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Some notable limits

Theorem
Let a ∈ R. The function f (x) = xa defined on R+ satisfies xaya = (xy)a

and is continuous.

Proof.
Note that these properties hold if f (x) = xq, where q is rational.
Let x , y > 0. For a rational q we have (xy)q = xqyq and hence by taking
qn → a we have (xy)a = xaya. As for continity, assume that x 6= y , then
take a < q ∈ Q. We have
|f (y)− f (x)| = xa|yax−a − 1| = xa ∣∣( y

x
)a − 1

∣∣ < xa ∣∣( y
x
)q − 1

∣∣ and
limy→x

∣∣( y
x
)q − 1

∣∣ = 1 by the continuity of the rational case. Therefore, by
squeezing we have limy→x f (y) = f (x).
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Some notable limits

Let L ∈ R, and f is a function defined on (a,∞). If for each ε > 0, there
is X such that |f (x)− L| < ε for x > X , then we write that
limx→∞ f (x) = L.

Example
limx→∞

1
x = 0. limx→∞

x
x−1 = 1.
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Some notable limits

Let f (x) defined on (a, b) and L ∈ R. If for each ε > 0 there is δ such that
|f (x)− L| < ε for x ∈ (a, a + δ), we denote it by limx→a+ f (x), and we call
it the right limit of f at a. Similarly, we write limx→b− f (x) for the left
limit.

Example
Let f (x) = sign x . limx→0+ f (x) = 1, limx→0− f (x) = −1.

If f (x) is defined on (b, a) ∪ (a, c), limx→a f (x) = L exists if and only if
both the left and right limits exist and limx→a+ f (x) = limx→a− f (x) and
it is L. We leave the proof as an exercise.
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Left and right limits

x

y
x

y
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Some notable limits

Lemma
Let f be a function on S, limy→y0 f (y) = L. Assume that g is a function
on T , continuous at x0 and g(x0) = y0. Then
limx→x0 f (g(x)) = limy→y0 f (y) = L. Similarly, if limy→∞ f (y) = L and
limx→∞ g(x) =∞, then limx→∞ f (g(x)) = L.

Proof.
The first statement can be proven similarly to the continuity of the
composed function f (g(x)).
As for the second point, for a given ε we take Y such that |f (y)− L| < ε
for y > Y . Then, there is X such that g(x) > Y for x > X . Altogether,
|f (g(x))− L| < ε if x > X .

We call this the change of variables, in the sense that we can calculate
limy→y0 f (y) by calculating limx→x0 f (g(x)) and vice versa.
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Some notable limits

For x ∈ R, we denote by [x ] the largest integer n such that n ≤ x , and call
it the integer part of x . For example, [

√
2] = 1, [π] = 3, and so on.

In the following, n ∈ N and x ∈ R.

Theorem
We have the following.

(i) limn→∞
(

1− 1
n

)n
= e−1.

(ii) limn→∞
(

1 + 1
n2

)n
= 1.

(iii) limx→∞
(

1 + 1
x

)x
= e.
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Some notable limits

Proof.
Note that (

1− 1
n

)n
=
(n − 1

n

)n
=
(

1 + 1
n − 1

)−n

=
(

1 + 1
n − 1

)−1 1(
1 + 1

n−1

)n−1

Note that 1
x is continuous at x = 1, e, and hence

(
1 + 1

n−1

)−1
→ 1

and 1
(1+ 1

n−1 )n−1 → 1
e . Altogether,

(
1− 1

n

)n
= 1

e = e−1.
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Some notable limits

Proof.

limn→∞
(

1 + 1
n2

)n
= limn→∞

((
1 + 1

n2

)n2) 1
n
. As

limn→∞
(

1 + 1
n2

)n2

= e, this sequence is bounded by, say M. Then

1 <
(

1 + 1
n2

)n
< M 1

n but M 1
n → 1, then by squeezing we have(

1 + 1
n2

)n
→ 1.
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Some notable limits

Proof.
Note that, if an → a, then bn = an+1 → a as well. Furthermore, if
a < b < c and if |a − x | < ε, |c − x | < ε, then by the triangle
inequality we have −ε < a − x < ε, hence a − ε < x < a + ε.
Similarly, c − ε < x < c + ε, and therefore, b − ε < x < b + ε and
hence |b − x | < ε.
We know that limn→∞

(
1 + 1

n

)n
= limn→∞

(
1 + 1

n+1

)n+1
= e. Let

n = [x ], then n ≤ x < n + 1 and(
1 + 1

n+1

)n+1

1 + 1
n+1

<

(
1 + 1

x

)x
<

(
1 + 1

n

)n+1
=
(

1 + 1
n

)n
·
(

1 + 1
n

)
.

Note that the left-hand side and the right-hand side tend to e,
because 1 + 1

n+1 → 1, 1 + 1
n → 1.
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Some notable limits

Proof.
This means that, for a given ε,∣∣∣∣(1+ 1

n+1 )n+1

1+ 1
n+1

− e
∣∣∣∣ < ε,

∣∣∣(1 + 1
n

)n
·
(

1 + 1
n

)
− e

∣∣∣ < ε for sufficiently

large n. This implies that
∣∣∣(1 + 1

x

)x
− e

∣∣∣ < ε.
Altogether, this says that, if x is sufficiently large, then we apply this
argument with n = [x ], and obtain that

∣∣∣(1 + 1
x

)x
− e

∣∣∣ < ε. This is

limx→∞
(

1 + 1
x

)x
= e.
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Some notable limits

Theorem
We have the following.

limx→0 (1 + x)
1
x = e.

limx→0
log(1+x)

x = 1.
limx→∞

(
1 + t

x
)x = et .

limx→0
ex−1

x = 1.
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Proof.
By limy→∞(1 + 1

y )y = e and a change of variables y = 1
x , note that

1
x > 0, limx→0+ (1 + x)

1
x = e.

We have limx→0− (1 + x)
1
x = e as well. So we have checked both the

right and left limits.
As log y is continuous at y = e,

lim
x→0

log(1 + x)
x = lim

x→0
log(1 + x)

1
x = log lim

x→0
(1 + x)

1
x = log e = 1,

where we used limx→0 (1 + x)
1
x = e.

Note that limx→∞
(
1 + t

x
)x = limx→∞

((
1 + t

x
) x

t
)t

= et , where we
used the continuity of g(a) = at .
With y = ex − 1, we have log(y + 1) = x and
limx→0

ex−1
x = limy→0

y
log(1+y) = 1.
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The hyperbolic functions

Definition
sinh x = ex−e−x

2

cosh x = ex +e−x

2
tanh x = sinh x

cosh x
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y = sinh x

y = tanh x

y = cosh x
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The hyperbolic functions

Lemma
cosh(x + y) = cosh x cosh y + sinh x sinh y.
sinh(x + y) = cosh x sinh y + sinh x cosh y.
(cosh x)2 − (sinh x)2 = 1.

Proof.
cosh x cosh y + sinh x sinh y = 1

4(ex + e−x )(ey + e−y ) + 1
4(ex −

e−x )(ey − e−y ) = 1
4(2ex+y + 2e−x−y ) = cosh(x + y).

analogous.
analogous.
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The hyperbolic functions

Lemma
sinh−1(x) = log(x +

√
x2 + 1).

cosh−1(x) = log(x +
√

x2 − 1) for x > 1.

Proof.

sinh(log(x +
√

x2 + y)) = 1
2

(
(x +

√
x2 + 1)− 1

x +
√

x2 + 1

)
= 1

2
(x +

√
x2 + 1)2 − 1

x +
√

x2 + 1

= 1
2

x2 + 2x
√

x2 + 1 + x2 + 1− 1
x +
√

x2 + 1
= x .

analogous.
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Definition
(i) Arcsinh x = sinh−1(x) = log(x +

√
x2 + 1).

(ii) Arccosh x = cosh−1(x) = log(x +
√

x2 − 1) for x > 1.
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Exercises

Compute limn→0(1 + 1
n )n2 .

Compute limx→0
loga(1+x)

x .
Compute limx→0

ax−1
x .

Prove limx→0
sinh x

x = 1.
Prove limx→∞ tanh x = 1.
Prove limx→0

sinh x
ex−1 = 1.
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