
Mathematical Analysis I: Lecture 13

Lecturer: Yoh Tanimoto

12/10/2020
Start recording...



Exponential functions

For a > 0 and p, q ∈ N, we have defined a
p
q . Then the natural question

arises whether ax can be defined for real numbers x .
For a fixed a > 0, we can consider f (x) = ax as a function defined on the
set of rational numbers Q.
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Exponential functions

Lemma
We have the following.

For p, q, r , s ∈ N, we have a
p
q a r

s = a
p
q + r

s .
For p, q, r , s ∈ N, we have (a

p
q ) r

s = a
pr
qs .

If a > 1, then f (x) = ax is monotonically increasing (as a function on
Q).
If 0 < a < 1, then f (x) = ax is monotonically decreasing.

Lecturer: Yoh Tanimoto Mathematical Analysis I 12/10/2020 3 / 17



Proof.
Recall that we have a

p
q = a

ps
qs and a r

s = a
qr
qs , and hence

a
p
q a

r
s = a

ps
qs a

qr
qs = (a

1
qs )ps(a

1
qs )qr = (a

1
qs )ps+qr = a

ps+qr
qs = a

p
q + r

s .

We will prove this as an exercise.
Let us take a > 1. First, for any q ∈ N, a

1
q > 1, indeed, if a

1
q ≤ 1, we

would have a = (a
1
q )q ≤ 1, contradiction.

If x1, x2 ∈ Q and x1 < x2, we may assume that x1 = p
q , x2 = r

q and
p < r . Then

ax1 = a
p
q = (a

1
q )p < (a

1
q )r = a

r
q = ax2 .

The case 0 < a < 1 is similar.
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Exponential functions

We would like to define ax by limn→∞ axn , where xn ∈ Q and xn → x ∈ R.
For this purpose, we need some properties of sequences.

Lemma
If an ≤ bn and an → L, bn → M, then L ≤ M.

Proof.
Consider bn − an ≥ 0. We have bn − an → M − L ≥ 0, hence M ≥ L.
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Exponential functions

We write an →∞ if for any x ∈ R there is N such that an > x for n > N.

Theorem

Let an ≤ bn ≤ cn be three sequences. If an → L and cn → L, then bn → L.
Similarly, if an →∞, then also bn →∞.

Proof.
For a given ε > 0, we take N such that for n > N it holds that
|an − L| < ε and |cn − L| < ε. For a fixed n > N, this means that
L− ε < an ≤ bn ≤ an < L + ε, and hence |bn − L| < ε. This means that
bn → L.
If an →∞, then for a given x there is N such that x < an ≤ bn, hence
bn →∞.
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Exponential functions

For a statement like “there is N such that for n > N...” we say simply that
“for sufficiently large n...”.

Theorem
We have the following.

For a > 1, p ∈ N, we have an

np diverges.

It holds that n 1
n → 1.

For a > 1, we have a 1
n → 1.
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Proof.
Let us consider first p = 1. Then, writing a = 1 + y with y > 0, we
have, for n ≥ 2,

an = (1 + y)n =
n∑

k=0

(
n
k

)
1kyn−k > 1 + n(n − 1)

2 y2,

and hence an

n > (n−1)y2

2 . As (n−1)y2

2 →∞, so does it hold an

n →∞.
For a general p ∈ N, we take a

1
p , then 1 < a

1
p and a

n
p

n →∞, hence
an

np =
(

a
n
p

n

)p
→∞.
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Proof.
Let ε > 0. We need prove that n 1

n < 1 + ε for sufficiently large n.
Equivalently, n < (1 + ε)n. This follows from the previous point that
(1+ε)n

n →∞, in particular, (1+ε)n

n > 1 for sufficiently large n.

1 < a 1
n < n 1

n for a < n, therefore the claim follows from the previous
Theorem.
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Cauchy sequences

Definition
A sequence an is said to be a Cauchy sequence if for each ε > 0 there is
N ∈ N such that |am − an| < ε for m, n > N.

Differently from the convergence to a number L, this says that two
elements in the sequence are close to each other for large enough m, n.

Lemma

A sequence an is convergent if and only if it is a Cauchy sequence.

Proof.
If an → L, then for any ε > 0 we can take N such that |an − L| < ε

2 for
n > N, therefore, if n,m > N, then |am − L| < ε

2 as well and hence
|am − an| ≤ |am − L|+ |L− an| < ε.
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Proof.
Conversely, if an is Cauchy, then it is bounded. Indeed, we take N such
that |am − aN+1| < 1, then this means that |am| < |aN+1|+ 1. Then we
can take the largest number among |a1|, · · · , |aN |, |aN+1|+ 1 as a bound.
Next, we consider the sequence

bn = inf{ak : k ≥ n}.

This is well-defined because {ak : k ≥ n} is bounded. Furthermore, this
sequence is increasing because {ak : k ≥ n + 1} ⊃ {ak : κ ≥ n}. Therefore,
bn converges to some number L. Similarly, with cn = sup{ak : k ≥ n}, this
is bounded and decreasing, hence converges to M.
Note that bn ≤ an ≤ cn, therefore, L ≤ M. Actually, we have L = M.
Indeed, for given ε > 0, we can find sufficiently large `,m, n such that
|cn −M| < ε

5 , |a` − cn| < ε
5 , |bn − L| < ε

5 , |am − bn| < ε
5 and |a` − am| < ε

5 .
This implies that |M − L| < ε for arbitrary ε > 0, hence it must hold
M = L. Now, as bn, cn → L = M and bn ≤ an ≤ cn, we have an → L by
the previous Theorem.
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Cauchy sequences

ε

sup{ak : k ≥ 5}

inf{ak : k ≥ 6}

Figure: A Cauchy sequence.
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Exponential functions

Finally, we can define ax for all real number x .

Theorem
Let a > 0, xn ∈ Q, xn → x. Then axn converges. If yn ∈ Q, yn → x, then
limn→∞ axn = limn→∞ ayn .

Proof.
Note that {xn} is bounded, hence {axn} is bounded as well, say by M,
because the exponential function on Q is monotonic. We show that axn is
convergent. To see this, it is enought to see that axn is Cauchy by the
previous Lemma.
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Proof.
For a given ε > 0, we take δ > 0 such that |az − 1| < ε

M for 0 < z < δ.
For sufficiently large m, n, we have |xm − xn| < δ and in that case,

|axm − axn | = |axm ||1− axn−xm | ≤ M|1− axn−xm | < M ε

M = ε.

This means that {axn} is a Cauchy sequence, and hence it converges to a
certain real number, which we call ax .
If {yn} is another sequence converging to x , then we can consider a
further new sequence x1, y1, x2, y2, · · · , and this converges to some
number. But the subsequence {xn} converges to ax , and hence the whole
sequence and hence {yn} must converge to ax as well.
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Exponential functions

As we said in the proof, for an arbitrary real number x ∈ R, we define the
exponential function by

ax := lim
n→∞

axn , where xn ∈ Q, xn → x .

The exponential functions appear in various natural phenomena. It
happens typically when we consider a collection of objects that increase or
decrease independently (such as colonies of bacteria, radioactive nuclei,
and so on).
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Exponential functions

y = 2xy = 3x

y = 0.7x
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Exercises

Prove that for p, q, r , s ∈ N, we have (a
p
q ) r

s = a
pr
qs .

Let an = (−1)n

n . Determine sup{ak : k ≥ n} and inf{ak : k ≥ n}.
Compute 2x for x = 1, 2, 3, 4, 1

2 ,
3
2 .

Compute (1
9)x for x = 1, 2, 3, 1

2 ,
3
2 .

Imagine that there is a pond and the leaves of lotus doubles each day.
If the pond is completely filled on day 100, when is the pond half
filled?
Rewrite 2ax in a form bx for some b > 0.
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