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Some properties of exponential functions

For 0 < a we have introduced ax for real numbers x , by taking
xn ∈ Q, xn → x and ax := limn→∞ axn .

Theorem
We have the following.

For a > 1, f (x) = ax is monotonically increasing and continuous.
axay = ax+y .
(ax )y = axy .
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Proof.
Let x < y . Then we take sequences xn → x , yn → y , where
xn, yn ∈ Q. Then for sufficiently large n we have xn < z1 < z2 < yn
where z1, z2 ∈ Q, and therefore, ax ≤ az1 < az2 ≤ ay .
As for continuity, let us take x , xn ∈ R and xn → x . Then there is
yn ∈ Q such that |axn − ayn | < 1

n and |xn − yn| < 1
n . Then yn → x as

well, hence ayn → ax , while ayn − 1
n < axn < ayn + 1

n , therefore,
axn → ax .
Take sequences xn → x , yn → y , xn, yn ∈ Q. We have
axnayn = axn+yn , and xn + yn → x + y , therefore, axay = ax+y .
Take sequences xn → x , yn → y , xn, yn ∈ Q. For fixed m, we have
(axn )ym → (ax )ym and this is equal to axnym → axym . Now we take the
limit m→∞ and obtain (ax )y = axy by continuity.

Lecturer: Yoh Tanimoto Mathematical Analysis I 14/10/2020 3 / 18



Napier’s number
Let us introduce Napier’s number. We put

en =
(

1 + 1
n

)n
, En =

(
1 + 1

n

)n+1
=

(
1 + 1

n

)
en

Lemma
For x ≥ −1, we have (1 + x)n ≥ 1 + nx for all n.

Proof.
By induction. With n = 0, 1, we have (1 + x)0 = 1 = 1 and 1 + x = 1 + x .
Assuming that this holds for n, we expand it and use 1 + 2n + nx ≥ 0:

(1 + x)n+2 = (1 + x)n(1 + x)2 ≥ (1 + nx)(1 + x)2

= 1 + nx + 2x + x2 + 2nx2 + nx3

= 1 + (n + 2)x + x2(1 + 2n + nx) ≥ 1 + (n + 2)x .

This completes the induction for even and odd numbers.
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Napier’s number

Theorem
en and En converge to the same number e.

Proof.
The proof of this theorem requires several steps.

We have 1 < en < En. Indeed, 1 < 1 + 1
n , and this follows easily.

en is monotinically increasing, that is, en < en+1. Indeed,

en
en−1

=
(1 + 1

n )n

(1 + 1
n−1)n−1 =

(1 + 1
n )n

( n
n−1)n−1 = (1 + 1

n )n · (n−1
n )n−1

=
(1 + 1

n )n · (n−1
n )n

n−1
n

=
(1 + 1

n )n · (1− 1
n )n

n−1
n

=
(1− 1

n2 )n

n−1
n

≥
1− 1

n
1− 1

n
= 1.
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Proof.
Similarly En is monotonically decreasing. Indeed.

En
En−1

=
(1 + 1

n )n+1

(1 + 1
n−1)n =

1 + 1
n

( n
n−1)n( n

n+1)n =
1 + 1

n
( n2

n2−1)n

=
1 + 1

n
(1 + 1

n2−1)n ≤
1 + 1

n
1 + n

n2−1
<

1 + 1
n

1 + 1
n

= 1.

Now we have that {en} and {En} are convergent. Note also that
En − en = en(1 + 1

n − 1) = en · 1
n → 0, because en is bounded, say by

M, and 1
n → 0, therefore, En − en ≤ M

n → 0.

Lecturer: Yoh Tanimoto Mathematical Analysis I 14/10/2020 6 / 18



Napier’s number

We call this limit e, the Napier’s number (sometimes Euler’s number).
The function ex plays a special role in analysis, as we will see in the
coming lectures.
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Logarithm

Let a > 0, a 6= 1. We have defined the exponential function f (x) = ax ,
and we have seen that it is continuous, monotonically increasing if a > 1.
If 0 < a < 1, it is monotonically decreasing.
Let a > 1. We know that an diverges, and hence a−n → 0. By the
intermediate value theorem, we see that the range of ax is R+. Now we
can define the inverse function (everything is analogous for 0 < a < 1).
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Logarithm

Definition
The logarithm base a of x loga x is the inverse function f (y) = ay :
loga : R+ 7−→ R and it holds that

loga ax = x = aloga x .

We denote log x = loge x = ln x .

Example
log2 8 = 3, log9 3 = 1

2 .
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Logarithm

y = log x

y = ex
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Logarithm

We say that limx→∞ f (x) =∞ if for each Y > 0 there is X > 0 such that
if x > X then f (x) > Y . Similarly, we define limx→±∞ f (x) = ±∞.

Theorem
Let a, b > 0, a 6= 1 6= b, x , y > 0, t ∈ R. Then

(i) loga a = 1, loga 1 = 0.
(ii) loga(xy) = loga x + loga y.
(iii) loga(x t) = t loga x.
(iv) loga−1 x = − loga x.
(v) loga x = loga b · logb x.
(vi) Let a > 1. Then f (x) = loga x is monotonically increasing and

continuous. loga x > 0 if and only if x > 1.
(vii) Let a > 1, α > 0. Then limx→+∞

xα

loga x = +∞.
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Logarithm

Proof.
(i) a1 = a, a0 = 1. Therefore, loga a = 1, loga 1 = 0.
(ii) aloga x+loga y = aloga xaloga y = xy . Therefore,

loga(xy) = loga x + loga y .
(iii) at loga x = (aloga x )t = x t .
(iv) (1/a)− loga x = 1/a− loga x = 1/(aloga x )−1 = 1/x−1 = x .
(v) aloga b·logb x = (aloga b)logb x = blogb x = x .
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Logarithm

Proof.
(i) This follows from the monotonicity and continuity of ax .
(ii) First we show that limn→∞

(an−1)α

loga(an) =∞. This is straightforward

because (an−1)α

loga(an) = a(n−1)α

n →∞. To show the given limit, we take for

y > 0 n ∈ N such that n − 1 ≤ y < n. Then (ay )α

loga ay >
(an−1)α

loga(an) , and
hence the left-hand side grows as y grows. That is,
limy→∞

(ay )α

loga ay =∞. Finally, recall that x = ay is monotonic, and x
grows infinitely as y grows. That is, given Z > 0, there is Y > 0 such
that (ay )α

loga ay > Z for y > Y , which implies that xα

loga x > Z for x > aY .
This means that limx→∞

xα

loga x =∞.
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Logarithm

Logarithm is extremely useful in natural science. When we have a data
which grows exponentially, we can take the log of the value and plot it to
a plane, then they lie on a straight line. The exponent can be read from
the slope of the line (this is called the logarithmic scale). In that case, the
logarithm base 10 is often used.
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Logarithm

y = log(2x ) = log 2 · x

y = log(3x ) = log 3 · x

y = 3x

y = 2x
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Logarithm

When y = xp, then we can consider z = log y ,w = log x , hence
ez = y , ew = y . We have ez = y = xp = (ew )p = ewp. By taking log of
both side, we obtain z = pw . That is, by the log-log plot, a power relation
y = xp is translated into a linear relation z = pw .
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y = x 1
3

y = x2

z = w
3

w = 2w

Figure: The log-log plot of the relation y = xp.
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Exercises

Compute log3(81), log81 3.
Compute (1 + 1

3)3.
If y = Ceax , what is the relation between z = log y and x?
If y = Cxp, what is the relation between z = log y and w = log x?
Calculate the integer part of log10(232720).
Calculate the integer part of log2(13567).
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