{constant}) & 0 & cx + C \\ x^{\alpha} & \alpha x^{\alpha-1} & \frac{x^{\alpha+1}}{\alpha+1} + C \\ & & & \\ x^{-1} & -\frac{1}{x^2} & \log x + C \\ \frac{1}{x^2+1} & -\frac{2}{(x^2+1)^2} & \arctan x + C \\ \frac{1}{\sqrt{1-x^2}} & \frac{x}{(1-x^2)^{\frac{3}{2}}} & \arcsin x + C \\ e^x & e^x & e^x + C \\ \log x & \frac{1}{x} & x \log x - x + C \\ \sin x & \cos x & -\cos x + C \\ \cos x & -\sin x & \sin x + C \\ \sinh x & \cosh x & \sinh x + C \\ \end{array}$

Recall that, if f,g are differentiable, then it holds that D(f(x)g(x)) = Df(x)g(x) + f(x)Dg(x). By writing this as Df(x)g(x) = D(f(x)g(x)) - f(x)Dg(x), we can find a primitive of Df(x)g(x) if we know a primitive of f(x)Dg(x). Schematically,

$$\int f'(x)g(x)dx = f(x)g(x) - \int f(x)g'(x)dx + C.$$

This is called integration by parts.

Example

• Consider $\int x \cos x dx$.

Example

• Consider $\int x \cos x dx$. With $f(x) = \sin x$, g(x) = x, this is of the form f'(x)g(x), because $f'(x) = \cos x$.

Example

• Consider $\int x \cos x dx$. With $f(x) = \sin x$, g(x) = x, this is of the form f'(x)g(x), because $f'(x) = \cos x$. By integration by parts, with g'(x) = 1, we obtain

Example

• Consider $\int x \cos x dx$. With $f(x) = \sin x$, g(x) = x, this is of the form f'(x)g(x), because $f'(x) = \cos x$. By integration by parts, with g'(x) = 1, we obtain

$$\int x \cos x dx = x \sin x - \int \sin x \cdot 1 dx + C = x \sin x + \cos x + C.$$

Example

• Consider $\int x \cos x dx$. With $f(x) = \sin x$, g(x) = x, this is of the form f'(x)g(x), because $f'(x) = \cos x$. By integration by parts, with g'(x) = 1, we obtain

$$\int x \cos x dx = x \sin x - \int \sin x \cdot 1 dx + C = x \sin x + \cos x + C.$$

We can check this results by taking the derivative:

$$D(x\sin x + \cos x) = \sin x + x\cos x - \sin x = x\cos x.$$

Example

• Consider $\int \log x dx$.

Example

• Consider $\int \log x dx$. We can see this as $1 \cdot \log x$, and 1 = D(x).

Example

• Consider $\int \log x dx$. We can see this as $1 \cdot \log x$, and 1 = D(x). Therfore, with $f(x) = x, g(x) = \log x$ and $g'(x) = \frac{1}{x}$, we have

Example

• Consider $\int \log x dx$. We can see this as $1 \cdot \log x$, and 1 = D(x). Therfore, with $f(x) = x, g(x) = \log x$ and $g'(x) = \frac{1}{x}$, we have

$$\int \log x dx = x \log x - \int x \cdot \frac{1}{x} dx + C$$
$$= x \log x - \int 1 dx + C = x \log x - x + C.$$

Example

• Consider $\int x^2 \sin x dx$.

Example

• Consider $\int x^2 \sin x dx$. This cannot be integrated by one step, but by successive applications of integration by parts. By noting that $\sin x = D(-\cos x)$ and $\cos x = D(\sin x)$,

Example

• Consider $\int x^2 \sin x dx$. This cannot be integrated by one step, but by successive applications of integration by parts. By noting that $\sin x = D(-\cos x)$ and $\cos x = D(\sin x)$,

$$\int x^2 \sin x dx = x^2 (-\cos x) - \int 2x (-\cos x) dx + C$$
$$= -x^2 \cos x + 2x \sin x - \int 2\sin x dx + C$$
$$= -x^2 \cos x + 2x \sin x + 2\cos x + C.$$

As for indefinite integral, we do not have to find the whole indefinite integral, but we can give values to parts. Let us recall that $f(b) - f(a) = \int_a^b f'(x) dx$.

Lemma

If f, g are differentiable and f', g' are continuous, then

$$\int_{a}^{b} f'(x)g(x)dx = [f(x)g(x)]_{a}^{b} - \int_{a}^{b} f(x)g'(x)dx.$$

Proof.

(fg)'=f'g+fg', hence $\int f'(x)g(x)dx=f(x)g(x)-\int f(x)g'(x)dx$ (integration by parts) and the rest goes as follows: If H(x) is a primitive of h(x), then $\int_a^b h(x)dx=H(b)-H(a)$. Note that with h(x)=f(x)g'(x), we have we can take $H(x)=\int_a^x h(x)dx$ and $H(b)-H(a)=\int_a^b h(x)dx-\int_a^a h(x)dx=\int_a^b h(x)dx$.

Example
$$\int_0^1 xe^{2x} dx$$

Example

$$\int_0^1 x e^{2x} dx$$

$$= \frac{1}{2} [x e^{2x}]_0^1 - \int_0^1 \frac{1}{2} e^{2x} dx = \frac{1}{2} (e^2 - 0) - \frac{1}{4} [e^{2x}]_0^1 = \frac{e^2}{2} - \frac{1}{4} (e^2 - 1) = \frac{e^2}{4} + \frac{1}{4}.$$

Next, let us consider the case where the integral is of the form $\int \varphi'(x)f'(\varphi(x))dx$. We know that $D(f(\varphi(x))) = \varphi'(x)f'(\varphi(x))$ by the chain rule, hence in this case we have

$$\int \varphi'(x)f'(\varphi(x))dx = f(\varphi(x)) + C.$$

This is called **substitution**.

Example

• Consider $\int 2x \sin(x^2) dx$.

Example

• Consider $\int 2x \sin(x^2) dx$. Note that $2x = D(x^2)$ and $\sin(y) = D(-\cos y)$,

Example

• Consider $\int 2x \sin(x^2) dx$. Note that $2x = D(x^2)$ and $\sin(y) = D(-\cos y)$, hence

$$\int 2x\sin(x^2)dx = -\cos(x^2) + C.$$

Example

• Consider $\int 2x \sin(x^2) dx$. Note that $2x = D(x^2)$ and $\sin(y) = D(-\cos y)$, hence

$$\int 2x\sin(x^2)dx = -\cos(x^2) + C.$$

Indeed, by the chain rule,

$$D(-\cos(x^2)) = -(2x(-\sin(x^2))) = 2x\sin(x^2).$$

Example

• Consider $\int \frac{x}{x^2+1} dx$.

Example

• Consider $\int \frac{x}{x^2+1} dx$. Note that $2x = D(x^2)$, and hence

Example

• Consider $\int \frac{x}{x^2+1} dx$. Note that $2x = D(x^2)$, and hence

$$\int \frac{x}{x^2+1} dx = \frac{1}{2} \int \frac{2x}{x^2+1} dx = \frac{1}{2} \int \frac{D(x^2)}{x^2+1} dx = \frac{1}{2} \log(x^2+1).$$

Example

• Consider $\int \tan x dx$.

Example

• Consider $\int \tan x dx$. Recall that $\tan x = \frac{\sin x}{\cos x}$ and note that $D(\cos x) = -\sin x$. Hence

Example

• Consider $\int \tan x dx$. Recall that $\tan x = \frac{\sin x}{\cos x}$ and note that $D(\cos x) = -\sin x$. Hence

$$\int \tan x dx = -\int D(\cos x) \cdot \frac{1}{\cos x} dx + C = -\log|\cos x| + C.$$

Lemma

If f, φ are differentiable and f, φ' is continuous, then

$$\int_a^b \varphi'(x)f'(\varphi(x))dx = [f(\varphi(x))]_a^b = [f(y)]_{\varphi(a)}^{\varphi(b)} = f(\varphi(b)) - f(\varphi(a)).$$

Proof.

This follows immediately because $f(\varphi(x))$ is a primitive of $\varphi'(x)f'(\varphi(x))$.

Example

Consider $\int_0^{\pi} \sin^3 x dx$.

Example

Consider $\int_0^{\pi} \sin^3 x dx$.

$$\int_0^{\pi} \sin^3 x dx = -\int_0^{\pi} (\cos^2 x - 1) \sin x dx$$

$$= \int_0^{\pi} ((\cos x)^2 - 1) D(\cos x) dx = \left[\frac{\cos^3 x}{3} - \cos x \right]_0^{\pi}$$

$$= \left(\frac{(-1)^3}{3} - (-1) - (\frac{1^3}{3} - 1) \right) = \frac{4}{3}.$$

Lecturer: Yoh Tanimoto

Exercises

- Calculate the indefinite integral. $\int xe^x dx$.
- Calculate the indefinite integral. $\int e^x \sin x dx$.
- Calculate the definite integral. $\int_0^1 x^2 e^{-x} dx$.
- Calculate the indefinite integral. $\int x\sqrt{1-x^2}dx$.
- Calculate the indefinite integral. $\int xe^{x^2}dx$.
- Calculate the definite integral. $\int_0^1 x^3 e^{x^2} dx$.