Mathematical Analysis I: Lecture 15

Lecturer: Yoh Tanimoto

15/10/2020 Start recording...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Theorem

Let $a \in \mathbb{R}$. The function $f(x) = x^a$ defined on \mathbb{R}_+ satisfies $x^a y^a = (xy)^a$ and is continuous.

Proof.

Note that these properties hold if $f(x) = x^q$, where q is rational. Let x, y > 0. For a rational q we have $(xy)^q = x^q y^q$ and hence by taking $q_n \to a$ we have $(xy)^a = x^a y^a$. As for continity, assume that $x \neq y$, then take $a < q \in \mathbb{Q}$. We have $|f(y) - f(x)| = x^a |y^a x^{-a} - 1| = x^a |(\frac{y}{x})^a - 1| < x^a |(\frac{y}{x})^q - 1|$ and $\lim_{y\to x} |(\frac{y}{x})^q - 1| = 1$ by the continuity of the rational case. Therefore, by squeezing we have $\lim_{y\to x} f(y) = f(x)$.

<ロト <部ト <注入 < 注入 = 二 =

Let $L \in \mathbb{R}$, and f is a function defined on (a, ∞) . If for each $\epsilon > 0$, there is X such that $|f(x) - L| < \epsilon$ for x > X, then we write that $\lim_{x\to\infty} f(x) = L$.

Example

$$\lim_{x\to\infty} \frac{1}{x} = 0. \ \lim_{x\to\infty} \frac{x}{x-1} = 1.$$

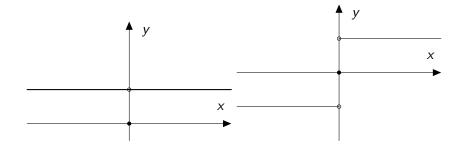
Let f(x) defined on (a, b) and $L \in \mathbb{R}$. If for each $\epsilon > 0$ there is δ such that $|f(x) - L| < \epsilon$ for $x \in (a, a + \delta)$, we denote it by $\lim_{x \to a^+} f(x)$, and we call it the **right limit** of f at a. Similarly, we write $\lim_{x \to b^-} f(x)$ for the **left limit**.

Example

Let
$$f(x) = \operatorname{sign} x$$
. $\lim_{x \to 0^+} f(x) = 1$, $\lim_{x \to 0^-} f(x) = -1$.

If f(x) is defined on $(b, a) \cup (a, c)$, $\lim_{x \to a} f(x) = L$ exists if and only if both the left and right limits exist and $\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x)$ and it is L. We leave the proof as an exercise.

Left and right limits



< ∃ ►

Lemma

Let f be a function on S, $\lim_{y\to y_0} f(y) = L$. Assume that g is a function on T, continuous at x_0 and $g(x_0) = y_0$. Then $\lim_{x\to x_0} f(g(x)) = \lim_{y\to y_0} f(y) = L$. Similarly, if $\lim_{y\to\infty} f(y) = L$ and $\lim_{x\to\infty} g(x) = \infty$, then $\lim_{x\to\infty} f(g(x)) = L$.

Proof.

The first statement can be proven similarly to the continuity of the composed function f(g(x)).

As for the second point, for a given ϵ we take Y such that $|f(y) - L| < \epsilon$ for y > Y. Then, there is X such that g(x) > Y for x > X. Altogether, $|f(g(x)) - L| < \epsilon$ if x > X.

We call this the change of variables, in the sense that we can calculate $\lim_{y \to y_0} f(y)$ by calculating $\lim_{x \to x_0} f(g(x))$ and vice versa.

For $x \in \mathbb{R}$, we denote by [x] the largest integer n such that $n \le x$, and call it the **integer part of** x. For example, $[\sqrt{2}] = 1, [\pi] = 3$, and so on. In the following, $n \in \mathbb{N}$ and $x \in \mathbb{R}$.

Theorem

We have the following.

$$\bigcirc \quad \lim_{n\to\infty} \left(1-\frac{1}{n}\right)^n = e^{-1}.$$

$$Iim_{n\to\infty} \left(1+\frac{1}{n^2}\right)^n = 1$$

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$$

Note that

$$\left(1 - \frac{1}{n}\right)^{n} = \left(\frac{n-1}{n}\right)^{n} = \left(1 + \frac{1}{n-1}\right)^{-n}$$
$$= \left(1 + \frac{1}{n-1}\right)^{-1} \frac{1}{\left(1 + \frac{1}{n-1}\right)^{n-1}}$$

Note that $\frac{1}{x}$ is continuous at x = 1, e, and hence $\left(1 + \frac{1}{n-1}\right)^{-1} \to 1$ and $\frac{1}{\left(1 + \frac{1}{n-1}\right)^{n-1}} \to \frac{1}{e}$. Altogether, $\left(1 - \frac{1}{n}\right)^n = \frac{1}{e} = e^{-1}$.

▲御▶ ▲ 臣▶ ▲ 臣▶

•
$$\lim_{n\to\infty} \left(1+\frac{1}{n^2}\right)^n = \lim_{n\to\infty} \left(\left(1+\frac{1}{n^2}\right)^{n^2}\right)^{\frac{1}{n}}$$
. As
 $\lim_{n\to\infty} \left(1+\frac{1}{n^2}\right)^{n^2} = e$, this sequence is bounded by, say M . Then
 $1 < \left(1+\frac{1}{n^2}\right)^n < M^{\frac{1}{n}}$ but $M^{\frac{1}{n}} \to 1$, then by squeezing we have
 $\left(1+\frac{1}{n^2}\right)^n \to 1$.

1

イロト イヨト イヨト イ

Some notable limits

Proof.

• Note that, if $a_n \rightarrow a$, then $b_n = a_{n+1} \rightarrow a$ as well. Furthermore, if a < b < c and if $|a - x| < \epsilon$, $|c - x| < \epsilon$, then by the triangle inequality we have $-\epsilon < a - x < \epsilon$, hence $a - \epsilon < x < a + \epsilon$. Similarly, $c - \epsilon < x < c + \epsilon$, and therefore, $b - \epsilon < x < b + \epsilon$ and hence $|b - x| < \epsilon$.

We know that $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = \lim_{n\to\infty} \left(1+\frac{1}{n+1}\right)^{n+1} = e$. Let n = [x], then $n \le x < n+1$ and

$$\frac{\left(1+\frac{1}{n+1}\right)^{n+1}}{1+\frac{1}{n+1}} < \left(1+\frac{1}{x}\right)^x < \left(1+\frac{1}{n}\right)^{n+1} = \left(1+\frac{1}{n}\right)^n \cdot \left(1+\frac{1}{n}\right).$$

Note that the left-hand side and the right-hand side tend to *e*, because $1 + \frac{1}{n+1} \rightarrow 1, 1 + \frac{1}{n} \rightarrow 1$.

This means that, for a given ϵ , $\left|\frac{\left(1+\frac{1}{n+1}\right)^{n+1}}{1+\frac{1}{n+1}} - e\right| < \epsilon, \left|\left(1+\frac{1}{n}\right)^n \cdot \left(1+\frac{1}{n}\right) - e\right| < \epsilon \text{ for sufficiently}$ large n. This implies that $\left|\left(1+\frac{1}{x}\right)^x - e\right| < \epsilon$. Altogether, this says that, if x is sufficiently large, then we apply this argument with n = [x], and obtain that $\left|\left(1+\frac{1}{x}\right)^x - e\right| < \epsilon$. This is $\lim_{x \to \infty} \left(1+\frac{1}{x}\right)^x = e$.

Theorem

We have the following.

•
$$\lim_{x\to 0} (1+x)^{\frac{1}{x}} = e.$$

•
$$\lim_{x \to 0} \frac{\log(1+x)}{x} = 1.$$

•
$$\lim_{x\to\infty} \left(1+\frac{t}{x}\right)^x = e^t$$

•
$$\lim_{x\to 0} \frac{e^x - 1}{x} = 1$$

• = • •

- By $\lim_{y\to\infty} (1+\frac{1}{y})^y = e$ and a change of variables $y = \frac{1}{x}$, note that $\frac{1}{x} > 0$, $\lim_{x\to 0^+} (1+x)^{\frac{1}{x}} = e$. We have $\lim_{x\to 0^-} (1+x)^{\frac{1}{x}} = e$ as well. So we have checked both the right and left limits.
- As $\log y$ is continuous at y = e,

$$\lim_{x \to 0} \frac{\log(1+x)}{x} = \lim_{x \to 0} \log(1+x)^{\frac{1}{x}} = \log \lim_{x \to 0} (1+x)^{\frac{1}{x}} = \log e = 1,$$

where we used $\lim_{x\to 0} (1+x)^{\frac{1}{x}} = e$.

• Note that $\lim_{x\to\infty} (1+\frac{t}{x})^x = \lim_{x\to\infty} \left((1+\frac{t}{x})^{\frac{x}{t}} \right)^t = e^t$, where we used the continuity of $g(a) = a^t$.

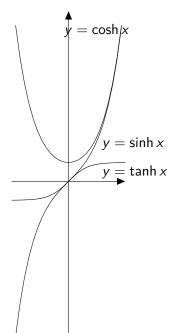
• With
$$y = e^x - 1$$
, we have $\log(y + 1) = x$ and $\lim_{x \to 0} \frac{e^x - 1}{x} = \lim_{y \to 0} \frac{y}{\log(1+y)} = 1$.

Definition

•
$$\sinh x = \frac{e^x - e^{-x}}{2}$$

• $\cosh x = \frac{e^x + e^{-x}}{2}$
• $\tanh x = \frac{\sinh x}{2}$

•
$$tann x = \frac{1}{\cosh x}$$



イロト イヨト イヨト イヨト

Lemma

- $\cosh(x + y) = \cosh x \cosh y + \sinh x \sinh y$.
- $\sinh(x + y) = \cosh x \sinh y + \sinh x \cosh y$.
- $(\cosh x)^2 (\sinh x)^2 = 1.$

Proof.

- $\cosh x \cosh y + \sinh x \sinh y = \frac{1}{4}(e^x + e^{-x})(e^y + e^{-y}) + \frac{1}{4}(e^x e^{-x})(e^y e^{-y}) = \frac{1}{4}(2e^{x+y} + 2e^{-x-y}) = \cosh(x+y).$
- analogous.
- analogous.

• • = • • = •

The hyperbolic functions

Lemma

•
$$\sinh^{-1}(x) = \log(x + \sqrt{x^2 + 1}).$$

• $\cosh^{-1}(x) = \log(x + \sqrt{x^2 - 1})$ for $x > 1$.

Proof.

۲

$$\begin{aligned} \sinh(\log(x + \sqrt{x^2 + y})) &= \frac{1}{2} \left((x + \sqrt{x^2 + 1}) - \frac{1}{x + \sqrt{x^2 + 1}} \right) \\ &= \frac{1}{2} \frac{(x + \sqrt{x^2 + 1})^2 - 1}{x + \sqrt{x^2 + 1}} \\ &= \frac{1}{2} \frac{x^2 + 2x\sqrt{x^2 + 1} + x^2 + 1 - 1}{x + \sqrt{x^2 + 1}} = x. \end{aligned}$$

• analogous.

Definition

(a) Arcsinh
$$x = \sinh^{-1}(x) = \log(x + \sqrt{x^2 + 1})$$
.

• Arccosh
$$x = \cosh^{-1}(x) = \log(x + \sqrt{x^2 - 1})$$
 for $x > 1$.

メロト メポト メヨト メヨト

• Compute
$$\lim_{n\to 0} (1+\frac{1}{n})^{n^2}$$
.
• Compute $\lim_{x\to 0} \frac{\log_a(1+x)}{x}$.
• Compute $\lim_{x\to 0} \frac{a^x-1}{x}$.
• Prove $\lim_{x\to 0} \frac{\sinh x}{x} = 1$.

- Prove $\lim_{x\to\infty} \tanh x = 1$.
- Prove $\lim_{x\to 0} \frac{\sinh x}{e^x 1} = 1$.

A D > A A > A > A