Mathematical Analysis I: Lecture 32

Lecturer: Yoh Tanimoto

13/11/2020 Start recording...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Exercises

< □ > < □ > < □ > < □ > < □ >

Compute the limit. $\lim_{x\to 0} \frac{\sin^2 x}{x^2}$. Solution.

イロト イヨト イヨト イ

Compute the limit. $\lim_{x\to 0} \frac{\sin^2 x}{x^2}$. Solution. We have $D(\sin^2 x)$

A D > A A > A > A

Compute the limit. $\lim_{x\to 0} \frac{\sin^2 x}{x^2}$. Solution. We have $D(\sin^2 x) = 2\sin x \cos x$,

Image: Image:

- 4 ∃ ▶

Compute the limit. $\lim_{x\to 0} \frac{\sin^2 x}{x^2}$. Solution. We have $D(\sin^2 x) = 2\sin x \cos x$, $D(x^2) = 2x$,

→ ∃ ▶

Compute the limit. $\lim_{x\to 0} \frac{\sin^2 x}{x^2}$. Solution. We have $D(\sin^2 x) = 2\sin x \cos x$, $D(x^2) = 2x$, and hence $\lim_{x\to 0} \frac{\sin^2 x}{x^2} = \lim_{x\to 0} \frac{2\sin x \cos x}{2x} = 1$. Compute the limit. $\lim_{x\to 0} \frac{\sin x - x}{x^3}$. *Solution.*

・ロト ・ 日 ト ・ 目 ト ・

Compute the limit. $\lim_{x\to 0} \frac{\sin x - x}{x^3}$. Solution. We have $D(\sin x - x) = \cos x - 1$,

Image: A math a math

Compute the limit. $\lim_{x\to 0} \frac{\sin x - x}{x^3}$. Solution. We have $D(\sin x - x) = \cos x - 1$, $D(x^3) = 3x^2$,

Compute the limit. $\lim_{x\to 0} \frac{\sin x - x}{x^3}$. Solution. We have $D(\sin x - x) = \cos x - 1$, $D(x^3) = 3x^2$, and further $D(\cos x - 1)$ Compute the limit. $\lim_{x\to 0} \frac{\sin x - x}{x^3}$. Solution. We have $D(\sin x - x) = \cos x - 1$, $D(x^3) = 3x^2$, and further $D(\cos x - 1) = -\sin x$, Compute the limit. $\lim_{x\to 0} \frac{\sin x - x}{x^3}$. Solution. We have $D(\sin x - x) = \cos x - 1$, $D(x^3) = 3x^2$, and further $D(\cos x - 1) = -\sin x$, $D(3x^2) = 6x$ Compute the limit. $\lim_{x\to 0} \frac{\sin x - x}{x^3}$. Solution. We have $D(\sin x - x) = \cos x - 1$, $D(x^3) = 3x^2$, and further $D(\cos x - 1) = -\sin x$, $D(3x^2) = 6x$ hence

$$\lim_{x \to 0} \frac{\sin x - x}{x^3} = \lim_{x \to 0} \frac{\cos -1}{3x^2} = \lim_{x \to 0} \frac{-\sin x}{6x} = -\frac{1}{6}.$$

Compute the limit. $\lim_{x\to\infty} \frac{\log(x^3+1)}{\log x}$. Solution.

イロト イヨト イヨト イヨト

Compute the limit. $\lim_{x\to\infty} \frac{\log(x^3+1)}{\log x}$. Solution. We have $D(\log(x^3+1))$

A D > A A > A > A

 $\begin{array}{l} \text{Compute the limit. } \lim_{x\to\infty} \frac{\log{(x^3+1)}}{\log{x}}.\\ \text{Solution. We have } D(\log(x^3+1)) = \frac{3x^2}{x^3+1}, \end{array}$

A D > A A > A > A

Compute the limit. $\lim_{x\to\infty} \frac{\log(x^3+1)}{\log x}$. Solution. We have $D(\log(x^3+1)) = \frac{3x^2}{x^3+1}$, $D(\log x) = \frac{1}{x}$ and hence Compute the limit. $\lim_{x\to\infty} \frac{\log(x^3+1)}{\log x}$. Solution. We have $D(\log(x^3+1)) = \frac{3x^2}{x^3+1}$, $D(\log x) = \frac{1}{x}$ and hence

$$\lim_{x \to \infty} \frac{\log(x^3 + 1)}{\log x} = \lim_{x \to \infty} \frac{\frac{3x^2}{x^3 + 1}}{\frac{1}{x}} = \lim_{x \to \infty} \frac{3x^3}{x^3 + 1} = 3.$$

Compute the limit. $\lim_{x\to 0} x \log x$. *Solution.*

→ Ξ →

Compute the limit. $\lim_{x\to 0} x \log x$. Solution. We have $\lim_{x\to 0} x \log x = \lim_{x\to 0} \frac{\log x}{\frac{1}{x}}$

Image: A math a math

Compute the limit. $\lim_{x\to 0} x \log x$. Solution. We have $\lim_{x\to 0} x \log x = \lim_{x\to 0} \frac{\log x}{\frac{1}{x}}$ and $D(\log x)$

Compute the limit. $\lim_{x\to 0} x \log x$. Solution. We have $\lim_{x\to 0} x \log x = \lim_{x\to 0} \frac{\log x}{\frac{1}{x}}$ and $D(\log x) = \frac{1}{x}$,

Compute the limit. $\lim_{x\to 0} x \log x$. Solution. We have $\lim_{x\to 0} x \log x = \lim_{x\to 0} \frac{\log x}{\frac{1}{x}}$ and $D(\log x) = \frac{1}{x}$, $D(\frac{1}{x}) = \frac{-1}{x^2}$ and hence

A (1) > A (2) > A

Compute the limit.
$$\lim_{x\to 0} x \log x$$
.
Solution. We have $\lim_{x\to 0} x \log x = \lim_{x\to 0} \frac{\log x}{\frac{1}{x}}$ and $D(\log x) = \frac{1}{x}$,
 $D(\frac{1}{x}) = \frac{-1}{x^2}$ and hence $\lim_{x\to 0} x \log x = \lim_{x\to 0} \frac{1}{x^2} = \lim_{x\to 0} (-x) = 0$.

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Find the second order Taylor formula. $f(x) = \sin(x^2)$ as $x \to 0$. Solution.

< 行

Find the second order Taylor formula. $f(x) = \sin(x^2)$ as $x \to 0$. Solution. We have $f'(x) = 2x \cos(x^2)$ Find the second order Taylor formula. $f(x) = \sin(x^2)$ as $x \to 0$. Solution. We have $f'(x) = 2x \cos(x^2)$, $f''(x) = 2 \cos(x^2) - 4x^2 \sin(x^2)$ Find the second order Taylor formula. $f(x) = \sin(x^2)$ as $x \to 0$. Solution. We have $f'(x) = 2x\cos(x^2)$, $f''(x) = 2\cos(x^2) - 4x^2\sin(x^2)$ and f(0) = 0, f'(0) = 0, f''(0) = 2, Find the second order Taylor formula. $f(x) = \sin(x^2)$ as $x \to 0$. Solution. We have $f'(x) = 2x \cos(x^2)$, $f''(x) = 2 \cos(x^2) - 4x^2 \sin(x^2)$ and f(0) = 0, f'(0) = 0, f''(0) = 2, and hence $f(x) = 0 + 0x + \frac{2x^2}{2!} + o(x^2) = x^2 + o(x^2)$ as $x \to 0$. Find the second order Taylor formula. $f(x) = \sqrt{x^2 + 1}$ as $x \to 1$. Solution.

- 4 ∃ ▶

Find the second order Taylor formula. $f(x) = \sqrt{x^2 + 1}$ as $x \to 1$.

Solution. We have $f'(x) = \frac{x}{\sqrt{x^2+1}}$

Image: A math a math

Find the second order Taylor formula. $f(x) = \sqrt{x^2 + 1}$ as $x \to 1$. Solution. We have $f'(x) = \frac{x}{\sqrt{x^2+1}}$, $f''(x) = \frac{\sqrt{x^2+1} - x \frac{x}{\sqrt{x^2+1}}}{x^2+1} = \frac{1}{(x^2+1)^{\frac{3}{2}}}$

Find the second order Taylor formula. $f(x) = \sqrt{x^2 + 1}$ as $x \to 1$. Solution. We have $f'(x) = \frac{x}{\sqrt{x^2 + 1}}$, $f''(x) = \frac{\sqrt{x^2 + 1} - x \frac{x}{\sqrt{x^2 + 1}}}{x^2 + 1} = \frac{1}{(x^2 + 1)^{\frac{3}{2}}}$ and hence $f(1) = \sqrt{2}$, $f'(1) = \frac{1}{\sqrt{2}}$, $f''(1) = \frac{1}{2^{\frac{3}{2}}}$.

Find the second order Taylor formula.
$$f(x) = \sqrt{x^2 + 1}$$
 as $x \to 1$.
Solution. We have $f'(x) = \frac{x}{\sqrt{x^2 + 1}}$, $f''(x) = \frac{\sqrt{x^2 + 1} - x \frac{x}{\sqrt{x^2 + 1}}}{x^2 + 1} = \frac{1}{(x^2 + 1)^{\frac{3}{2}}}$ and
hence $f(1) = \sqrt{2}$, $f'(1) = \frac{1}{\sqrt{2}}$, $f''(1) = \frac{1}{2^{\frac{3}{2}}}$. Therefore,
 $f(x) = \sqrt{2} + \frac{(x - 1)}{\sqrt{2}} + \frac{(x - 1)^2}{2^{\frac{5}{2}}} + o((x - 1)^2)$ as $x \to 1$.

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Find the second order Taylor formula. $f(x) = \sin(x) - 1$ as $x \to \frac{\pi}{2}$. Solution.

A D > A A > A > A

Find the second order Taylor formula. $f(x) = \sin(x) - 1$ as $x \to \frac{\pi}{2}$. Solution. We have $f'(x) = \cos x$,

Image: A math a math

Find the second order Taylor formula. $f(x) = \sin(x) - 1$ as $x \to \frac{\pi}{2}$. Solution. We have $f'(x) = \cos x$, $f''(x) = -\sin x$

A D > A A > A > A

Find the second order Taylor formula. $f(x) = \sin(x) - 1$ as $x \to \frac{\pi}{2}$. Solution. We have $f'(x) = \cos x$, $f''(x) = -\sin x$ and hence $f(\frac{\pi}{2}) = 0$, $f'(\frac{\pi}{2}) = 0$, $f''(\frac{\pi}{2}) = -1$.

Find the second order Taylor formula. $f(x) = \sin(x) - 1$ as $x \to \frac{\pi}{2}$. Solution. We have $f'(x) = \cos x$, $f''(x) = -\sin x$ and hence $f(\frac{\pi}{2}) = 0, f'(\frac{\pi}{2}) = 0, f''(\frac{\pi}{2}) = -1$. Therefore, $f(x) = -\frac{(x - \frac{\pi}{2})^2}{2} + o((x - \frac{\pi}{2})^2)$ as $x \to \frac{\pi}{2}$.

Find the second order Taylor formula. $f(x) = \frac{e^{x}-1}{\cos x}$ as $x \to 0$. Solution.

• • • • • • • • • • • •

Find the second order Taylor formula. $f(x) = \frac{e^{x}-1}{\cos x}$ as $x \to 0$. Solution. We have $f'(x) = \frac{e^{x}\cos x + (e^{x}-1)\sin x}{\cos^{2} x}$,

Find the second order Taylor formula. $f(x) = \frac{e^x - 1}{\cos x}$ as $x \to 0$. Solution. We have $f'(x) = \frac{e^x \cos x + (e^x - 1) \sin x}{\cos^2 x}$,

$$f''(x) = \frac{(e^{x}(\cos x - \sin x) + (e^{x}\sin x + (e^{x} - 1)\cos x))\cos^{2} x}{\cos^{4} x} - \frac{(e^{x}\cos x + (e^{x} - 1)\sin x)(-2\sin x\cos x)}{\cos^{4} x} = \frac{(2e^{x} - 1)\cos^{3} x + 2e^{x}\sin x\cos^{2} x + 2e^{x}\sin^{2} x\cos x - 2\sin^{2} x\cos x}{\cos^{4} x}$$

Find the second order Taylor formula. $f(x) = \frac{e^x - 1}{\cos x}$ as $x \to 0$. Solution. We have $f'(x) = \frac{e^x \cos x + (e^x - 1) \sin x}{\cos^2 x}$,

$$f''(x) = \frac{(e^{x}(\cos x - \sin x) + (e^{x}\sin x + (e^{x} - 1)\cos x))\cos^{2} x}{\cos^{4} x} - \frac{(e^{x}\cos x + (e^{x} - 1)\sin x)(-2\sin x\cos x)}{\cos^{4} x} = \frac{(2e^{x} - 1)\cos^{3} x + 2e^{x}\sin x\cos^{2} x + 2e^{x}\sin^{2} x\cos x - 2\sin^{2} x\cos x}{\cos^{4} x}$$

and hence f(0) = 0, f'(0) = 1, f''(0) = 1.

Find the second order Taylor formula. $f(x) = \frac{e^x - 1}{\cos x}$ as $x \to 0$. Solution. We have $f'(x) = \frac{e^x \cos x + (e^x - 1) \sin x}{\cos^2 x}$,

$$f''(x) = \frac{(e^{x}(\cos x - \sin x) + (e^{x}\sin x + (e^{x} - 1)\cos x))\cos^{2} x}{\cos^{4} x} - \frac{(e^{x}\cos x + (e^{x} - 1)\sin x)(-2\sin x\cos x)}{\cos^{4} x} = \frac{(2e^{x} - 1)\cos^{3} x + 2e^{x}\sin x\cos^{2} x + 2e^{x}\sin^{2} x\cos x - 2\sin^{2} x\cos x}{\cos^{4} x}$$

and hence f(0) = 0, f'(0) = 1, f''(0) = 1. Therefore, $f(x) = x + \frac{x^2}{2} + o(x^2)$ as $x \to 0$. Find the *n*-th order Taylor formula. f(x) = cos(x) as $x \to 0$. Solution.

Image: Image:

Find the *n*-th order Taylor formula. $f(x) = \cos(x)$ as $x \to 0$. Solution. $f^{(4n)}(x) = \cos x$, $f^{(4n+1)}(x) = -\sin x$, $f^{(4n+2)}(x) = -\cos x$, $f^{(4n+3)}(x) = \sin x$,

Image: A math a math

Find the *n*-th order Taylor formula.
$$f(x) = \cos(x)$$
 as $x \to 0$.
Solution. $f^{(4n)}(x) = \cos x$, $f^{(4n+1)}(x) = -\sin x$, $f^{(4n+2)}(x) = -\cos x$, $f^{(4n+3)}(x) = \sin x$, and hence
 $f^{(4n)}(0) = 1$, $f^{(4n+1)}(0) = 0$, $f^{(4n+2)}(0) = -1$, $f^{(4n+3)}(0) = 0$, and

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶

Find the *n*-th order Taylor formula.
$$f(x) = \cos(x)$$
 as $x \to 0$.
Solution. $f^{(4n)}(x) = \cos x$, $f^{(4n+1)}(x) = -\sin x$, $f^{(4n+2)}(x) = -\cos x$, $f^{(4n+3)}(x) = \sin x$, and hence
 $f^{(4n)}(0) = 1$, $f^{(4n+1)}(0) = 0$, $f^{(4n+2)}(0) = -1$, $f^{(4n+3)}(0) = 0$, and

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + \frac{(-1)^n x^{2n}}{(2n)!} + o(x^{2n})$$
$$= \sum_{k=0}^n \frac{(-1)^k x^{2k}}{(2k)!} + o(x^{2n}).$$

▲口▶▲□▶▲□▶▲□▶▲□▼ シペロ

Find the *n*-th order Taylor formula. $f(x) = \log(1+x)$ as $x \to 0$. Solution.

Image: Image:

-

Find the *n*-th order Taylor formula. $f(x) = \log(1+x)$ as $x \to 0$. Solution. $f^{(2n)}(x) = \frac{-(2n-1)!}{(1+x)^{2n}}, f^{(2n+1)}(x) = \frac{(2n)!}{(1+x)^{2n+1}}$, and

Find the *n*-th order Taylor formula.
$$f(x) = \log(1 + x)$$
 as $x \to 0$.
Solution. $f^{(2n)}(x) = \frac{-(2n-1)!}{(1+x)^{2n}}, f^{(2n+1)}(x) = \frac{(2n)!}{(1+x)^{2n+1}}$, and $f^{(2n)}(0) = (2n-1)!, f^{(2n+1)}(0) = -(2n)!$, and

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Find the *n*-th order Taylor formula.
$$f(x) = \log(1 + x)$$
 as $x \to 0$.
Solution. $f^{(2n)}(x) = \frac{-(2n-1)!}{(1+x)^{2n}}, f^{(2n+1)}(x) = \frac{(2n)!}{(1+x)^{2n+1}}$, and $f^{(2n)}(0) = (2n-1)!, f^{(2n+1)}(0) = -(2n)!$, and

$$\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + \frac{(-1)^{n+1}x^n}{n} + o(x^n)$$
$$= \sum_{k=0}^n \frac{(-1)^{k+1}x^k}{k} + o(x^n).$$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Find the *n*-th order Taylor formula. $f(x) = \sin(x^2)$ as $x \to 0$. Solution.

Image: Image:

Find the *n*-th order Taylor formula. $f(x) = \sin(x^2)$ as $x \to 0$. Solution. We know $\sin y = \sum_{k=0}^{n} \frac{(-1)^k y^{2k+1}}{(2k+1)!} + o(y^{2n+1})$ as $y \to 0$ Find the *n*-th order Taylor formula. $f(x) = \sin(x^2)$ as $x \to 0$. Solution. We know $\sin y = \sum_{k=0}^{n} \frac{(-1)^k y^{2k+1}}{(2k+1)!} + o(y^{2n+1})$ as $y \to 0$ and hence $\sin(x^2) = \sum_{k=0}^{n} \frac{(-1)^k x^{4k+2}}{(2k+1)!} + o(x^{4n+2})$ as $x \to 0$

$$\lim_{x\to 0}\frac{e^x+\cos(x)-\sin(x)-2}{\tan(2x^3)}.$$

Solution.

< □ > < □ > < □ > < □ > < □ >

$$\lim_{x \to 0} \frac{e^x + \cos(x) - \sin(x) - 2}{\tan(2x^3)}.$$

Solution. As $x \to x_0 = 0$, we have

-

Image: A matching of the second se

$$\lim_{x\to 0}\frac{e^x+\cos(x)-\sin(x)-2}{\tan(2x^3)}.$$

Solution. As $x \to x_0 = 0$, we have • $e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + o(x^3)$

∃ ▶ ∢

$$\lim_{x\to 0}\frac{e^x+\cos(x)-\sin(x)-2}{\tan(2x^3)}.$$

Solution. As $x \to x_0 = 0$, we have • $e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + o(x^3)$ • $\cos x = 1 - \frac{x^2}{2} + o(x^3)$

3 1 4

$$\lim_{x\to 0}\frac{e^x+\cos(x)-\sin(x)-2}{\tan(2x^3)}.$$

Solution. As
$$x \to x_0 = 0$$
, we have
• $e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + o(x^3)$
• $\cos x = 1 - \frac{x^2}{2} + o(x^3)$
• $\sin x = x - \frac{x^3}{6} + o(x^3)$

$$\lim_{x\to 0}\frac{e^x+\cos(x)-\sin(x)-2}{\tan(2x^3)}.$$

Solution. As
$$x \to x_0 = 0$$
, we have
• $e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + o(x^3)$
• $\cos x = 1 - \frac{x^2}{2} + o(x^3)$
• $\sin x = x - \frac{x^3}{6} + o(x^3)$
• $\tan(2x^3) = 2x^3 + o(x^3)$

メロト メポト メヨト メヨト

$$\lim_{x\to 0}\frac{e^x+\cos(x)-\sin(x)-2}{\tan(2x^3)}.$$

Solution. As
$$x \to x_0 = 0$$
, we have
• $e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + o(x^3)$
• $\cos x = 1 - \frac{x^2}{2} + o(x^3)$
• $\sin x = x - \frac{x^3}{6} + o(x^3)$
• $\tan(2x^3) = 2x^3 + o(x^3)$

Then it holds, as $x \to 0$,

$$\frac{e^{x} + \cos(x) - \sin(x) - 2}{\tan(2x^{3})}$$

$$= \frac{1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{6} + 1 - \frac{x^{2}}{2} - x + \frac{x^{3}}{6} - 2 + o(x^{3})}{2x^{3} + o(x^{3})}$$

$$= \frac{\frac{x^{3}}{3} + o(x^{3})}{2x^{3} + o(x^{3})}$$

-

・ロト ・ 日 ト ・ 目 ト ・

$$\lim_{x\to 0}\frac{e^x+\cos(x)-\sin(x)-2}{\tan(2x^3)}.$$

Solution. As
$$x \to x_0 = 0$$
, we have
• $e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + o(x^3)$
• $\cos x = 1 - \frac{x^2}{2} + o(x^3)$
• $\sin x = x - \frac{x^3}{6} + o(x^3)$
• $\tan(2x^3) = 2x^3 + o(x^3)$

Then it holds, as $x \to 0$,

$$\frac{e^{x} + \cos(x) - \sin(x) - 2}{\tan(2x^{3})}$$

$$= \frac{1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{6} + 1 - \frac{x^{2}}{2} - x + \frac{x^{3}}{6} - 2 + o(x^{3})}{2x^{3} + o(x^{3})}$$

$$= \frac{\frac{x^{3}}{3} + o(x^{3})}{2x^{3} + o(x^{3})}$$

$$\lim_{x \to 0} \frac{x - \ln(1 - x) - 2x\sqrt{1 + x}}{\sin(x) - xe^{x}} = \frac{1}{6}.$$

Lecturer: Yoh Tanimoto

hence

। 13/11/2020 14/15

$$\lim_{x \to 0} \frac{\left(\frac{1+x^2}{1-x^2}\right) - \alpha \sin(x) - 1}{1 - \cos(x)}$$

Solution.

$$\lim_{x \to 0} \frac{\left(\frac{1+x^2}{1-x^2}\right) - \alpha \sin(x) - 1}{1 - \cos(x)}$$

Solution. As $x \to x_0 = 0$, we have

Image: Image:

$$\lim_{x \to 0} \frac{\left(\frac{1+x^2}{1-x^2}\right) - \alpha \sin(x) - 1}{1 - \cos(x)}$$

Solution. As $x \to x_0 = 0$, we have

•
$$\frac{1+y}{1-y} = 1 + 2y + o(y)$$
 and $\frac{1+x^2}{1-x^2} = 1 + 2x^2 + o(x^2)$

Image: Image:

$$\lim_{x \to 0} \frac{\left(\frac{1+x^2}{1-x^2}\right) - \alpha \sin(x) - 1}{1 - \cos(x)}$$

Solution. As $x \to x_0 = 0$, we have

•
$$\frac{1+y}{1-y} = 1 + 2y + o(y)$$
 and $\frac{1+x^2}{1-x^2} = 1 + 2x^2 + o(x^2)$
• $\sin x = x + o(x^2)$

Image: Image:

$$\lim_{x \to 0} \frac{\left(\frac{1+x^2}{1-x^2}\right) - \alpha \sin(x) - 1}{1 - \cos(x)}$$

Solution. As $x \to x_0 = 0$, we have

• $\frac{1+y}{1-y} = 1 + 2y + o(y)$ and $\frac{1+x^2}{1-x^2} = 1 + 2x^2 + o(x^2)$ • $\sin x = x + o(x^2)$ • $1 - \cos x = \frac{x^2}{2} + o(x^2)$

$$\lim_{x \to 0} \frac{\left(\frac{1+x^2}{1-x^2}\right) - \alpha \sin(x) - 1}{1 - \cos(x)}$$

Solution. As $x \to x_0 = 0$, we have

• $\frac{1+y}{1-y} = 1 + 2y + o(y)$ and $\frac{1+x^2}{1-x^2} = 1 + 2x^2 + o(x^2)$ • $\sin x = x + o(x^2)$ • $1 - \cos x = \frac{x^2}{2} + o(x^2)$

Then it holds, as $x \to 0$,

$$\frac{\left(\frac{1+x^2}{1-x^2}\right) - \alpha \sin(x) - 1}{1 - \cos(x)} = \frac{1 + 2x^2 - \alpha x - 1 + o(x^2)}{\frac{x^2}{2} + o(x^2)}$$

Lecturer: Yoh Tanimoto

$$\lim_{x \to 0} \frac{\left(\frac{1+x^2}{1-x^2}\right) - \alpha \sin(x) - 1}{1 - \cos(x)}$$

Solution. As $x \to x_0 = 0$, we have

• $\frac{1+y}{1-y} = 1 + 2y + o(y)$ and $\frac{1+x^2}{1-x^2} = 1 + 2x^2 + o(x^2)$ • $\sin x = x + o(x^2)$ • $1 - \cos x = \frac{x^2}{2} + o(x^2)$

Then it holds, as $x \to 0$,

$$\frac{\left(\frac{1+x^2}{1-x^2}\right) - \alpha \sin(x) - 1}{1 - \cos(x)} = \frac{1 + 2x^2 - \alpha x - 1 + o(x^2)}{\frac{x^2}{2} + o(x^2)}$$

hence $\lim_{x\to 0} \lim_{x\to 0} \frac{\left(\frac{1+x^2}{1-x^2}\right) - \alpha \sin(x) - 1}{1 - \cos(x)}$ exists if and only if $\alpha = 0$, and in that case, the limit is 4.