Mathematical Analysis I: Lecture 29

Lecturer: Yoh Tanimoto

09/11/2020 Start recording...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- Tutoring (by Mr. Lorenzo Panebianco): Tuesday 15:00-16:30 until 10th November. Then move to Tuesday morning.
- Today: Apostol Vol. 1, Chapter 7.14.

Let us recall the mean value theorem of Cauchy: let f, g be continuous in [a, b] and differentiable in (a, b). Then there is $y \in (a, b)$ such that

$$f'(y)(g(b) - g(a)) = g'(y)(f(b) - f(a)).$$

(Bernoulli-)de l'Hôpital rule is a useful tool to compute limits of the type $\frac{0}{0}$ or $\frac{\infty}{\infty}$.

Theorem (Bernoulli-de l'Hôpital, case 1)

Let $a < x_0$, f, g differentiable in (a, x_0) such that $g'(x) \neq 0$ for xsufficiently close to $x_0, x \neq x_0$, $\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^-} g(x) = 0$, $\lim_{x \to x_0^-} \frac{f'(x)}{g'(x)} = L \in \mathbb{R}$. Then $g(x) \neq 0$ for x close to $x_0, x \neq x_0$ and $\lim_{x \to x_0^-} \frac{f(x)}{g(x)} = L$.

A similar result holds for right limits.

Figure: Theorem of de l'Hôpital. The limit $\lim_{x\to x_0^-} \frac{f(x)}{g(x)}$ is determined by $\lim_{x\to x_0} \frac{f'(x)}{g'(x)}$.

Proof.

We can extend f, g to $(a, x_0]$ by putting $f(x_0) = g(x_0) = 0$, such that they are continuous. By the hypothesis we may assume that $g'(x) \neq 0$ in (b, x_0) . Let $x \in (b, x_0)$, by Lagrange's mean value theorem, there is $y \in (x, x_0)$ such that $g(x) = g(x) - g(x_0) = g'(y)(x - x_0) \neq 0$, in particular, $g(x) \neq 0$. By Cauchy's mean value theorem, for x above, there is $y \in (x, x_0)$ such

By Cauchy's mean value theorem, for x above, there is $y \in (x, x_0)$ suct that $f'(y)(g(x) - g(x_0)) = g'(y)(f(x) - f(x_0))$, that is,

$$\frac{f(x)}{g(x)} = \frac{f(x) - f(x_0)}{g(x) - g(x_0)} = \frac{f'(y)}{g'(y)}.$$

If $x \to x_0$, such y tends to x_0 . Because $\lim_{y\to x_0^-} \frac{f'(y)}{g'(y)} = L$ by the hypothesis it holds that $\lim_{x\to x_0^-} \frac{f(x)}{g(y)} = L$.

イロト イヨト イヨト

- Consider $\frac{e^{x}-1}{\sin(2x)}$. The limit $x \to 0$ is of the form $\frac{0}{0}$. It holds that $(\sin(2x))' = 2\cos(2x) \neq 0$ as $x \to 0$. In addition $(e^{x} 1)' = e^{x}$. Therefore, $\lim_{x\to 0} \frac{e^{x}-1}{\sin x} = \lim_{x\to 0} \frac{e^{x}}{2\cos(2x)} = \frac{1}{2}$.
- $\lim_{x\to 0} \frac{x}{e^x-1}$

< ∃ > < ∃

Consider e^{x-1}/sin(2x). The limit x → 0 is of the form 0/0. It holds that (sin(2x))' = 2 cos(2x) ≠ 0 as x → 0. In addition (e^x - 1)' = e^x. Therefore, lim_{x→0} e^{x-1}/sin_x = lim_{x→0} e^x/2 cos(2x) = 1/2.
lim_{x→0} x/e^{x-1} = 1/e⁰ = 1.
lim_{x→0} x²/cos x-1

- E > - E >

Consider e^x-1/sin(2x). The limit x → 0 is of the form 0/0. It holds that (sin(2x))' = 2 cos(2x) ≠ 0 as x → 0. In addition (e^x - 1)' = e^x. Therefore, lim_{x→0} e^x-1/sin = lim_{x→0} e^x/2 cos(2x) = 1/2.
lim_{x→0} x/e^{x-1} = 1/e⁰ = 1.
lim_{x→0} x²/cos x-1 = lim_{x→0} 2x/-sin x = 2/-cos 0 = -2.

A B M A B M

Theorem (Bernoulli-de l'Hôpital, case 2)

Let f, g differentiable in (a, ∞) such that $g'(x) \neq 0$ for x sufficiently large, $\lim_{x\to\infty} f(x) = \lim_{x\to\infty} g(x) = 0$, $\lim_{x\to\infty} \frac{f'(x)}{g'(x)} = L$. Then $g(x) \neq 0$ for x sufficiently large and $\lim_{x\to\infty} \frac{f(x)}{g(x)} = L$.

Proof.

Let $F(x) = f(\frac{1}{x})$, $G(x) = g(\frac{1}{x})$. Note that, as $x \to \infty$, we have $\frac{1}{x} \to 0^+$, and $F'(x) = -\frac{1}{x^2}f'(\frac{1}{x})$, $G'(x) = -\frac{1}{x^2}g'(\frac{1}{x})$. Then for sufficiently small x, $G'(x) \neq 0$ because $g'(\frac{1}{x}) \neq 0$ for such x. By applying case 1, we obtain

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to 0^+} \frac{F(x)}{G(x)} = \lim_{x \to 0^+} \frac{F'(x)}{G'(x)} = \lim_{x \to 0^+} \frac{-x^2 f'(\frac{1}{x})}{-x^2 g'(\frac{1}{x})} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$$

as desired.

•
$$\lim_{x\to\infty} \frac{\sin(\frac{1}{x^2})}{\frac{1}{x^2}}$$

•
$$\lim_{x \to \infty} \frac{\sin(\frac{1}{x^2})}{\frac{1}{x^2}} = \lim_{x \to \infty} \frac{-\frac{2}{x^3}\cos(\frac{1}{x^2})}{-\frac{2}{x^3}} = 1.$$

Theorem (Bernoulli-de l'Hôpital, case 3)

Let $a < x_0$, f, g differentiable in (a, x_0) such that $g'(x) \neq 0$ for x sufficiently close to x_0 , $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x) = +\infty$, $\lim_{x\to x_0} \frac{f'(x)}{g'(x)} = L$. Then $g(x) \neq 0$ for x sufficiently close to x_0 and $\lim_{x\to x_0} \frac{f(x)}{g(x)} = L$.

Proof.

Let $\varepsilon > 0$. By the hypothesis, there is b such that $\left|\frac{f'(y)}{g'(y)} - L\right| < \frac{\varepsilon}{3}$ for $y \in (b, x_0)$. In addition, there is \tilde{b} such that $b < \tilde{b} < x_0$ and in (\tilde{b}, x_0) f(x) > 2f(b) > 0, g(x) > 2g(b) > 0. Then the function $h(x) = \frac{1 - \frac{g(b)}{g(x)}}{1 - \frac{f(b)}{f(x)}}$ is continuous on $(\tilde{b}, x_0]$ and its value at x_0 is 1. Furthermore, it holds that

$$\frac{f(x) - f(b)}{g(x) - g(b)} \cdot h(x) = \frac{f(x) - f(b)}{g(x) - g(b)} \cdot \frac{1 - \frac{g(b)}{g(x)}}{1 - \frac{f(b)}{f(x)}} = \frac{f(x)}{g(x)}$$

Proof.

Let $\tilde{\tilde{b}}$ such that $|h(x) - 1| < \frac{\varepsilon}{3L+1}$ for $x \in (\tilde{\tilde{b}}, x_0)$. By Cauchy's mean value theorem, there is $y \in (b, x)$ such that

$$\frac{f(x)}{g(x)} = \frac{f(x) - f(b)}{g(x) - g(b)} \cdot h(x) = \frac{f'(y)}{g'(y)}h(x).$$

$$\operatorname{Now} \left| \frac{f(x)}{g(x)} - L \right| = \left| \frac{f'(y)}{g'(y)}h(x) - L \right| < \left| \frac{f'(y)}{g'(y)} - L \right| \left(1 + \frac{\varepsilon}{3L+1} \right) + L|h(x) - 1| < \frac{\varepsilon}{3} + \frac{\varepsilon^2}{3} + \frac{\varepsilon}{3} < \varepsilon.$$

Theorem (Bernoulli-de l'Hôpital, case 4)

Let f, g be differentiable (a, ∞) such that $g'(x) \neq 0$ as $x \to \infty$, $\lim_{x\to\infty} f(x) = \lim_{x\to\infty} g(x) = +\infty$, $\lim_{x\to\infty} \frac{f'(x)}{g'(x)} = L$. Then $g(x) \neq 0$ for x sufficiently large and $\lim_{x\to\infty} \frac{f(x)}{g(x)} = L$.

Proof.

Consider
$$F(y) = f(\frac{1}{y}), G(y) = g(\frac{1}{y})$$
. Since $\frac{1}{y} \to \infty$ as $y \to 0^+$, and
 $D(F(y)) = \frac{Df(\frac{1}{y})}{-y^2}, D(G(y)) = \frac{Dg(\frac{1}{y})}{-y^2}$ we can apply case 3 and
 $L = \lim_{y\to 0^+} \frac{DF(y)}{DG(y)} = \lim_{y\to 0^+} \frac{F(y)}{G(y)} = \lim_{x\to\infty} \frac{f(x)}{g(x)}.$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Figure: Theorem of de l'Hôpital. The limit $\lim_{x\to\infty} \frac{f(x)}{g(x)}$ is determined by $\lim_{x\to\infty} \frac{f'(x)}{g'(x)}$.

- Let us compute $\lim_{x\to\infty} \frac{x^2}{e^x}$. If the limit $\lim_{x\to\infty} \frac{2x}{e^x}$ exists, then by the de l'Hôpital rule, they should coincide. The latter exists if $\lim_{x\to\infty} \frac{2}{e^x}$ exists, and it does: it is 0. Therefore, the second limit exists and it is 0, and hence the first limit exists and it is 0.
- $\lim_{x\to 0} \frac{\sin 2x}{\sin x}$

•
$$\lim_{x \to 0} \frac{\sin 2x}{\sin x} = \lim_{x \to 0} \frac{2 \cos 2x}{\cos x} = 2.$$

• $\lim_{x \to 0} \frac{\log x}{1/\tan x}$

•
$$\lim_{x \to 0} \frac{\sin 2x}{\sin x} = \lim_{x \to 0} \frac{2 \cos 2x}{\cos x} = 2.$$

•
$$\lim_{x \to 0} \frac{\log x}{1/\tan x} = \lim_{x \to 0} \frac{1/x}{1/\sin^2 x} = 0.$$

•
$$\lim_{x \to 0} \frac{\log(\sin x)}{\log x}$$

•
$$\lim_{x \to 0} \frac{\sin 2x}{\sin x} = \lim_{x \to 0} \frac{2 \cos 2x}{\cos x} = 2.$$

•
$$\lim_{x \to 0} \frac{\log x}{1/\tan x} = \lim_{x \to 0} \frac{1/x}{1/\sin^2 x} = 0.$$

•
$$\lim_{x \to 0} \frac{\log(\sin x)}{\log x} = \lim_{x \to 0} \frac{\frac{\cos x}{\sin x}}{x} = 1.$$

•
$$\lim_{x \to \infty} \frac{x^n}{e^x}$$

•
$$\lim_{x \to 0} \frac{\sin 2x}{\sin x} = \lim_{x \to 0} \frac{2\cos 2x}{\cos x} = 2.$$

•
$$\lim_{x \to 0} \frac{\log x}{1/\tan x} = \lim_{x \to 0} \frac{1/x}{1/\sin^2 x} = 0.$$

•
$$\lim_{x \to 0} \frac{\log(\sin x)}{\log x} = \lim_{x \to 0} \frac{\frac{\cos x}{\sin x}}{x} = 1.$$

•
$$\lim_{x \to \infty} \frac{x^n}{e^x} = 0.$$

•
$$\lim_{x \to \infty} \frac{\log \cosh x}{x}$$

•
$$\lim_{x \to 0} \frac{\sin 2x}{\sin x} = \lim_{x \to 0} \frac{2\cos 2x}{\cos x} = 2.$$

•
$$\lim_{x \to 0} \frac{\log x}{1/\tan x} = \lim_{x \to 0} \frac{1/x}{1/\sin^2 x} = 0.$$

•
$$\lim_{x \to 0} \frac{\log(\sin x)}{\log x} = \lim_{x \to 0} \frac{\frac{\cos x}{\sin x}}{x} = 1.$$

•
$$\lim_{x \to \infty} \frac{x^n}{e^x} = 0.$$

•
$$\lim_{x \to \infty} \frac{\log \cosh x}{x} = \lim_{x \to \infty} \frac{\sinh x / \cosh x}{1} = 1$$

- Compute the limit. $\lim_{x\to 0} \frac{\sin^2 x}{x^2}$.
- Compute the limit. $\lim_{x\to 0} \frac{\sin x x}{x^3}$.
- Compute the limit. $\lim_{x\to\infty} \frac{\log x^3+1}{\log x}$.
- Compute the limit. $\lim_{x\to 0} \frac{x}{\log x}$.