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Today: Apostol Vol. 1, Chapter 4.18-20.
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Symmetry of functions
Recall that a function is a subset in R× R in the sense that it collects all
the points {(x , y) ∈ R× R : y = f (x)}. This is the graph itself.
We can consider certain operations on a function.

Translation. If g(x) = f (x − a) + b for some function f , g , then the
graph of g is obtained by translating the graph of f by (a, b). Indeed,
if (x , y) is on the graph of f , then (x + a, y + b) is on the graph of g .
Reflection. If g(x) = f (−x) for some function f , g , then the graph
of g is obtained by reflecting the graph of f with respect to x = 0.
Indeed, if (x , y) is on the graph of f , then (−x , y) is on the graph of
g .
If g(x) = f (−(x − 2a)) for some function f , g , then the graph of g is
obtained by reflecting the graph of f with respect to x = a.
Scaling. If g(x) = bf (x/a) for some function f , g and a, b > 0, then
the graph of g is obtained by scaling the graph of f by a in the
x -direction and b in the y -direction. Indeed, if (x , y) is on the graph
of f , then (ax , by) is on the graph of g .
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Figure: Left:the graphs of x2 and (x − 1
2 )2 − 1. Right:the graphs of x3 − x2 and

−x3 − x2.
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Figure: The graphs of sin x and 2 sin(x/2).
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Symmetry of functions
A graph or a function may have a symmetry. A function f is said to have
a symmetry if it is invariant under certain operations.

Translation symmetry. If f (x) = f (x − a), then the graph of f
remains invariant under the translation (a, 0).
Reflection. If f (x) = f (−x), then the graph of f is invariant under
the reflection respect to x = 0 and f is said to be even.
f (x) = −f (−x), f is said to be odd.
f (x) = f (−(x − 2a)) has reflection symmetry with respect to x = a.

Example
The graph of sin x is invariant under 2π translation and under the
reflection with respect to π

2 , because sin(x + 2π) = sin(x) and
sin(−(x − π)) = − sin(x − π) = sin(x). On the other hand,
sin(−x) = − sin x , hence sin x is an odd function.
If f (x) = (x − 1

2)2 − 1 is invariant under the reflection with respect to
x = 1

2 because ((−(x − 1))− 1
2)2− 1 = (−x + 1

2)2− 1 = (x − 1
2)2− 1.
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Figure: sin x is invariant under 2π translation and under the reflection with
respect to π

2 . (x − 1
2 )2 + 1 is invariant under the reflection with respect to x = 1

2 .
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Curve sketching

The graph of a function f can be qualitatively drawn as follows.
(0) Determine the (natural) domain A of definition of f .

(0.5) Se if f has a symmetry or a period.
(1) Study the sign of f : where f (x) > 0,= 0, < 0 hold.
(2) Determine the asymptotes.
(3) Study the sign of f ′ and find stationary points (where f ′(x) = 0).
(4) Study the stationary points and find local minima and maxima (either

by the second derivative or the first).
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Curve sketching

f (x) = e−(2x−1)2 .

(0) f (x) is defined for all x ∈ R = A in a natural way.
(0.5) f (x + 1

2) = f (−x + 1
2), that is f (x) is even with respect to x = 1

2 .
(1) e−(2x−1)2

> 0 for all x ∈ R.
(2) Consider x → ±∞. limx→±∞ f (x) = 0. The asymptote is y = 0.
(3) f ′(x) = −4(2x − 1)e−(2x−1)2 . f ′(x) = 0⇔ 2x − 1 = 0⇔ x = 1

2 .
f (1

2) = 1.
(4) f ′′(x) = (16(2x − 1)2 − 8)e−(2x−1)2 = (64x2 − 64x + 8)e−(2x−1)2 .

x 1
2

f ′(x) + 0 −
f ′′(x) −
f (x) ↗ 1 ↘
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Figure: The graph of f (x) = e−(2x−1)2 .
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Curve sketching
f (x) = log( 1

sin x ).

(0) log y is defined for y > 0, hence 1
sin x > 0, that is

sin x > 0⇔ x ∈ (2nπ, (2n + 1)π) for n ∈ Z.
(0.5) sin(x + 2π) = sin x , hence f (x + 2π) = f (x). It sufficed to draw the

graph for (0, π). Since sin(x − π
2 ) = sin(−x + π

2 ), f (x) is even with
respect to x = π

2 .
(1) 0 < sin x ≤ 1, hence 1

sin x ≥ 1 and log( 1
sin x ) ≥ 0.

(2) The domain is (0, π), so we need to check {0, π}.
limx→0 f (x) = limx→π f (x) =∞. The asymptotes are x = 0, π.

(3) f ′(x) = − cos x
sin x . f ′(x) = 0⇔ cos x = 0⇔ x = π

2 . f (π
2 ) = 0.

f ′(x) < 0 if x ∈ (0, π
2 ), and f ′(x) > 0 if x ∈ (π

2 , π).
(4) f ′′(x) = 1

sin2 x > 0.
x π

2
f ′(x) − 0 +
f ′′(x) +
f (x) ↘ 0 ↗
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Figure: The graph of f (x) = log( 1
sin x ).
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Curve sketching

We can draw the graphs of f (x) = 1− x2 and g(x) = ex − 1, and prove
that there are two solutions of the equation f (x) = g(x).

Indeed, let us consider the function h(x) = g(x)− f (x) = ex + x2 − 2 and
it suffices to find all x such that h(x) = g(x)− f (x) = 0. We have
limx→±∞ g(x)− f (x) =∞ and g(0)− f (0) = (1− 1)− 1 = −1. By the
intermediate value theorem, there are solutions in x > 0 e x < 0.
Moreover, h′(x) = ex + 2x , hence there is only one stationary point
(because in x > 0 h′(x) is positive and it is negative for sufficiently small
x , while g ′′(x)− f ′′(x) = ex + 2 is positive, therefore, g ′(x)− f ′(x) is
monotonically increasing). Therefore, h(x) = g(x)− f (x) is decreasing in
a negative half line and is increasing in the rest, hence it can have only
two points x where h(x) = 0.
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Figure: The graph of h(x) = ex + x2 − 2. It crosses the x -axis twice and only
twice.
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Some applications of the minimum/maximum finding

If one can express a problem as a problem of finding the maximum or the
minimum of a function, we can solve it using derivatives and graphs.

Among all rectangles of given perimeter 2r , which one has the largest
area?

Let the vertical side x , then 0 ≤ x ≤ r and the other side is r − x ,
hence the area is x(r − x). We need to find the maximum of
f (x) = x(r − x) on the domain {x : 0 < x < r}. We have
limx→0 f (x) = limx→r f (x) = 0, while f ′(x) = r − 2x , and hence
there is a stationary point at x = r

2 , and f ′′(x) = −2, hence this is a
local maximum. There is no other stationary points, and
f (0) = f (r) = 0, hence this is the maximum.
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Some applications of the minimum/maximum finding

The geometric mean
√

ab is smaller than or equal to the arithmetic
mean a+b

2 .

Let us fix P =
√

ab and put a = x , then b = P2

x and 0 < x . Let us

find the minimum of f (x) = x+ P2
x

2 . This tends to ∞ as x → 0 or
x →∞. On the other hand, f ′(x) = 1

2(1− P2

x2 ), and hence there is
only one stationary point at x = P, and f ′′(x) = 2P2

x3 , hence this is a
local minimum, and is the minimum. At x = P, we have f (P) = P.

Hence we have P ≤ x+ P2
x

2 .
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Exercises

Sketch the graph of f (x) = x2−4
x−3 .

Sketch the graph of f (x) =
√

x3
x−1 .

A truck is to be driven 300 miles on a freeway at a constant speed of
x miles per hour. Speed laws require 30 < x < 60. Assume that fuel
is consumed at the rate of 2 + x2/600 gallons per hour. Which speed
should the track driver go to save the fuel cost?
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