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For f n-times differentiable, the following holds (as we prove later).
With the convention f (0)(x) = f (x),

f (x) = f (x0) + (x − x0)f ′(x0) + 1
2(x − x0)2f ′′(x0)+

· · ·+ 1
n! (x − x0)nf (n)(x0) + o((x − x0)n)

=
n∑

k=0

f (k)(x0)
k! (x − x0)k + o((x − x0)n)

The part
∑n

k=0
f (k)(x0)

k! (x − x0)k is called the Taylor polynomial of f .
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Lemma

Let f , g differentiable n times in (a, b) and x0 ∈ (a, b). Suppose that
g (k)(x) 6= 0 for x 6= x0, 0 ≤ k ≤ n but f (k)(x0) = g (k)(x0) = 0 for
0 ≤ k ≤ n − 1. Then for any x 6= x0, x ∈ (a, b) there is ξ between x , x0

such that f (x)
g(x) = f (n)(ξ)

g (n)(ξ) .

Proof.
By Cauchy’s mean value theorem,

f (x)
g(x) = f (x)− f (x0)

g(x)− g(x0) = f ′(ξ1)
g ′(ξ1) = f ′(ξ1)− f ′(x0)

g ′(ξ1)− g ′(x0) =

f (2)(ξ2)
g (2)(ξ2)

= · · · = f (n)(ξn)
g (n)(ξn)

and we put ξ = ξn.
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Lemma

Let F differentiable n times in x0 ∈ (a, b). Then, F (x) = o((x − x0)n) as
x → x0 if and only if F (k)(x0) = 0 for 0 ≤ k ≤ n.

Proof.
We know this for n = 0 by definition. Let us prove the general case by
induction, by assuming that it is true for n.
Let F (x) = o((x − x0)n+1). Then F (k)(x0) = 0 for 0 ≤ k ≤ n by the
hypothesis of induction. The assumption is 0 = limx→x0

F (x)
(x−x0)n+1 . On the

other hand, F (x)
(x−x0)n = F (n)(ξ)

n!(ξ−x0) for some ξ between x , x0 by the previous
Lemma. If x → x0, ξ → x0, that is, 0 = limx→x0

F (x)
(x−x0)n+1 =

limξ→x0
F (n)(ξ)

n!(ξ−x0) = limξ→x0
F (n)(ξ)−F (n)(x0)

n!(ξ−x0) = F (n+1)(x0)
n! , hence

F (n+1)(x0) = 0.
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Proof.
Let F (k)(x0) = 0 for 0 ≤ k ≤ n + 1. Then by the Bernoulli-de l’Hôpital
theorem,

0 = F (n+1)(x0)
(n + 1)! = lim

x→x0

F (n)(x)− F (n)(x0)
(n + 1)!(x − x0)

= lim
x→x0

F (n)(x)
(n + 1)!(x − x0) = lim

x→x0

F (n−1)(x)− F (n−1)(x0)
(n+1)!

2 (x − x0)2

= lim
x→x0

F (n−1)(x)
(n+1)!

2 (x − x0)2
= lim

x→x0

F (n−2)(x)− F (n−2)(x0)
(n+1)!

3! (x − x0)3

· · · = lim
x→x0

F (x)
(x − x0)n+1 .

That is, F (x) = o((x − x0)n+1).
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Corollary

Let f (x) differentiable n times at x0 ∈ (a, b). Then with

Pn(x) =
n∑

k=0

f (k)(x0)
k! (x − x0)k ,

we have f (x) = Pn(x) + o((x − x0)n).

Proof.
Dk(f (x0)− Pn(x0)) = 0 for 0 ≤ k ≤ n. By Lemma 2,
f (x0) = Pn(x0) + o((x − x0)n).
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Example
f (x) = ex . As f (n)(x) = ex , we have f (n)(0) = 1 and hence
ex =

∑n
k=0

xn

n! + o(xn) as x → x0 = 0. That is,
ex = 1 + x + x2

2 + x3

3! + · · ·+ xn

n! + o(xn).
f (x) = sin x . As f (4n)(x) = sin x , f (4n+1)(x) = cos x ,
f (4n+2)(x) = − sin x , f (4n+3)(x) = − cos x , we have f (4n)(0) = 0,
f (4n+1)(x) = 1, f (4n+2)(x) = 0, f (4n+3)(x) = −1, and hence
sin x =

∑n
k=0

(−1)kx2k+1

(2k+1)! + o(x2n+1). That is,
sin x = x − x3

3! + x5

5! + · · ·+ (−1)nx2n+1

(2n+1)! + o(x2n+1) as x → x0 = 0.
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Very often, the Taylor series converges to the original function f (x), that
is,

f (x) =
∞∑

k=0

f (k)(x0)
k! (x − x0)k

holds for some functions (ex , sin x , cos x , log(1 + x)) and for some x . One
example we can show easily such convergence is f (x) = 1

1−x . Indeed,
f ′(x) = 1

(1−x)2 , f (n)(x) = n!
(1−x)n . And hence the Taylor series around

x = 0 is n∑
k=0

n!xn

n! =
n∑

k=0
xn,

and we know that this partial sum is 1−xn

1−x , which converges to 1
1−x for

|x | < 1. But the series does not converge for if |x | ≥ 0.
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There are functions whose Taylor series converges but not to the original
function. For example, if we take

f (x) =
{

e− 1
x if x ≥ 0

0 if x < 0

then f (n)(0) = 0 for all n, hence the Taylor polynomial is identically 0, but
the original function f (x) is not identically 0.
The question of for which function the Taylor series converges to the
origial function will be studied in Mathematical Analysis II.
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Figure: The graph of a function whose Taylor series converges but not to itself.
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Applications to certain limits

Taylor’s formula can be used to compute certain indefinite limits.

lim
x→0

ex − 1− x
sin(x2)

As x → x0 = 0, we have
ex =

1 + x + x2

2 + o(x2)
sin y = y + o(y)
sin(x2) = x2 + o(x2)

Then it holds, as x → 0,

ex − 1− x
sin(x2) =

x2

2 + o(x2)
x2 + o(x2)

hence limx→0
ex−1−x
sin(x2) = 1

2 .
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Applications to certain limits

lim
x→0

x − ln(1− x)− 2x
√

1 + x
sin(x)− xex

As x → x0 = 0, we have
ln(1− x) =

−x − 1
2!x2 + o(x2)

x
√

1 + x = x(1 + 1
2x − o(x)) = x + 1

2x2 + o(x2)
sin x = x + 0 · x2 + o(x2)
xex = x(1 + x + o(x)) = x + x2 + o(x2)

Then it holds, as x → 0,

x − ln(1− x)− 2x
√

1 + x
sin(x)− xex =

−1
2x2 + o(x2)
−x2 + o(x2)

hence limx→0
x−ln(1−x)−2x

√
1+x

sin(x)−xex = 1
2 .
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Exercises

Find the n-th order Taylor formula. f (x) = cos(x) as x → 0.
Find the n-th order Taylor formula. f (x) = log(1 + x) as x → 0.
Find the n-th order Taylor formula. f (x) = sin(x2) as x → 0.
Compute the limit.

lim
x→0

ex + cos(x)− sin(x)− 2
tan(2x3) .

For which α does the following limit exist?

lim
x→0

ln
(

1+x2

1−x2

)
− α sin(x)

1− cos(x)
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