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Annoucements

Today: Apostol Vol. 1, Chapter 3.16-17, 4.1.
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The maximum and minimum of functions

Definition
Let f be a function defined on S.

We say that f takes its maximum at x0 if f (x0) ≥ f (x) for all x ∈ S.
We say that f takes its minimum at x0 if f (x0) ≤ f (x) for all x ∈ S

Example
Note that a function does not necessarily admit maximum or minimum. If
it has, they may depend on the domain.

f (x) = x , defined on x > 0, has no maximum or minimum. Indeed,
for any x > 0, f ( x

2 ) = x
2 < x and f (2x) = 2x > x .

f (x) = x2, defined on x ∈ R, has no maximum but the minimum is
at x = 0 with f (0) = 0. If it is restricted to the interval [a, b], then
the maximum is the larger one of a2, b2.
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Figure: Left: y = x on x > 0. There are no minimum or maximum. Right y = x2

on R. The minimum is 0 at x = 0, but there is not maximum. When restricted to
[a, b], either a2 or b2 is the maximum.
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The maximum and minimum of functions

Theorem (Weierstrass)

Let F ⊂ R be a bounded closed set (or interval), and f be a continuous
function on F . Then f admits both a maximum and a minimum in F .

Proof.
By a Theorem in the previous lecture, f is bounded, say −M < f (x) < M.
Then the image A = {f (x) : x ∈ F} is a bounded set in R, therefore, it
admits sup A and inf A. Let us prove that f admits a maximum (the case
for minimum is analogous). For each n there is xn ∈ F such that
sup A− 1

n < f (xn).
As F is bounded, xn admits a convergent subsequence yn, yn → y and
y ∈ F because F is closed. Now, as f is continuous, we have
f (y) = limn→∞ f (yn). As yn is a subsequence, it holds that
sup A− 1

n < f (yn) ≤ sup A. This implies that f (y) = sup A. That is, f
attains a maximum at y .
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The maximum and minimum of functions

Example
(and non example)

f (x) = x2 is continuous, hence on any closed and bounded F f
admits a maximum and a minimum. But not on the whole real line
R, which is not bounded.
f (x) = x − [x ] is not continuous, and indeed it does not admit a
maximum on [0, 1], although [0, 1] is close and bounded.
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Figure: The graph of the function y = x − [x ], the decimal part of x . This is
bounded, but has no maximum. The minimum is 0 at x ∈ Z.
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Compactness

Often it is said that a closed and bounded set F ⊂ R is compact. We
have seen that any sequence {an} in a compact set admits a convergent
subsequence (the Bolzano-Weierstrass theorem), and the limit is in F .
Conversely, if a set A has a property that any sequence in it has a
convergent subsequence with the limit in A, then it is compact (bounded
and closed): indeed, A must be bounded because otherwise we could take
an unbounded sequence. Furthermore, A must be closed, because if
an ∈ A is a convergent sequence, we can take a convergent subsequence
with the limit a in A, but there is only one limit for an, hence an → a ∈ A,
that is, A is closed.
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Uniform continuity

Let us see another strong property of continuous functions defined on
bounded and closed sets.

Definition
Let S ⊂ R, f : S → R. f is said to be uniformely continuous on S if, for
any ε > 0, there is δ > 0 such that |f (x)− f (y)| < ε for all
x , y ∈ S, |x − y | < δ.

Note the difference with the continuity: a function f is continuous if for
each x ∈ S and for each ε there is δ such that |f (y)− f (x)| < ε if
|y − x | < δ. In other words, the number δ may change from point x to
others.
On the other hand, uniform continuity asserts that for each ε > 0 there is
δ that applies to all x , y ∈ S, hence uniformly in S.
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Uniform continuity

Example
(functions that are not uniformly continuous)

f (x) = 1
x is continuous on {x ∈ R : x > 0}. However, it is not

uniformly continuous. Indeed, for ε = 1 for any δ > 0, we can take N
such that 1

N < δ and N > 2. Then x = 1
N , y = 2

N , hence
f (y)− f (x) = N

2 > 1 = ε but x − y = 1
N < δ.

f (x) = sin 1
x is continuous on {x ∈ R : x > 0}. Indeed, for ε = 1

2 for
any δ > 0, we can take N such that 2

πN < δ and N odd. Then
x = 2

πN , y = 1
πN , hence

|f ( 1
πN )− f ( 2

πN )| = | sin(πN)− sin(πN
2 )| = 1 > ε but x − y = 1

πN < δ.
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Figure: Functions continuous but not uniformly continuous.

Lecturer: Yoh Tanimoto Mathematical Analysis I 22/10/2020 11 / 17



Uniform continuity

Note that the function f (x) = |x | is continuous. Indeed, if x > 0, then
f (x) = x and this is continuous at x . Similarly, f is continuous at x < 0.
Finally, if x = 0, for any ε > 0, we take δ = ε. Then if
|y − x | = |y − 0| < δ, then |y | − |0| = |y − 0| < δ = ε.

Theorem (Heine-Cantor)

Let F bounded and closed, f : F → R a continuous function. Then f is
uniformly continuous.
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Uniform continuity

Proof.
To prove this by contradiction, assume that there is ε > 0 such that for
any δ > 0 there are x , y ∈ F , |x − y | < δ but |f (x)− f (y)| > ε. In
particular, for δ = 1

n > 0 there are xn, yn ∈ F such that |xn − yn| < 1
n but

|f (xn)− f (yn)| > ε. Let xNn be a convergent subsequence of xn (which
exists by the Bolzano-Weierstrass Theorem) to x̃ ∈ F . Let us extract a
subsequence {yNn} of {yn}. As |x̃ − yNn | ≤ |x̃ − xNn |+ |xNn − yNn | → 0,
also {yNn} must be convergent to x̃ ∈ F .
Then limn→∞ |f (xNn )− f (yNn )| = |f (x̃)− f (x̃)| = 0, as f is continuous
(note that the absolute value is continuous). But this contradicts the
assumption that |f (xNn )− f (yNn )| > ε.
Therefore, for all ε there exists δ such that for all x , y ∈ F , |x − y | < δ
vale |f (x)− f (y)| < ε.
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Uniform continuity

y = sin θ

y = tanh x

Figure: Functions defined on R but uniformly continuous.
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Preliminaries for derivatives

Until now, we have studied continuity of functions. A function f is
continuous at point x if for each ε > 0 there is δ such that
|f (y)− f (x)| < ε for y such that |y − x | < δ. This tells us that “the graph
is connected”, but does not tell us how fast the function f changes.
We would like to know such information. For example, if f represents the
motion of a car (in one direction), then how can we determine the speed
of the car? Or if f represents the height of the mountain in a path and x
represents the distance from the starting point, what is the slope of the
mountain?
In the case of the speed, if the car has travelled 100km in two hours, then
the average speed is 50km/h per hour. But it might be that the car
travelled with the constant speed 50km/h, or it travelled with 40km/h in
the first one hour and then 60km/h in the second one hour. Is it possible
to determine the speed at a moment? In the case of a mountain, what is
the slope at a point?
They should be approximated by secant lines.
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Figure: The slope at a point as the limit of the slopes of secant lines.
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Exercises

Tell whether y = cos x admits maxima and minima, and if so, list
them up.
Tell whether y = tanh x admits maxima and minima, and if so, list
them up.
Tell whether y = x is uniformly continuous or not, and prove it.
Tell whether y = x2 is uniformly continuous or not, and prove it.
Tell whether y = sin x is uniformly continuous or not, and prove it.
Tell whether y = tanh x is uniformly continuous or not, and prove it.
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