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Some notable limits

Let a € R. The function f(x) = x? defined on R satisfies x?y? = (xy)?
and is continuous.

Proof.

Note that these properties hold if f(x) = x9, where q is rational.

Let x,y > 0. For a rational g we have (xy)? = x9y9 and hence by taking
gn — a we have (xy)? = x?y?. As for continity, assume that x # y, then
take a < g € Q. We have

1f(y) — F(x)] = x|y x 2 = 1| = x?|(£)° — 1] < x?|(£)? — 1] and
limy_x | (£)? — 1| = 1 by the continuity of the rational case. Therefore, by
squeezing we have lim,_,, f(y) = f(x). O

v
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Some notable limits

Let L € R, and f is a function defined on (a,00). If for each € > 0, there
is X such that |f(x) — L| < e for x > X, then we write that
limy— 00 F(x) = L.

i 1 _ ; X
||mx_>oo % = 0. ||mX_>OO i 1.
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Some notable limits

Let f(x) defined on (a, b) and L € R. If for each € > 0 there is ¢ such that
|f(x) — L| < € for x € (a,a+ J), we denote it by lim,_, ,+ f(x), and we call
it the right limit of f at a. Similarly, we write lim,_,,- f(x) for the left
limit.

Let f(x) = signx. lim,_,o+ f(x) =1, lim_,o- f(x) = —1.

If £(x) is defined on (b, a) U (a,c), limy_,, f(x) = L exists if and only if
both the left and right limits exist and lim,_, ;+ f(x) = lim,_, ;- f(x) and
it is L. We leave the proof as an exercise.
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Left and right limits

A\

\4
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Some notable limits

Let f be a function on S, lim,_,,, f(y) = L. Assume that g is a function
on T, continuous at xo and g(xo) = yo. Then

limx_sx, F(g(x)) = limy_,, f(y) = L. Similarly, if limy,_, f(y) = L and
limy— 00 8(X) = 00, then limy_ f(g(x)) = L.

The first statement can be proven similarly to the continuity of the
composed function f(g(x)).

As for the second point, for a given € we take Y such that |f(y) — L| <€
for y > Y. Then, there is X such that g(x) > Y for x > X. Altogether,
If(g(x)) — L| <eif x> X. O

We call this the change of variables, in the sense that we can calculate
limy_y, f(y) by calculating limy_,,, f(g(x)) and vice versa.
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Some notable limits

For x € R, we denote by [x] the largest integer n such that n < x, and call
it the integer part of x. For example, [v/2] = 1, [n] = 3, and so on.

In the following, n € N and x € R.

Theorem

We have the following.
@ limyoo (1-1)" =€

n

@lmHm@+%Y=L

@ limy_oo (1 + %)X =e.
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Some notable limits

@ Note that

1 -1

Note that % is continuous at x = 1, e, and hence (1 + =3 —1
n
and W{ — %. AItogether, (1 — %) = % = e_l.
O
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Some notable limits

1
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Some notable limits

o Note that, if a, — a, then b, = a,+1 — a as well. Furthermore, if
a<b<candif |a— x| <e¢,|c— x| <eg then by the triangle
inequality we have —e < a—x < ¢ hencea—e<x < a-+e
Similarly, ¢ — e < x < ¢ + ¢, and therefore, b — € < x < b+ € and
hence |b — x| < e.

+1
We know that lim,_,~ (1 + %)n = limp 00 (1 + i>n —=e. Let

n+1
n=[x], then n<x <n+1 and

(1+ﬁ)n+1 1\ 1) e 1
) () < (e 1) = () (1 D).
1+ X n n n

n+1

Note that the Ieft—hand side and the right-hand side tend to e,
because 1+ 1 — 1, 1—|— — 1.

Ol

v
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Some notable limits

This means that, for a given e,

(1+$)n+1

1
1+ n+1

el <, ’(1 + %)n . (1 -+ %) = e‘ < ¢ for sufficiently

large n. This implies that ’(1 + %)X — e’ <e.

Altogether, this says that, if x is sufficiently large, then we apply this
X

argument with n = [x], and obtain that ’(1 + %) - e‘ <e. Thisis

limy_ o0 (1 + %)X =e.

O]

v
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Some notable limits

We have the following.

@ limy_o (1 —{—x)% —e.
o limy o m}f—xz =1

o limy oo (1 + £)* = e
e*—1 — 1.
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e By limy_,oo(1+ %)y = e and a change of variables y = 1, note that
1
1>0, lime o (L4 x)x =e.

We have limy_o— (1 + x)% = e as well. So we have checked both the
right and left limits.

@ As log y is continuous at y = e,

im log(1 + x)

x—0 X

= lim log(1 + x)* = log lim (1 4+ x)x = loge = 1
= lim log(1 + x)x = log lim (1 +x) = loge =1,

where we used limy_,o (1 + x)% =e.

X

t
o Note that limy_, (14 £)™ = limy_00 ((1 + L) ) = e!, where we
used the continuity of g(a) = at.
o With y = e* — 1, we have log(y + 1) = x and

: -1 _; y _
I|mX_>0 T = ||my_)0 w = ]_

Ol
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The hyperbolic functions

Definition
@ sinhx = ex_ze_x
@ coshx = #
@ tanhx = z;"stf(
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The hyperbolic functions

@ cosh(x + y) = cosh x cosh y + sinh x sinh y.

@ sinh(x + y) = cosh x sinh y + sinh x cosh y.
o (cosh x)? — (sinh x)? = 1.

Proof.

o cosh x coshy +sinhxsinhy = 7(eX + e ™*)(e¥ + e™) + (X —
e ¥)(er — e7) = 3(2&X1Y 4+ 2e7*7Y) = cosh(x + y).

@ analogous.

@ analogous.
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The hyperbolic functions

o sinh™!(x) = log(x + v/x2 + 1).
o cosh™!(x) = log(x + v/x2 — 1) for x > 1.

sin(log(x + /2 + y)) = 5 ((x+ VAZ+1) -
Cl(x+VXE+1)P -1

1
X+\/X2+1)

2 x4+vx2+1
1x24+2xVx2+1+x2+1-1
== = X.

2 x+vx2+1

@ analogous.

Ol
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Definition

@ Arcsinh x = sinh~}(x) = log(x + v/x2 + 1).
@ Arccosh x = cosh™}(x) = log(x 4+ v/xZ — 1) for x > 1.
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Exercises

Compute lim,_0(1 + %)"2
Ioga(l—&—x).

Compute limy_sg

. X
Compute limy_o 2 1

Prove lim,_g S'"hX =1.

Prove limy_ tanhx =1.

Prove limy 0 3% S”‘hx =1.

Lecturer: Yoh Tanimoto Mathematical Analysis | 10/2020 19/19



