Mathematical Analysis I: Lecture 37 Lecturer: Yoh Tanimoto 23/11/2020 Start recording... #### Annoucements - Tutoring (by Mr. Lorenzo Panebianco): Tuesday 10:00–11:30. - Office hour: Tuesday 11:30–12:30. - Basic Mathematics: first few lessons on - ullet Tuesday (14:00 16:00 CET): Inequalities, Limits and Derivatives - Wednesday (14:00 16:00 CET): Study of function and then upon request. - Today: Apostol Vol. 1, Chapter 5. | | • | - 1 17 (- 1 | ,, | -~ | ^ | _ | | |--------------|-------|---------------|----|----|---|---|--| | f(x) | f'(x) | $\int f(x)dx$ | | | | | | | c (constant) | | | | | | | | | f(x) | f'(x) | $\int f(x)dx$ | X | | |--------------|-------|---------------|---|--| | c (constant) | 0 | | | | | | | | ,, ,, | |--------------|-------|---------------|-------| | f(x) | f'(x) | $\int f(x)dx$ | | | c (constant) | 0 | cx + C | | | x^{α} | | | | | | | | X X | |--------------|-----------------------|---------------|-----| | f(x) | f'(x) | $\int f(x)dx$ | | | c (constant) | 0 | cx + C | | | x^{α} | $\alpha x^{\alpha-1}$ | | ' | | | | | X X | |--------------|-----------------------|-----------------------------------|-------------------------------| | f(x) | f'(x) | $\int f(x)dx$ | | | c (constant) | 0 | cx + C | | | x^{α} | $\alpha x^{\alpha-1}$ | $\frac{x^{\alpha+1}}{\alpha+1}+C$ | for $\alpha \neq 0, -1$, | | | | | $x \neq 0$ for negative power | | x^{-1} | | | | | | | | ** | |--------------|-----------------------|-----------------------------------|-------------------------------| | f(x) | f'(x) | $\int f(x)dx$ | | | c (constant) | 0 | cx + C | | | x^{α} | $\alpha x^{\alpha-1}$ | $\frac{x^{\alpha+1}}{\alpha+1}+C$ | for $\alpha \neq 0, -1$, | | | | | $x \neq 0$ for negative power | | x^{-1} | $-\frac{1}{x^2}$ | | | | f(x) | f'(x) | $\int f(x)dx$ | | |-------------------|-----------------------|-----------------------------------|------------------------------------------| | c (constant) | 0 | cx + C | | | x^{α} | $\alpha x^{\alpha-1}$ | $\frac{x^{\alpha+1}}{\alpha+1}+C$ | for $\alpha \neq 0, -1$, | | x_1^{-1} | $-\frac{1}{x^2}$ | $ \log x + C$ | $x \neq 0$ for negative power $x \neq 0$ | | $\frac{1}{x^2+1}$ | Α | • | • | | f(x) | f'(x) | $\int f(x)dx$ | | |-------------------|-------------------------|-----------------------------------|-------------------------------| | c (constant) | 0 | cx + C | | | x^{α} | $\alpha x^{\alpha-1}$ | $\frac{x^{\alpha+1}}{\alpha+1}+C$ | for $\alpha \neq 0, -1$, | | | | | $x \neq 0$ for negative power | | x^{-1} | $-\frac{1}{x^2}$ | $\log x + C$ | $x \neq 0$ | | $\frac{1}{x^2+1}$ | $-\frac{2x}{(x^2+1)^2}$ | | | | | | | X X | |-------------------|--------------------------------------------|-------------------------------------|-------------------------------| | f(x) | f'(x) | $\int f(x)dx$ | | | c (constant) | 0 | cx + C | | | x^{α} | $\alpha x^{\alpha-1}$ | $\frac{x^{\alpha+1}}{\alpha+1} + C$ | for $\alpha \neq 0, -1$, | | | | α 1 | $x \neq 0$ for negative power | | x^{-1} | $-\frac{1}{\sqrt{2}}$ | $\log x + C$ | $x \neq 0$ | | $\frac{1}{x^2+1}$ | $-\frac{\frac{-\sqrt{2}}{x^2}}{(x^2+1)^2}$ | $\log x + C$ arctan $x + C$ | | | 1 1 | (// 12) | I | 1 | | $\sqrt{1-x^2}$ | | | | | | • | , | · · · · · · · · · · · · · · · · · · · | |-------------------|-------------------------|-------------------------------------|---------------------------------------| | f(x) | f'(x) | $\int f(x)dx$ | | | c (constant) | 0 | cx + C | | | x^{α} | $\alpha x^{\alpha-1}$ | $\frac{x^{\alpha+1}}{\alpha+1} + C$ | for $\alpha \neq 0, -1$, | | | | α 1 | $x \neq 0$ for negative power | | x^{-1} | $-\frac{1}{\sqrt{2}}$ | $\log x + C$ | $x \neq 0$ | | $\frac{1}{x^2+1}$ | $-\frac{2x}{(x^2+1)^2}$ | $\arctan x + C$ | | | 1 | <u> </u> | | 1 | | $\sqrt{1-x^2}$ | $(1-x^2)^{\frac{3}{2}}$ | | | | f(x) | f'(x) | $\int f(x)dx$ | | |--------------------------|--------------------------------------|-----------------------------------|-------------------------------| | c (constant) | 0 | cx + C | | | x^{α} | $\alpha x^{\alpha-1}$ | $\frac{x^{\alpha+1}}{\alpha+1}+C$ | for $\alpha \neq 0, -1$, | | | | | $x \neq 0$ for negative power | | x^{-1} | $-\frac{1}{\overset{\times}{2}_{X}}$ | $\log x + C$ | $x \neq 0$ | | $\frac{1}{x^2+1}$ | $-\frac{2x}{(x^2+1)^2}$ | arctan x + C | | | $\frac{1}{\sqrt{1-x^2}}$ | $\frac{x}{(1-x^2)^{\frac{3}{2}}}$ | arcsin x + C | -1 < x < 1 | | e ^x | , | ' | | | f(x) | f'(x) | $\int f(x)dx$ | | |--------------------------|-----------------------------------|-----------------------------------|-------------------------------| | c (constant) | 0 | cx + C | | | x^{α} | $\alpha x^{\alpha-1}$ | $\frac{x^{\alpha+1}}{\alpha+1}+C$ | for $\alpha \neq 0, -1$, | | | | · | $x \neq 0$ for negative power | | x^{-1} | $-\frac{1}{x^2}$ | $\log x + C$ | $x \neq 0$ | | $\frac{1}{x^2+1}$ | $-\frac{2x}{(x^2+1)^2}$ | arctan x + C | | | $\frac{1}{\sqrt{1-x^2}}$ | $\frac{x}{(1-x^2)^{\frac{3}{2}}}$ | arcsin x + C | -1 < x < 1 | | e ^x | $e^{(1-x^2)^2}$ | | | | | • | - ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' | - | |--------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------| | f(x) | f'(x) | $\int f(x)dx$ | | | c (constant) | 0 | cx + C | | | x^{α} | $\alpha x^{\alpha-1}$ | $\frac{x^{\alpha+1}}{\alpha+1}+C$ | for $\alpha \neq 0, -1$, | | | | | $x \neq 0$ for negative power | | x^{-1} | $-\frac{1}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset$ | $\log x + C$ | $x \neq 0$ | | $\frac{1}{x^2+1}$ | $-\frac{2x}{(x^2+1)^2}$ | arctan x + C | | | $\frac{1}{\sqrt{1-x^2}}$ | X | arcsin x + C | -1 < x < 1 | | e^{x} | $\frac{\overline{(1-x^2)^{\frac{3}{2}}}}{e^x}$ | $e^{x} + C$ | | | $\log x$ | | | | | log x | | | | | | ` | - ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' | // -X X | |--------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------| | f(x) | f'(x) | $\int f(x)dx$ | | | c (constant) | 0 | cx + C | | | x^{α} | $\alpha x^{\alpha-1}$ | $\frac{x^{\alpha+1}}{\alpha+1}+C$ | for $\alpha \neq 0, -1$, | | | | | $x \neq 0$ for negative power | | x^{-1} | $-\frac{1}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset$ | $\log x + C$ | $x \neq 0$ | | $\frac{1}{x^2+1}$ | $-\frac{2x}{(x^2+1)^2}$ | arctan x + C | | | $\frac{1}{\sqrt{1-x^2}}$ | ` ` ′ | arcsin x + C | -1 < x < 1 | | e^{x} | $ \begin{array}{c} \frac{x}{(1-x^2)^{\frac{3}{2}}} \\ e^x \end{array} $ | $e^{x} + C$ | | | | 1 | | | | log x | | | | | | | | $-\chi$ χ | |--------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------| | f(x) | f'(x) | $\int f(x)dx$ | | | c (constant) | 0 | cx + C | | | x^{α} | $\alpha x^{\alpha-1}$ | $\frac{x^{\alpha+1}}{\alpha+1}+C$ | for $\alpha \neq 0, -1$, | | | | | $x \neq 0$ for negative power | | x^{-1} | $-\frac{1}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset$ | $\log x + C$ | $x \neq 0$ | | $\frac{1}{x^2+1}$ | $-\frac{2x}{(x^2+1)^2}$ | arctan x + C | | | $\frac{1}{\sqrt{1-x^2}}$ | $\frac{x}{(1-x^2)^{\frac{3}{2}}}$ e^x | arcsin x + C | -1 < x < 1 | | e ^x | e^{x} | $e^x + C$ | | | $\log x$ | $\frac{1}{x}$ | $x \log x - x + C$ | see below, $x \neq 0$ | | sin x | | | | | | | | $-\chi$ χ | |--------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------| | f(x) | f'(x) | $\int f(x)dx$ | | | c (constant) | 0 | cx + C | | | x^{α} | $\alpha x^{\alpha-1}$ | $\frac{x^{\alpha+1}}{\alpha+1}+C$ | for $\alpha \neq 0, -1$, | | | | | $x \neq 0$ for negative power | | x^{-1} | $-\frac{1}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset$ | $\log x + C$ | $x \neq 0$ | | $\frac{1}{x^2+1}$ | $-\frac{2x}{(x^2+1)^2}$ | arctan x + C | | | $\frac{1}{\sqrt{1-x^2}}$ | X | arcsin x + C | -1 < x < 1 | | e^{x} | $\frac{1-x^2)^{\frac{3}{2}}}{e^x}$ | $e^x + C$ | | | $\log x$ | $\frac{1}{x}$ | $x \log x - x + C$ | see below, $x \neq 0$ | | sin x | cos x | | | | , | , | 011) (0(| -x x 0 | |--------------------------------------------------|----------------------------------------------|-----------------------------------|-------------------------------| | f(x) | f'(x) | $\int f(x)dx$ | | | c (constant) | 0 | cx + C | | | x^{α} | $\alpha x^{\alpha-1}$ | $\frac{x^{\alpha+1}}{\alpha+1}+C$ | for $\alpha \neq 0, -1$, | | | | | $x \neq 0$ for negative power | | x^{-1} | $-\frac{1}{\overset{2}{\overset{2}{2}}_{x}}$ | $\log x + C$ | $x \neq 0$ | | $\frac{1}{x^2+1}$ | $-\frac{1}{(x^2+1)^2}$ | arctan x + C | | | $\frac{\frac{1}{x^2+1}}{\frac{1}{\sqrt{1-x^2}}}$ | $\frac{x}{(1-x^2)^{\frac{3}{2}}}$ | arcsin x + C | -1 < x < 1 | | e^{x} | $\frac{x}{(1-x^2)^{\frac{3}{2}}}$ e^x | $e^x + C$ | | | $\log x$ | $\frac{1}{x}$ | $x \log x - x + C$ | see below, $x \neq 0$ | | sin x | cos x | $-\cos x + C$ | | | cos x | | • | | | , | , | 011) (0(| $-\chi$ χ χ | |--------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------| | f(x) | f'(x) | $\int f(x)dx$ | | | c (constant) | 0 | cx + C | | | x^{α} | $\alpha x^{\alpha-1}$ | $\frac{x^{\alpha+1}}{\alpha+1} + C$ | for $\alpha \neq 0, -1$, | | | | | $x \neq 0$ for negative power | | x^{-1} | $-\frac{1}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset$ | $\log x + C$ | $x \neq 0$ | | $\frac{1}{x^2+1}$ | $-\frac{1}{(x^2+1)^2}$ | arctan x + C | | | $\frac{1}{\sqrt{1-x^2}}$ | $\frac{\frac{x}{x^2}}{(1-x^2)^{\frac{3}{2}}}e^x$ | arcsin x + C | -1 < x < 1 | | e ^x | e^{x} | $e^{x} + C$ | | | log x | $\frac{1}{x}$ | $x \log x - x + C$ | see below, $x \neq 0$ | | sin x | cos x | $-\cos x + C$ | | | cos x | — sin <i>x</i> | | | | | / | 0 1) (-0(| $-\chi$ χ | |--------------------------------------------------|---------------------------------------------------------|-----------------------------------|-------------------------------| | f(x) | f'(x) | $\int f(x)dx$ | | | c (constant) | 0 | cx + C | | | x^{α} | $\alpha x^{\alpha-1}$ | $\frac{x^{\alpha+1}}{\alpha+1}+C$ | for $\alpha \neq 0, -1$, | | | | , | $x \neq 0$ for negative power | | x^{-1} | $-\frac{1}{\stackrel{\times}{2}}$ | $\log x + C$ | $x \neq 0$ | | $\frac{1}{x^2+1}$ | $-\frac{1}{(x^2+1)^2}$ | arctan x + C | | | $\frac{\frac{1}{x^2+1}}{\frac{1}{\sqrt{1-x^2}}}$ | $ \frac{\frac{x}{x^2}}{(1-x^2)^{\frac{3}{2}}} $ $ e^x $ | arcsin x + C | -1 < x < 1 | | e ^x | e ^x | $e^x + C$ | | | $\log x$ | $\frac{1}{x}$ | $x \log x - x + C$ | see below, $x \neq 0$ | | sin x | cos x | $-\cos x + C$ | | | cos x | — sin <i>x</i> | $\sin x + C$ | | | sinh x | | , | ' | | | , _ (| 0 1 1 1 1 1 1 1 1 1 | $-\chi$ χ | |--------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------| | f(x) | f'(x) | $\int f(x)dx$ | | | c (constant) | 0 | cx + C | | | x^{α} | $\alpha x^{\alpha-1}$ | $\frac{x^{\alpha+1}}{\alpha+1}+C$ | for $\alpha \neq 0, -1$, | | | | , | $x \neq 0$ for negative power | | x^{-1} | $-\frac{1}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset$ | $\log x + C$ | $x \neq 0$ | | $\frac{1}{x^2+1}$ | $-\frac{1}{(x^2+1)^2}$ | arctan x + C | | | $\frac{\frac{1}{x^2+1}}{\frac{1}{\sqrt{1-x^2}}}$ | $\frac{\frac{x}{x^{1}}}{(1-x^{2})^{\frac{3}{2}}}e^{x}$ | arcsin x + C | -1 < x < 1 | | e ^x | e ^x | $e^x + C$ | | | log x | $\frac{1}{x}$ | $x \log x - x + C$ | see below, $x \neq 0$ | | sin x | cos x | $-\cos x + C$ | | | cos x | − sin <i>x</i> | $\sin x + C$ | | | sinh x | cosh x | | | | | / | 0) ('0(| $-\chi$ χ | |--------------------------|---------------------------------------------------|-----------------------------------|-------------------------------| | f(x) | f'(x) | $\int f(x)dx$ | | | c (constant) | 0 | cx + C | | | x^{α} | $\alpha x^{\alpha-1}$ | $\frac{x^{\alpha+1}}{\alpha+1}+C$ | for $\alpha \neq 0, -1$, | | | | , | $x \neq 0$ for negative power | | x^{-1} | $-\frac{1}{\overset{\times}{2}_{x}^{2}}$ | $\log x + C$ | $x \neq 0$ | | $\frac{1}{x^2+1}$ | $-\frac{1}{(x^2+1)^2}$ | arctan x + C | | | $\frac{1}{\sqrt{1-x^2}}$ | $\frac{\frac{x}{x}}{(1-x^2)^{\frac{3}{2}}}$ e^x | arcsin x + C | -1 < x < 1 | | e ^x | e ^x | $e^x + C$ | | | log x | $\frac{1}{x}$ | $x \log x - x + C$ | see below, $x \neq 0$ | | sin x | cos x | $-\cos x + C$ | | | cos x | − sin <i>x</i> | $\sin x + C$ | | | sinh x | cosh x | $\sinh x + C$ | | | cosh x | | | ' | | | , _ (| 0 1 1 1 1 1 1 1 1 1 | -x x | |--------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------| | f(x) | f'(x) | $\int f(x)dx$ | | | c (constant) | 0 | cx + C | | | x^{α} | $\alpha x^{\alpha-1}$ | $\frac{x^{\alpha+1}}{\alpha+1}+C$ | for $\alpha \neq 0, -1$, | | | | | $x \neq 0$ for negative power | | x^{-1} | $-\frac{1}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset$ | $\log x + C$ | $x \neq 0$ | | $\frac{1}{x^2+1}$ | $-\frac{1}{(\sqrt{2}\pm 1)^2}$ | arctan x + C | | | $\frac{1}{\sqrt{1-x^2}}$ | $\frac{\frac{x}{x}}{(1-x^2)^{\frac{3}{2}}}$ e^x | arcsin x + C | -1 < x < 1 | | e ^x | $e^{x'}$ | $e^x + C$ | | | $\log x$ | $\frac{1}{x}$ | $x \log x - x + C$ | see below, $x \neq 0$ | | sin x | cos x | $-\cos x + C$ | | | cos x | — sin <i>x</i> | $\sin x + C$ | | | sinh x | cosh x | $\sinh x + C$ | | | cosh x | sinh x | | ' | | | / | 0) (-0(| $-\chi$ χ | |-------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | f(x) | f'(x) | $\int f(x)dx$ | | | c (constant) | 0 | cx + C | | | x^{α} | $\alpha x^{\alpha-1}$ | $\frac{x^{\alpha+1}}{\alpha+1}+C$ | for $\alpha \neq 0, -1$, | | | | | $x \neq 0$ for negative power | | x^{-1} | $-\frac{1}{x^2}$ | $\log x + C$ | $x \neq 0$ | | $\frac{1}{x^2+1}$ | $-\frac{2x}{(x^2+1)^2}$ | arctan x + C | | | | | arcsin x + C | -1 < x < 1 | | e^{x} | $e^{(1-x^2)^2}$ | $e^{x} + C$ | | | log x | $\frac{1}{x}$ | $x \log x - x + C$ | see below, $x \neq 0$ | | sin x | cos x | $-\cos x + C$ | | | cos x | − sin <i>x</i> | $\sin x + C$ | | | sinh x | cosh x | $\sinh x + C$ | | | cosh x | sinh x | $\cosh + C$ | | | | $c \text{ (constant)}$ x^{α} x^{-1} $\frac{1}{x^2+1}$ $\frac{1}{\sqrt{1-x^2}}$ e^x $\log x$ $\sin x$ $\cos x$ $\sinh x$ | $c \text{ (constant)} \qquad 0 \\ x^{\alpha} \qquad \alpha x^{\alpha-1} \\ \\ x^{-1} \\ \frac{1}{x^2+1} \\ \frac{1}{\sqrt{1-x^2}} \\ e^x \qquad e^x \\ \log x \\ \sin x \qquad \cos x \\ \cos x \\ \sinh x \qquad \cosh x \\ \\ \\ c \text{ (constant)} \\ -\frac{1}{x^2} \\ -\frac{2x}{(x^2+1)^2} \\ \frac{2x}{(1-x^2)^{\frac{3}{2}}} \\ e^x \\ e^x \\ -\sin x \\ \cos x \\ \cos x \\ \cosh x \\ \\ \\ \\ c \text{ (observed)} \\ \\ \frac{1}{x} \\ \\ \cos x \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$ | $\begin{array}{c cccc} c \ (\text{constant}) & 0 & cx + C \\ x^{\alpha} & \alpha x^{\alpha-1} & \frac{x^{\alpha+1}}{\alpha+1} + C \\ & & & \\ x^{-1} & -\frac{1}{x^2} & \log x + C \\ \frac{1}{x^2+1} & -\frac{2}{(x^2+1)^2} & \arctan x + C \\ \frac{1}{\sqrt{1-x^2}} & \frac{x}{(1-x^2)^{\frac{3}{2}}} & \arcsin x + C \\ e^x & e^x & e^x + C \\ \log x & \frac{1}{x} & x \log x - x + C \\ \sin x & \cos x & -\cos x + C \\ \cos x & -\sin x & \sin x + C \\ \sinh x & \cosh x & \sinh x + C \\ \end{array}$ | Recall that, if f,g are differentiable, then it holds that D(f(x)g(x)) = Df(x)g(x) + f(x)Dg(x). By writing this as Df(x)g(x) = D(f(x)g(x)) - f(x)Dg(x), we can find a primitive of Df(x)g(x) if we know a primitive of f(x)Dg(x). Schematically, $$\int f'(x)g(x)dx = f(x)g(x) - \int f(x)g'(x)dx + C.$$ This is called integration by parts. #### Example • Consider $\int x \cos x dx$. #### Example • Consider $\int x \cos x dx$. With $f(x) = \sin x$, g(x) = x, this is of the form f'(x)g(x), because $f'(x) = \cos x$. #### Example • Consider $\int x \cos x dx$. With $f(x) = \sin x$, g(x) = x, this is of the form f'(x)g(x), because $f'(x) = \cos x$. By integration by parts, with g'(x) = 1, we obtain #### Example • Consider $\int x \cos x dx$. With $f(x) = \sin x$, g(x) = x, this is of the form f'(x)g(x), because $f'(x) = \cos x$. By integration by parts, with g'(x) = 1, we obtain $$\int x \cos x dx = x \sin x - \int \sin x \cdot 1 dx + C = x \sin x + \cos x + C.$$ #### Example • Consider $\int x \cos x dx$. With $f(x) = \sin x$, g(x) = x, this is of the form f'(x)g(x), because $f'(x) = \cos x$. By integration by parts, with g'(x) = 1, we obtain $$\int x \cos x dx = x \sin x - \int \sin x \cdot 1 dx + C = x \sin x + \cos x + C.$$ We can check this results by taking the derivative: $$D(x\sin x + \cos x) = \sin x + x\cos x - \sin x = x\cos x.$$ #### Example • Consider $\int \log x dx$. #### Example • Consider $\int \log x dx$. We can see this as $1 \cdot \log x$, and 1 = D(x). #### Example • Consider $\int \log x dx$. We can see this as $1 \cdot \log x$, and 1 = D(x). Therfore, with $f(x) = x, g(x) = \log x$ and $g'(x) = \frac{1}{x}$, we have #### Example • Consider $\int \log x dx$. We can see this as $1 \cdot \log x$, and 1 = D(x). Therfore, with $f(x) = x, g(x) = \log x$ and $g'(x) = \frac{1}{x}$, we have $$\int \log x dx = x \log x - \int x \cdot \frac{1}{x} dx + C$$ $$= x \log x - \int 1 dx + C = x \log x - x + C.$$ #### Example • Consider $\int x^2 \sin x dx$. #### Example • Consider $\int x^2 \sin x dx$. This cannot be integrated by one step, but by successive applications of integration by parts. By noting that $\sin x = D(-\cos x)$ and $\cos x = D(\sin x)$, ### Example • Consider $\int x^2 \sin x dx$. This cannot be integrated by one step, but by successive applications of integration by parts. By noting that $\sin x = D(-\cos x)$ and $\cos x = D(\sin x)$, $$\int x^2 \sin x dx = x^2 (-\cos x) - \int 2x (-\cos x) dx + C$$ $$= -x^2 \cos x + 2x \sin x - \int 2\sin x dx + C$$ $$= -x^2 \cos x + 2x \sin x + 2\cos x + C.$$ As for indefinite integral, we do not have to find the whole indefinite integral, but we can give values to parts. Let us recall that $f(b) - f(a) = \int_a^b f'(x) dx$. #### Lemma If f, g are differentiable and f', g' are continuous, then $$\int_{a}^{b} f'(x)g(x)dx = [f(x)g(x)]_{a}^{b} - \int_{a}^{b} f(x)g'(x)dx.$$ #### Proof. (fg)'=f'g+fg', hence $\int f'(x)g(x)dx=f(x)g(x)-\int f(x)g'(x)dx$ (integration by parts) and the rest goes as follows: If H(x) is a primitive of h(x), then $\int_a^b h(x)dx=H(b)-H(a)$. Note that with h(x)=f(x)g'(x), we have we can take $H(x)=\int_a^x h(x)dx$ and $H(b)-H(a)=\int_a^b h(x)dx-\int_a^a h(x)dx=\int_a^b h(x)dx$. Example $$\int_0^1 xe^{2x} dx$$ ## Example $$\int_0^1 x e^{2x} dx$$ $$= \frac{1}{2} [x e^{2x}]_0^1 - \int_0^1 \frac{1}{2} e^{2x} dx = \frac{1}{2} (e^2 - 0) - \frac{1}{4} [e^{2x}]_0^1 = \frac{e^2}{2} - \frac{1}{4} (e^2 - 1) = \frac{e^2}{4} + \frac{1}{4}.$$ Next, let us consider the case where the integral is of the form $\int \varphi'(x)f'(\varphi(x))dx$. We know that $D(f(\varphi(x))) = \varphi'(x)f'(\varphi(x))$ by the chain rule, hence in this case we have $$\int \varphi'(x)f'(\varphi(x))dx = f(\varphi(x)) + C.$$ This is called **substitution**. ## Example • Consider $\int 2x \sin(x^2) dx$. ## Example • Consider $\int 2x \sin(x^2) dx$. Note that $2x = D(x^2)$ and $\sin(y) = D(-\cos y)$, #### Example • Consider $\int 2x \sin(x^2) dx$. Note that $2x = D(x^2)$ and $\sin(y) = D(-\cos y)$, hence $$\int 2x\sin(x^2)dx = -\cos(x^2) + C.$$ #### Example • Consider $\int 2x \sin(x^2) dx$. Note that $2x = D(x^2)$ and $\sin(y) = D(-\cos y)$, hence $$\int 2x\sin(x^2)dx = -\cos(x^2) + C.$$ Indeed, by the chain rule, $$D(-\cos(x^2)) = -(2x(-\sin(x^2))) = 2x\sin(x^2).$$ ## Example • Consider $\int \frac{x}{x^2+1} dx$. ## Example • Consider $\int \frac{x}{x^2+1} dx$. Note that $2x = D(x^2)$, and hence ## Example • Consider $\int \frac{x}{x^2+1} dx$. Note that $2x = D(x^2)$, and hence $$\int \frac{x}{x^2+1} dx = \frac{1}{2} \int \frac{2x}{x^2+1} dx = \frac{1}{2} \int \frac{D(x^2)}{x^2+1} dx = \frac{1}{2} \log(x^2+1).$$ ## Example • Consider $\int \tan x dx$. ## Example • Consider $\int \tan x dx$. Recall that $\tan x = \frac{\sin x}{\cos x}$ and note that $D(\cos x) = -\sin x$. Hence #### Example • Consider $\int \tan x dx$. Recall that $\tan x = \frac{\sin x}{\cos x}$ and note that $D(\cos x) = -\sin x$. Hence $$\int \tan x dx = -\int D(\cos x) \cdot \frac{1}{\cos x} dx + C = -\log|\cos x| + C.$$ #### Lemma If f, φ are differentiable and f, φ' is continuous, then $$\int_a^b \varphi'(x)f'(\varphi(x))dx = [f(\varphi(x))]_a^b = [f(y)]_{\varphi(a)}^{\varphi(b)} = f(\varphi(b)) - f(\varphi(a)).$$ #### Proof. This follows immediately because $f(\varphi(x))$ is a primitive of $\varphi'(x)f'(\varphi(x))$. ## Example Consider $\int_0^{\pi} \sin^3 x dx$. ### Example Consider $\int_0^{\pi} \sin^3 x dx$. $$\int_0^{\pi} \sin^3 x dx = -\int_0^{\pi} (\cos^2 x - 1) \sin x dx$$ $$= \int_0^{\pi} ((\cos x)^2 - 1) D(\cos x) dx = \left[\frac{\cos^3 x}{3} - \cos x \right]_0^{\pi}$$ $$= \left(\frac{(-1)^3}{3} - (-1) - (\frac{1^3}{3} - 1) \right) = \frac{4}{3}.$$ Lecturer: Yoh Tanimoto ## **Exercises** - Calculate the indefinite integral. $\int xe^x dx$. - Calculate the indefinite integral. $\int e^x \sin x dx$. - Calculate the definite integral. $\int_0^1 x^2 e^{-x} dx$. - Calculate the indefinite integral. $\int x\sqrt{1-x^2}dx$. - Calculate the indefinite integral. $\int xe^{x^2}dx$. - Calculate the definite integral. $\int_0^1 x^3 e^{x^2} dx$.