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Some properties of exponential functions

For 0 < a we have introduced a* for real numbers x, by taking
Xn € Q,x, = x and 3% := lim,,_5 3.

We have the following.

@ Fora> 1, f(x) = a* is monotonically increasing and continuous.
@ ¥ = a1,

o (a¥) =av.
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@ Let x < y. Then we take sequences x, — x, y, — ¥, where
Xn, ¥Yn € Q. Then for sufficiently large n we have x, < z1 < 2 < yj
where z1, 20 € QQ, and therefore, a* < a9 < a2 < &Y.
As for continuity, let us take x, x, € R and x, — x. Then there is
yn € Q such that |a*" — 27| < % and |x, — yn| < % Then y, — x as
well, hence a¥7 — a*, while 2" — % << a4+ % therefore,
a‘n — a*.
o Take sequences x, — X, ¥Yn — ¥, Xn, ¥n € Q. We have
ana¥ = 2% and x, + y, — x + y, therefore, a¥a¥ = a*7.

o Take sequences x, — X, ¥n — ¥, Xn, Yn € Q. For fixed m, we have
(a*)Ym — (a¥)¥ and this is equal to ™ — 2" Now we take the
limit m — oo and obtain (&)Y = a* by continuity.
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Napier's number

Let us introduce Napier's number. We put

1\" 1\ 1
w=(147)  E=(1+7) =(1+3)e
n n n

For x > —1, we have (1 + x)" > 1+ nx for all n.

Proof.
By induction. With n =0,1, we have (1+x)°=1=1and 1+ x =1+x.
Assuming that this holds for n, we expand it and use 1 4+ 2n + nx > 0:
(14 x)"2 = (14 x)"(1 +x)?> > (1 + nx)(1 + x)?
=1+ nx +2x + x>+ 2nx* + nx®
=14+ (n+2)x+x3(1+2n+nx) > 1+ (n+2)x.

This completes the induction for even and odd numbers. [
Lecturer: Yoh Tanimoto Mathematical Analysis | 14/10/2020 4/18



Napier's number

en and E, converge to the same number e.

The proof of this theorem requires several steps.
@ Wehavel < e, < E,. Indeed, 1 <1+ % and this follows easily.

@ e, is monotinically increasing, that is, e, < ep41. Indeed,

@ _ Gty Oedr
)nl

N L
_(1+%)”'(";1) 1)” (-2
— n—1 1

(1 + l)n . (n— ),,,1

n
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o Similarly E, is monotonically decreasing. Indeed.

E, _(+p™ 145 0 143

Enfl (1 = nil)n (nﬁl)n(nil)n (,,2nil)n
1 1 1

_ 14y 14 _1+n
+ Ay = Ty~ 1t

@ Now we have that {e,} and {E,} are convergent. Note also that
E,—en=en(l+ % —1)=ep- % — 0, because e, is bounded, say by
M, and £ — 0, therefore, E, — e, < % — 0.
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Napier's number

We call this limit e, the Napier’s number (sometimes Euler’s number).
The function €* plays a special role in analysis, as we will see in the
coming lectures.
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Let a > 0,a # 1. We have defined the exponential function f(x) = a*,
and we have seen that it is continuous, monotonically increasing if a > 1.
If 0 < a <1, itis monotonically decreasing.

Let a > 1. We know that a” diverges, and hence a="” — 0. By the
intermediate value theorem, we see that the range of a* is R;. Now we
can define the inverse function (everything is analogous for 0 < a < 1).
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Logarithm

Definition

The logarithm base a of x log, x is the inverse function f(y) = a”:
log, : Ry — R and it holds that

log, a* = x = a'°8*,

We denote log x = log, x = In x.

log, 8 = 3,logg 3 = %
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Logarithm

y = logx

\4
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Logarithm

We say that limy_,~ f(x) = oo if for each Y > 0 there is X > 0 such that
if x > X then f(x) > Y. Similarly, we define limy_, 1 f(x) = fo0.

Theorem

Leta,b>0,a#1# b, x,y >0,t € R. Then
log,a=1,log,1=0.

log.(xy) = log, x + log, y.

log,(x*) = tlog, x.

log,-1 x = —log, x.

log, x = log, b - logy, x.

© ©6 6 6 €6

Let a > 1. Then f(x) = log, x is monotonically increasing and
continuous. log, x > 0 if and only if x > 1.

{e3

@ Leta>1l,a>0. Then limy_ oo IOZT = +00.
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Logarithm

@ a'=a,a%=1. Therefore, log,a =1,log,1=0.
@ a'98axtlogsy — glogaxglogsy — xy Therefore,
log,(xy) = log, x + log, y.
Q gtlog.x — (alogax)t — xt
(1/3)—|ogax _ 1/a—|ogax — 1/(a|ogax)—1 — 1/X—1 = x.
Q@ glog, b-logy x — (aloga b)logbx — plogrx —

©
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Logarithm

@ This follows from the monotonicity and continuity of a*.

n—1\ya
@ First we show that lim,_ I(oagw = o0o. This is straightforward
=1 n—1)a i o u u
I(: )n = "% 5 5. To show the given limit, we take for
g.(a")

y>0né&Nsuchthat n—1<y < n. Then lg‘:):y > fj;}?,,j
hence the left-hand side grows as y grows. That is,

AT
limy_ o0 % = oo. Finally, recall that x = a” is monotonic, and x
grows infinitely as y grows. That is, given Z > 0, there is Y > 0 such

that (2% > Z for y > Y, which implies that =X > Z for x > a".

log, a¥ log, x
= o @
This means that limy o o = 00.
g, X

because

and
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Logarithm is extremely useful in natural science. When we have a data
which grows exponentially, we can take the log of the value and plot it to
a plane, then they lie on a straight line. The exponent can be read from
the slope of the line (this is called the logarithmic scale). In that case, the

logarithm base 10 is often used.

14/10/2020 14 /18

Lecturer: Yoh Tanimoto Mathematical Analysis |



=log2-x
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When y = xP, then we can consider z = log y, w = log x, hence

e =y,e” =y. We have e = y = xP = (e")P = e"P. By taking log of
both side, we obtain z = pw. That is, by the log-log plot, a power relation
y = xP is translated into a linear relation z = pw.

Lecturer: Yoh Tanimoto Mathematical Analysis |

14/10/2020  16/18



<
Il
x
[
N
Il
(NN

v
v

Figure: The log-log plot of the relation y = x”.
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Exercises

Compute log3z(81), logg; 3.

Compute (1+ 1)3.

If y = Ce?, what is the relation between z = log y and x?

If y = CxP, what is the relation between z = log y and w = log x?
Calculate the integer part of log;((232720).

Calculate the integer part of log,(13567).
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