Mathematical Analysis I: Lecture 22

Lecturer: Yoh Tanimoto

28/10/2020 Start recording...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- Tutoring (by Mr. Lorenzo Panebianco): Tuesday 15:00-16:30 until 10th November. Then move to Tuesday morning.
- Today: Apostol Vol. 1, Chapter 4.5,10.

For a function f defined on an open interval I and $x \in I$, we have defined the derivative $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$, and we say that f is differentiable at x if this limit exists. Sometimes we denote this as f'(x) = (Df)(x). This is equivalent to write $Df(x) = f'(x) = \lim_{w \to x} \frac{f(w) - f(x)}{w}$.

Derivative

Let f, g be functions. We write this $x \mapsto f(x)$. We denote by f + g the function that maps $x \mapsto f(x) + g(x)$. Similarly, $f \cdot g = fg$ is the function $x \mapsto f(x)g(x)$, $\frac{f}{g}$ is the function $x \mapsto \frac{f(x)}{g(x)}$, and the composition is $f \circ g$ that is given by $x \mapsto f(g(x))$.

Theorem

Let f, g be functions on open intervals. The following hold if f, g are differentiable at x (or f at g(x) for the chain rule):

• For $a, b \in \mathbb{R}$, D(af + bg)(x) = aDf(x) + bDg(x) (linearity).

•
$$D(fg)(x) = Df(x)g(x) + f(x)Dg(x)$$
 (Leibniz rule).

- If $g(x) \neq 0$, then $D(\frac{f}{g})(x) = \frac{Df(x)g(x) f(x)Dg(x)}{g(x)^2}$.
- $D(f \circ g) = Dg(x)Df(g(x))$ (the chain rule).
- If Df(x) ≠ 0 and f is monotonically increasing or decreasing and continuous in (x − ε, x + ε) for some ε > 0. Then f⁻¹ is differentiable at y = f(x) and D(f⁻¹(y)) = 1/Df(x).

Linearity is straightforward from the algebra of limits:

$$\lim_{h \to 0} \frac{af(x+h) + bg(x+h) - af(x) - bg(x)}{h}$$

= $\lim_{h \to 0} a \frac{f(x+h) - f(x)}{h} + \lim_{h \to 0} b \frac{g(x+h) - g(x)}{h}$
= $a \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} + b \lim_{h \to 0} \frac{g(x+h) - g(x)}{h}$
= $aDf(x) + bDg(x).$

Note that f(x+h)g(x+h) - f(x)g(x) = f(x+h)g(x+h) - f(x)g(x+h) + f(x)g(x+h) - f(x)g(x), and g is continuous at x because it is differentiable there:

$$\begin{split} &\lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x)}{h} \\ &= \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x+h) + f(x)g(x+h) - f(x)g(x)}{h} \\ &= \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x+h)}{h} + \lim_{h \to 0} \frac{f(x)g(x+h) - f(x)g(x)}{h} \\ &= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \lim_{h \to 0} g(x+h) + f(x) \lim_{h \to 0} \frac{g(x+h) - g(x)}{h} \\ &= Df(x)g(x) + f(x)Dg(x). \end{split}$$

As
$$g(x) \neq 0$$
, we have $\lim_{h \to 0} \frac{1}{g(x+h)} = \frac{1}{g(x)}$ and

$$\begin{split} \lim_{h \to 0} \frac{\frac{f(x+h)}{g(x+h)} - \frac{f(x)}{g(x)}}{h} \\ &= \lim_{h \to 0} \frac{f(x+h)g(x) - f(x)g(x+h)}{g(x+h)g(x)h} \\ &= \lim_{h \to 0} \frac{f(x+h)g(x) - f(x)g(x) + f(x)g(x) - f(x)g(x+h)}{g(x+h)g(x)h} \\ &= \lim_{h \to 0} \frac{(f(x+h) - f(x))g(x) - f(x)(g(x+h) - g(x))}{g(x+h)g(x)h} \\ &= \frac{Df(x)g(x) - f(x)Dg(x)}{g(x)^2}. \end{split}$$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Note that $u(k) := \frac{f(g(x)+k)-f(g(x))}{k} - Df(g(x))$ tends to 0 as $k \to 0$. Let us also set u(0) = 0, then u is continuous around 0. We can write this as f(g(x) + k) - f(g(x)) = k(Df(g(x)) + u(k)), including k = 0.

$$\begin{split} &\lim_{h \to 0} \frac{f(g(x+h)) - f(g(x))}{h} \\ &= \lim_{h \to 0} \frac{f(g(x) + (g(x+h) - g(x))) - f(g(x))}{h} \\ &= \lim_{h \to 0} \frac{(g(x+h) - g(x))(Df(g(x)) + u(g(x+h) - g(x)))}{h} \\ &= \lim_{h \to 0} \frac{g(x+h) - g(x)}{h} \cdot Df(g(x)) \\ &+ \lim_{h \to 0} \frac{g(x+h) - g(x)}{h} \cdot u(g(x+h) - g(x)) \\ &= Dg(x)Df(g(x)), \end{split}$$

because g(x + h) tends to g(x), u(k) is continuous and u(0) = 0.

Let us assume that f is monotonically increasing and continuous in $(x - \epsilon, x + \epsilon)$. Then, with y = f(x),

$$\lim_{h \to 0} \frac{f^{-1}(y+h) - f^{-1}(y)}{h} = \lim_{z \to y} \frac{f^{-1}(z) - f^{-1}(y)}{z - y}$$
$$= \lim_{w \to x} \frac{f^{-1}(f(w)) - f^{-1}(f(x))}{f(w) - f(x)}$$
$$= \lim_{w \to x} \frac{w - x}{f(w) - f(x)} = \frac{1}{Df(x)},$$

where in the second equality we used the change of variables z = f(w). The case where f is monotonically decreasing is analogous.

Let
$$f(x) = x^4 + 3x^2 - 34$$
.

イロト イヨト イヨト イ

Let
$$f(x) = x^4 + 3x^2 - 34$$
. Then $Df(x) = 4x^3 + 6x$.

→ Ξ →

Let
$$f(x) = \frac{x^2 + 1}{x - 2}$$
.

イロト イヨト イヨト イヨ

Let
$$f(x) = \frac{x^2+1}{x-2}$$
. Then, for $x \neq 2$, $Df(x) = \frac{2x(x-2)-(x^2+1)\cdot 1}{(x-2)^2} = \frac{x^2-4x-1}{(x-2)^2}$.

イロト イヨト イヨト イヨ

Let $f(x) = \sin x$, $g(x) = x^2$. By linearity, $D(\sin x + x^2) =$

▶ ▲ 臣 ▶ ▲

Let $f(x) = \sin x$, $g(x) = x^2$. By linearity, $D(\sin x + x^2) = \cos x + 2x$. By Leibniz rule, $D(x^2 \sin x) =$

< 3 ×

Let $f(x) = \sin x$, $g(x) = x^2$. By linearity, $D(\sin x + x^2) = \cos x + 2x$. By Leibniz rule, $D(x^2 \sin x) = 2x \sin x + x^2 \cos x$. Let us take the composition $\sin(x^2) = f(g(x))$.

Let $f(x) = \sin x$, $g(x) = x^2$. By linearity, $D(\sin x + x^2) = \cos x + 2x$. By Leibniz rule, $D(x^2 \sin x) = 2x \sin x + x^2 \cos x$. Let us take the composition $\sin(x^2) = f(g(x))$. By the chain rule, $D(\sin(x^2)) = D(x^2) \cdot (D\sin)(x^2) = 2x \cdot \cos(x^2)$. For $(\sin x)^2 = g(f(x))$,

Let $f(x) = \sin x$, $g(x) = x^2$. By linearity, $D(\sin x + x^2) = \cos x + 2x$. By Leibniz rule, $D(x^2 \sin x) = 2x \sin x + x^2 \cos x$. Let us take the composition $\sin(x^2) = f(g(x))$. By the chain rule, $D(\sin(x^2)) = D(x^2) \cdot (D\sin)(x^2) = 2x \cdot \cos(x^2)$. For $(\sin x)^2 = g(f(x))$, $D((\sin x)^2) = D(\sin x) \cdot 2(\sin x) = 2\sin x \cos x$.

By the chain rule, $D(\exp(-x))$

Lecturer: Yoh Tanimoto

• = • •

By the chain rule, $D(\exp(-x)) = D(-x) \cdot (D\exp)(-x) = -\exp(-x)$.

< ∃ >

By the chain rule, $D(\exp(-x)) = D(-x) \cdot (D\exp)(-x) = -\exp(-x)$. By linearity, $D \sinh x =$

By the chain rule,
$$D(\exp(-x)) = D(-x) \cdot (D\exp)(-x) = -\exp(-x)$$
. By linearity, $D \sinh x = D(\frac{1}{2}(e^x - e^{-x})) = \frac{1}{2}(e^x + e^{-x}) = \cosh x$.

イロト イヨト イヨト イヨ

By the chain rule, $D(\exp(-x)) = D(-x) \cdot (D\exp)(-x) = -\exp(-x)$. By linearity, $D\sinh x = D(\frac{1}{2}(e^x - e^{-x})) = \frac{1}{2}(e^x + e^{-x}) = \cosh x$. Analogously, $D\cosh x = \sinh x$.

For a > 0, it holds that $a^{x} = (e^{\log a})^{x} = e^{\log a \cdot x}$. Indeed, by the chain rule,

★ ∃ ►

For a > 0, it holds that $a^{x} = (e^{\log a})^{x} = e^{\log a \cdot x}$. Indeed, by the chain rule,

$$D(a^{x}) = D(\exp(\log a \cdot x)) = D(\log a \cdot x) \cdot (D \exp)(\log a \cdot x)$$
$$= \log a \cdot \exp(\log a \cdot x) = \log a \cdot a^{x}.$$

< 3 > <

Let a > 0 and $f(x) = x^a$ for x > 0.

• • = • • =

Let a > 0 and $f(x) = x^a$ for x > 0. $f(x) = \exp(\log x \cdot a)$, and by the chain rule,

★ ∃ ► ★

Let a > 0 and $f(x) = x^a$ for x > 0. $f(x) = \exp(\log x \cdot a)$, and by the chain rule,

$$Df(x) = D(\log x \cdot a)D(\exp)(\log x \cdot a)$$
$$= \frac{a}{x} \cdot \exp(\log x \cdot a)$$
$$= \frac{a}{x} \cdot x^{a} = ax^{a-1}.$$

For a < 0, we consider $f(x) = x^a = \frac{1}{x^a}$ and we obtain the same formula $f'(x) = ax^{a-1}$. For a = 0, because $x^a = 1$, we have $D(x^0) = D(1) = 0$.

$$D \tan x = D(\frac{\sin x}{\cos x}) =$$

・ロト ・ 日 ト ・ 目 ト ・

$$D\tan x = D(\frac{\sin x}{\cos x}) = \frac{\cos x \cdot \cos x - \sin x \cdot (-\sin x)}{\cos^2 x} = \frac{1}{\cos^2 x}.$$

・ロト ・ 日 ト ・ 目 ト ・

$$f(y) = rctan y$$
. That is, $f(y) = g^{-1}(y)$, where $g(x) = tan x$.

イロト イヨト イヨト イヨ

 $f(y) = \arctan y$. That is, $f(y) = g^{-1}(y)$, where $g(x) = \tan x$. By the formula for the inverse function, we have $Df(y) = \frac{1}{Dg(x)} = \cos^2 x$, where $y = g(x) = \tan x$. Therefore, $y^2 = \frac{\sin^2 x}{\cos^2 x} = \frac{1-\cos^2 x}{\cos^2 x}$, and $\cos^2 x = \frac{1}{1+y^2}$. By substituting this in the previous result, $D \arctan y = Df(y) = \frac{1}{1+y^2}$.

•
$$f(x) = \tanh x$$
. $f'(x) = \frac{1}{\cosh^2 x}$.
• $f(x) = \arcsin x$. $f'(x) = \frac{1}{\sqrt{1-x^2}}$.

メロト メポト メヨト メヨト

- Compute the derivative: $f(x) = x^2 \cos(3x)$.
- Compute the derivative: $f(x) = \sqrt{x^2 + 1}$.
- Compute the derivative: $f(x) = \sin(\frac{x+2}{e^x})$.
- Compute the derivative: $f(x) = \sin(\cos(x^2))$.
- Compute the derivative: $f(x) = \log x$, using that $\log x$ is the inverse function of e^x .
- Compute the derivative: $f(x) = \sqrt{x}$ using that $\sqrt{2}$ is the inverse function of x^2 .