Mathematical Analysis I: Lecture 25

Lecturer: Yoh Tanimoto

02/11/2020 Start recording...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- Tutoring (by Mr. Lorenzo Panebianco): Tuesday 15:00-16:30 until 10th November. Then move to Tuesday morning.
- Today: Apostol Vol. 1, Chapter 4.14-16.

Theorem (Rolle)

Let f be continuous in [a, b] and differentiable in (a, b). If f(a) = f(b), then there is $x_0 \in (a, b)$ such that $f'(x_0) = 0$.

Proof.

If f is constant, then f'(x) = 0 for all $x \in (a, b)$.

If f is not constant, then by Theorem of Weierstrass, f has a minimum and a maximum. As f is not constant, one of them must be different from f(a) = f(b). Therefore, we take x_0 that is either minimum or maximum, and $a \neq x_0 \neq b$. Let us take an open interval containing x_0 . Now $f'(x_0) = 0$ by Theorem of the last week.

Figure: A non constant function, continuous in [a, b] and differentiable in (a, b), must have a stationary point.

Theorem (Lagrange's mean value theorem)

Let f be continuous in [a, b] and differentiable in (a, b). Then there is $x_0 \in (a, b)$ such that $\frac{f(b)-f(a)}{b-a} = f'(x_0)$.

Proof.

Let $g(x) = f(x) - \frac{(f(b)-f(a))x}{b-a}$, which is continuous in [a, b] and differentiable in (a, b). Then $g(a) = \frac{f(a)b-f(b)a}{b-a} = g(b)$, and by Theorem 1 there is x_0 such that $g'(x_0) = 0$. This implies $f'(x_0) - \frac{f(b)-f(a)}{b-a} = 0$. \Box

く伺 とくき とくき とうき

Figure: A function continuous in [a, b] and differentiable in (a, b), must have a point where the derivative is equal to the mean slope.

Corollary

Let f be continuous in [a, b] and differentiable in (a, b). If f'(x) = 0 for all $x \in (a, b)$, then f is constant.

Proof.

Let
$$x < y \in [a, b]$$
. By Theorem 2, there is $x_0 \in (x, y)$ such that $\frac{f(y)-f(x)}{y-x} = f'(x_0) = 0$, therefore, $f(x) = f(y)$.

▲ 臣 ▶ ▲

Corollary

Let f be continuous in [a, b] e derivabile in (a, b).

- If f'(x) ≥ 0 (> 0, respectively) for all x ∈ (a, b), then f is monotonically non decreasing (increasing, respectively).
- If f'(x) ≤ 0 (< 0, respectively) for all x ∈ (a, b), then f is monotonically non increasing (decreasing, respectively).

Proof.

Let $x < y \in (a, b)$. By Theorem 2, there is $x_0 \in (x, y)$ such that $\frac{f(y)-f(x)}{(y-x)} = f'(x_0)$. If $f'(x_0) \ge 0(>0)$, then $f(y) - f(x) \ge 0(>0)$, that is f is monotonically non decreasing (increasing, respectively). The case $f'(x) \le 0(<0)$ is analogous.

(日)

•
$$f(x) = x^2$$
.

Lecturer: Yoh Tanimoto

- (日)

•
$$f(x) = x^2$$
. $f'(x) = 2x$,

Lecturer: Yoh Tanimoto

- (日)

< ∃ ►

f(x) = x². f'(x) = 2x, hence f is decreasing if x < 0, x = 0 is the only one stationary point, and is increasing if x > 0.

f(x) = x². f'(x) = 2x, hence f is decreasing if x < 0, x = 0 is the only one stationary point, and is increasing if x > 0.
f(x) = sin x. f'(x) = cos x, hence f is increasing if x ∈ (-π/2 + 2πn, π/2 + 2πn) for n ∈ Z, x = π/2 + 2πn, -π/2 + 2πn are stationary points, and f is decreasing if x ∈ (π/2 + 2πn, 3π/2 + 2πn).

Figure: A function and its derivative. When the derivative is positive (negative) in an interval, the function is increasing (decreasing).

Theorem

Let f be continuous in [a, b] and differentiable in (a, b). Let $c \in (a, b)$.

- If f'(x) > 0 for x ∈ (a, c) and f'(x) < 0 for x ∈ (c, b), then f has a maximum at c.
- If f'(x) < 0 for $x \in (a, c)$ and f'(x) > 0 for $x \in (c, b)$, then f has a minimum at c.

Proof.

If f'(x) > 0 for $x \in (a, c)$, then it is increasing there and continuous at c, therfore, for any $x \in (a, b)$ it holds that $f(c) \ge f(x)$. On the other hand, as f'(x) < 0 for $x \in (c, b)$, and $f(c) \ge f(x)$ for $x \in (c, b)$. The second case is analogous.

イロト イヨト イヨト

•
$$f(x) = x^3 - x$$
.

Lecturer: Yoh Tanimoto

• • = • •

•
$$f(x) = x^3 - x$$
. $f'(x) = 3x^2 - 1$,

• • = • •

•
$$f(x) = x^3 - x$$
. $f'(x) = 3x^2 - 1$, and $f'(x) > 0$ if and only if $x < -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} < x$, and $f'(x) < 0$ if and only if $-\frac{1}{\sqrt{3}} < x < \frac{1}{\sqrt{3}}$.

(日)

•
$$f(x) = x^3 - x$$
. $f'(x) = 3x^2 - 1$, and $f'(x) > 0$ if and only if $x < -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} < x$, and $f'(x) < 0$ if and only if $-\frac{1}{\sqrt{3}} < x < \frac{1}{\sqrt{3}}$.
Therefore, x takes a maximum at $x = -\frac{1}{\sqrt{3}}$ and a minimum $x = \frac{1}{\sqrt{3}}$.
As f is differentiable in \mathbb{R} , there is no other local maximum or minimum.

.

•
$$f(x) = x^3 - x$$
. $f'(x) = 3x^2 - 1$, and $f'(x) > 0$ if and only if $x < -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} < x$, and $f'(x) < 0$ if and only if $-\frac{1}{\sqrt{3}} < x < \frac{1}{\sqrt{3}}$.
Therefore, x takes a maximum at $x = -\frac{1}{\sqrt{3}}$ and a minimum $x = \frac{1}{\sqrt{3}}$.
As f is differentiable in \mathbb{R} , there is no other local maximum or minimum.

•
$$f(x) = \cosh x$$
.

→ < ∃ →</p>

•
$$f(x) = x^3 - x$$
. $f'(x) = 3x^2 - 1$, and $f'(x) > 0$ if and only if $x < -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} < x$, and $f'(x) < 0$ if and only if $-\frac{1}{\sqrt{3}} < x < \frac{1}{\sqrt{3}}$.
Therefore, x takes a maximum at $x = -\frac{1}{\sqrt{3}}$ and a minimum $x = \frac{1}{\sqrt{3}}$.
As f is differentiable in \mathbb{R} , there is no other local maximum or minimum.

•
$$f(x) = \cosh x$$
. $f'(x) = \sinh x$, and

→ < ∃ →</p>

- $f(x) = x^3 x$. $f'(x) = 3x^2 1$, and f'(x) > 0 if and only if $x < -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} < x$, and f'(x) < 0 if and only if $-\frac{1}{\sqrt{3}} < x < \frac{1}{\sqrt{3}}$. Therefore, x takes a maximum at $x = -\frac{1}{\sqrt{3}}$ and a minimum $x = \frac{1}{\sqrt{3}}$. As f is differentiable in \mathbb{R} , there is no other local maximum or minimum.
- $f(x) = \cosh x$. $f'(x) = \sinh x$, and f'(x) > 0 if and only if x > 0, and f'(x) < 0 if and only if x < 0.

- $f(x) = x^3 x$. $f'(x) = 3x^2 1$, and f'(x) > 0 if and only if $x < -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} < x$, and f'(x) < 0 if and only if $-\frac{1}{\sqrt{3}} < x < \frac{1}{\sqrt{3}}$. Therefore, x takes a maximum at $x = -\frac{1}{\sqrt{3}}$ and a minimum $x = \frac{1}{\sqrt{3}}$. As f is differentiable in \mathbb{R} , there is no other local maximum or minimum.
- $f(x) = \cosh x$. $f'(x) = \sinh x$, and f'(x) > 0 if and only if x > 0, and f'(x) < 0 if and only if x < 0. Therefore, x takes a minimum at x = 0 and no other minimum or maximum.

- $f(x) = x^3 x$. $f'(x) = 3x^2 1$, and f'(x) > 0 if and only if $x < -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} < x$, and f'(x) < 0 if and only if $-\frac{1}{\sqrt{3}} < x < \frac{1}{\sqrt{3}}$. Therefore, x takes a maximum at $x = -\frac{1}{\sqrt{3}}$ and a minimum $x = \frac{1}{\sqrt{3}}$. As f is differentiable in \mathbb{R} , there is no other local maximum or minimum.
- $f(x) = \cosh x$. $f'(x) = \sinh x$, and f'(x) > 0 if and only if x > 0, and f'(x) < 0 if and only if x < 0. Therefore, x takes a minimum at x = 0 and no other minimum or maximum.

•
$$f(x) = \sinh x$$
.

- $f(x) = x^3 x$. $f'(x) = 3x^2 1$, and f'(x) > 0 if and only if $x < -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} < x$, and f'(x) < 0 if and only if $-\frac{1}{\sqrt{3}} < x < \frac{1}{\sqrt{3}}$. Therefore, x takes a maximum at $x = -\frac{1}{\sqrt{3}}$ and a minimum $x = \frac{1}{\sqrt{3}}$. As f is differentiable in \mathbb{R} , there is no other local maximum or minimum.
- $f(x) = \cosh x$. $f'(x) = \sinh x$, and f'(x) > 0 if and only if x > 0, and f'(x) < 0 if and only if x < 0. Therefore, x takes a minimum at x = 0 and no other minimum or maximum.

•
$$f(x) = \sinh x$$
. $f'(x) = \cosh x$

- $f(x) = x^3 x$. $f'(x) = 3x^2 1$, and f'(x) > 0 if and only if $x < -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} < x$, and f'(x) < 0 if and only if $-\frac{1}{\sqrt{3}} < x < \frac{1}{\sqrt{3}}$. Therefore, x takes a maximum at $x = -\frac{1}{\sqrt{3}}$ and a minimum $x = \frac{1}{\sqrt{3}}$. As f is differentiable in \mathbb{R} , there is no other local maximum or minimum.
- $f(x) = \cosh x$. $f'(x) = \sinh x$, and f'(x) > 0 if and only if x > 0, and f'(x) < 0 if and only if x < 0. Therefore, x takes a minimum at x = 0 and no other minimum or maximum.
- $f(x) = \sinh x$. $f'(x) = \cosh x$ and $\cosh x > 0$,

- $f(x) = x^3 x$. $f'(x) = 3x^2 1$, and f'(x) > 0 if and only if $x < -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} < x$, and f'(x) < 0 if and only if $-\frac{1}{\sqrt{3}} < x < \frac{1}{\sqrt{3}}$. Therefore, x takes a maximum at $x = -\frac{1}{\sqrt{3}}$ and a minimum $x = \frac{1}{\sqrt{3}}$. As f is differentiable in \mathbb{R} , there is no other local maximum or minimum.
- $f(x) = \cosh x$. $f'(x) = \sinh x$, and f'(x) > 0 if and only if x > 0, and f'(x) < 0 if and only if x < 0. Therefore, x takes a minimum at x = 0 and no other minimum or maximum.
- f(x) = sinh x. f'(x) = cosh x and cosh x > 0, and hence f(x) is monotonically increasing.

< □ > < □ > < □ > < □ > < □ > < □ >

Note that, even if f'(x) > 0 at one point, it does not mean that f is monotonically increasing in a neighbourhood of x. Indeed, a counterexample is given by

$$f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) + \frac{x}{2} & \text{ for } x \neq 0\\ \frac{1}{2} & \text{ for } x = 0 \end{cases}$$

As we have seen, this function without the part $\frac{x}{2}$ is differentiable, and it has the derivative 0 at x = 0. Therefore, with $\frac{x}{2}$, it is still differentiable and $f'(0) = \frac{1}{2} > 0$. Yet, f is not monotonically increasing in any interval $(-\epsilon, \epsilon)$.

$$f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) + \frac{x}{2} & \text{ for } x \neq 0\\ 0 & \text{ for } x = 0 \end{cases}.$$

Yet, f is not monotonically increasing in any interval $(-\epsilon, \epsilon)$. To see this, note that

$$f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) + \frac{x}{2} & \text{ for } x \neq 0\\ 0 & \text{ for } x = 0 \end{cases}.$$

Yet, f is not monotonically increasing in any interval $(-\epsilon, \epsilon)$. To see this, note that

$$f'(x) = \begin{cases} 2x \sin\left(\frac{1}{x}\right) - \frac{x^2}{x^2} \cos\left(\frac{1}{x}\right) + \frac{1}{2} \\ = 2x \sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right) + \frac{1}{2} & \text{for } x \neq 0 \\ \frac{1}{2} & \text{for } x = 0 \end{cases}$$

and for any $\epsilon > 0$, there is $x < \epsilon$ such that f'(x) < 0: for example, one can take $x = \frac{1}{2\pi n}$ for sufficiently large *n*. Then the term $2x \sin \frac{1}{x} = 0$, while $-\cos \frac{1}{x} = -1$, and then $f'(x) = -\frac{1}{2}$. Note that the derivative f'(x) is discontinuous in this case.

Figure: A function f such that f'(0) > 0 but is not monotonically increasing in any interval containing x = 0.

Theorem (Cauchy's mean value theorem)

Let a < b, f, g be continuous in [a, b] and differentiable in (a, b). Then there is $x_0 \in (a, b)$ such that $f'(x_0)(g(b) - g(a)) = g'(x_0)(f(b) - f(a))$.

Proof.

Let h(x) = f(x)(g(b) - g(a)) - g(x)(f(b) - f(a)), then h(x) is continuous in [a, b] and differentiable on in (a, b). h(a) = f(a)g(b) - f(b)g(a) = h(b). By Rolle's theorem 1, there is $x_0 \in (a, b)$ such that $0 = h'(x_0) = f'(x_0)(g(b) - g(a)) - g(x_0)(f(b) - f(a))$.

イロト イポト イヨト イヨト 二日

- Determine where the function is increasing or decreasing. $f(x) = x^3 - 3x$.
- Determine where the function is increasing or decreasing. $f(x) = e^x - x.$
- Determine where the function is increasing or decreasing. $f(x) = x + \frac{1}{x}, x > 0.$
- Determine where the function is increasing or decreasing. $f(x) = \frac{x}{x^2+1}.$