Mathematical Analysis I: Lecture 16

Lecturer: Yoh Tanimoto

16/10/2020 Start recording...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Exercises

< □ > < □ > < □ > < □ > < □ >

Prove that for $p,q,r,s\in\mathbb{N},$ we have $(a^{rac{p}{q}})^{rac{r}{s}}=a^{rac{pr}{qs}}.$

< (17) > < (17) > <

Prove that for $p, q, r, s \in \mathbb{N}$, we have $(a^{\frac{p}{q}})^{\frac{r}{s}} = a^{\frac{pr}{qs}}$. Solution. We have

$$((a^{\frac{p}{q}})^{\frac{r}{s}})^{qs} = (a^{\frac{p}{q}})^{qr} = ((a^{\frac{p}{q}})^{q})^{r} = a^{pr},$$

and hence by taking the qs-th root of both sides we obtain the claim.

Let $a_n = \frac{(-1)^n}{n}$. Determine $\sup\{a_k : k \ge n\}$ and $\inf\{a_k : k \ge n\}$.

<ロ> <四> <四> <四> <四</td>

Let $a_n = \frac{(-1)^n}{n}$. Determine $\sup\{a_k : k \ge n\}$ and $\inf\{a_k : k \ge n\}$. Solution. Note that $a_n \ge 0$ if n is even, and $a_n < 0$ if n is odd. In addition, $|a_n| = \frac{1}{n}$ is monotonically decreasing. If n is even, then a_n is the largest in $\{a_k : k \ge n\}$, hence $\sup\{a_k : k \ge n\} = \frac{1}{n}$, while the smallest element is a_{n+1} , hence $\inf\{a_k : k \ge n\} = -\frac{1}{n+1}$. Similarly, if n is odd, then $\sup\{a_k : k \ge n\} = \frac{1}{n+1}$, while $\inf\{a_k : k \ge n\} = -\frac{1}{n}$.

Compute
$$2^x$$
 for $x = 1, 2, 3, 4, \frac{1}{2}, -\frac{3}{2}$.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶

Compute 2^x for $x = 1, 2, 3, 4, \frac{1}{2}, -\frac{3}{2}$. Solution. 2¹ = 2, 2² = 4, 2³ = 8, 2⁴ = 16, 2^{$\frac{1}{2}$} = $\sqrt{2}$, 2^{- $\frac{3}{2}$} = $\frac{1}{2\sqrt{2}}$.

Compute
$$(\frac{1}{9})^x$$
 for $x = 1, 2, -3, -\frac{1}{2}, \frac{3}{2}$.

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Compute
$$(\frac{1}{9})^x$$
 for $x = 1, 2, -3, -\frac{1}{2}, \frac{3}{2}$.
Solution. $(\frac{1}{9})^1 = \frac{1}{9}, (\frac{1}{9})^2 = \frac{1}{81}, (\frac{1}{9})^{-3} = 729, (\frac{1}{9})^{-\frac{1}{2}} = 3, (\frac{1}{9})^{\frac{3}{2}} = \frac{1}{27}$.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 二百

Imagine that there is a pond and the leaves of lotus doubles each day. If the pond is completely filled on day 100, when is the pond half filled?

Imagine that there is a pond and the leaves of lotus doubles each day. If the pond is completely filled on day 100, when is the pond half filled? *Solution.* It's day 99, because on the next day the pond is filled completely.

Compute $\log_3(81), \log_{81} 3, \log_2 0.125$.

< ロ > < 回 > < 回 > < 回 > <</p>

Compute $\log_3(81)$, $\log_{81} 3$, $\log_2 0.125$. Solution. $81 = 3^4$, hence $\log_3 81 = 4$. $3 = 81^{\frac{1}{4}}$, hence $\log_{81} 3 = \frac{1}{4}$. $0.125 = \frac{1}{8} = 2^{-3}$, hence $\log_2 0.125 = -3$.

Compute $(1+\frac{1}{3})^3$.

< □ > < □ > < □ > < □ > < □ >

Compute
$$(1 + \frac{1}{3})^3$$
.
Solution. $(\frac{4}{3})^3 = \frac{64}{27} = 2.370370...$
 $(1 + \frac{1}{5})^5 = 2.48832.$
 $(1 + \frac{1}{10000})^{10000} = 2,718145927.$
The true value $e = \lim_{n \to \infty} (1 + \frac{1}{n})^n = 2.718281828....$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 二百

If $y = Ce^{ax}$, what is the relation between $z = \log y$ and x?

• • • • • • • • • • • •

If $y = Ce^{ax}$, what is the relation between $z = \log y$ and x? Solution. We have $e^z = y$, hence $e^z = Ce^{ax}$, and by taking log, we have $z = ax + \log C$. If $y = Cx^p$, what is the relation between $z = \log y$ and $w = \log x$?

A D > A A > A > A

If $y = Cx^p$, what is the relation between $z = \log y$ and $w = \log x$? Solution. We have $e^z = y$, $e^w = x$, hence $e^z = Ce^{pw}$, and by taking log, we have $z = pw + \log C$. Calculate the integer part of $log_{10}(232720)$.

< A

Calculate the integer part of $\log_{10}(232720)$. Solution. Note that $10^5 = 100000 = 232720 < 1000000 = 10^6$. As $\log_{10} x$ is monotonically increasing, $5 < \log_{10} 232720 < 6$. Therefore, its integer part is 5. Calculate the integer part of $\log_2(13567)$.

- (日)

Calculate the integer part of $\log_2(13567)$. Solution. Note that $2^{13} = 8192 < 13567 < 16384 = 2^{14}$. As $\log_2 x$ is monotonically increasing, $13 < \log_2 13567 < 14$. Therefore, its integer part is 13. Compute $\lim_{n\to\infty} (1+\frac{1}{n})^{n^2}$.

イロト イヨト イヨト イヨ

Compute $\lim_{n\to\infty} (1+\frac{1}{n})^{n^2}$. Solution. We know that $\lim_{n\to\infty} (1+\frac{1}{n})^n = e$. In particular, for sufficiently large *n*, we have $(1+\frac{1}{n})^n > 2$, and hence $(1+\frac{1}{n})^{n^2} > 2^n \to \infty$. Compute $\lim_{x\to 0} \frac{\log_a(1+x)}{x}$.

イロト イヨト イヨト イヨト

Compute $\lim_{x\to 0} \frac{\log_a(1+x)}{x}$. Solution. Use the change of base $\log_a(1+x) = \log_a e \log(1+x)$, and hence

$$\lim_{x \to 0} \frac{\log_{\mathfrak{a}}(1+x)}{x} = \log_{\mathfrak{a}} e \lim_{x \to 0} \frac{\log(1+x)}{x} = \log_{\mathfrak{a}} e.$$

イロト 不得 トイヨト イヨト

Compute $\lim_{x\to 0} \frac{a^x-1}{x}$.

<ロト <問ト < 目と < 目と

Compute $\lim_{x\to 0} \frac{a^{x}-1}{x}$. Solution. Use the change of valables: $a^{x} = e^{(\log a)x}$, and if $x \to 0$, then $(\log a)x \to 0$. Therefore,

$$\lim_{x \to 0} \frac{a^x - 1}{x} = \lim_{x \to 0} \frac{e^{(\log a)x} - 1}{x}$$
$$= \lim_{x \to 0} \frac{e^{(\log a)x} - 1}{(\log a)x} \cdot \log a = \lim_{y \to 0} \frac{e^y - 1}{y} \cdot \log a = \log a.$$

(日) (四) (日) (日) (日)

Compute $\lim_{x\to 0} \frac{\sinh x}{x}$.

・ロト ・ 日 ト ・ 目 ト ・

Compute $\lim_{x\to 0} \frac{\sinh x}{x}$. Solution.

$$\lim_{x \to 0} \frac{\sinh x}{x} = \lim_{x \to 0} \frac{e^x - e^{-x}}{2x} = \lim_{x \to 0} \frac{e^x - 1 + 1 - e^{-x}}{2x}$$
$$= \lim_{x \to 0} \frac{e^x - 1}{2x} + \frac{e^{-x} - 1}{-2x} = \frac{1}{2} + \frac{1}{2} = 1.$$

イロト イヨト イヨト イヨ

Compute $\lim_{x\to\infty} \tanh x$.

3

・ロト ・ 日 ト ・ 目 ト ・

Compute $\lim_{x\to\infty} \tanh x$. Solution.

$$\lim_{x \to \infty} \frac{\sinh x}{\cosh x} = \lim_{x \to \infty} \frac{e^x - e^{-x}}{e^x + e^{-x}} = \lim_{x \to \infty} \frac{1 - e^{-2x}}{1 + e^{-2x}} = 1.$$

イロト イヨト イヨト イヨト

Compute $\lim_{x\to 0} \frac{\sinh x}{e^x - 1}$.

イロト イヨト イヨト イヨト

Compute
$$\lim_{x\to 0} \frac{\sinh x}{e^x - 1}$$
.
Solution.
 $\lim_{x\to 0} \frac{\sinh x}{e^x - 1} = \lim_{x\to 0} \frac{\sinh x}{x} \frac{x}{e^x - 1} = 1 \cdot 1 = 1$.

・ロト ・四ト ・ヨト ・ヨト

Compute $\lim_{x\to 0} \frac{(1+x)^a-1}{x}$.

<ロト <問ト < 目と < 目と

Compute $\lim_{x\to 0} \frac{(1+x)^a-1}{x}$. Solution.

$$\lim_{x \to 0} \frac{(1+x)^a - 1}{x} = \lim_{x \to 0} \frac{e^{a \log(1+x)} - 1}{x} = \lim_{x \to 0} \frac{e^{a \log(1+x)} - 1}{\log(1+x)} \frac{\log(1+x)}{x}$$
$$= \lim_{y \to 0} \frac{e^{ay} - 1}{y} \lim_{x \to 0} \frac{\log(1+x)}{x} = a.$$

イロト イヨト イヨト イヨト