Mathematical Analysis I: Lecture 12

Lecturer: Yoh Tanimoto

09/10/2020 Start recording...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Exercises

< □ > < □ > < □ > < □ > < □ >

Let $a_n = \frac{1}{\sqrt{\sqrt{n}}}$ and $\epsilon = 0.01$. Find N such that for n > N it holds $|a_n| < \epsilon$.

・ 一下・ ・ 三 ト ・

Let
$$a_n = \frac{1}{\sqrt{\sqrt{n}}}$$
 and $\epsilon = 0.01$. Find *N* such that for $n > N$ it holds $|a_n| < \epsilon$.
Solution. Note that $\sqrt{\sqrt{10000000^{-1}}} = \sqrt{\sqrt{0.00000001}} = 0.01$, hence if $n > 100000000$, then $\frac{1}{\sqrt{\sqrt{n}}} < \frac{1}{\sqrt{\sqrt{100000000}}} = 0.01$. We can take $N = 100000000$.

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Let $a_n = \frac{1}{2^n}$ and $\epsilon = 0.00001$. Find N such that for n > N it holds $|a_n| < \epsilon$.

• • = • •

Let $a_n = \frac{1}{2^n}$ and $\epsilon = 0.00001$. Find *N* such that for n > N it holds $|a_n| < \epsilon$. Solution. Note that $2^{17} = 131072 > 100000$, hence $\frac{1}{2^{17}} < \frac{1}{100000} = 0.00001$. As $\frac{1}{2^n} > \frac{1}{2^{n+1}}$, we can take N = 17. Show that a constant sequence $a_n = C \in \mathbb{R}$ is convergent.

∃ >

Show that a constant sequence $a_n = C \in \mathbb{R}$ is convergent. Solution. For any given $\epsilon > 0$ we can take N = 1 and then for any n > 1 we have $|a_n - C| = |C - C| = 0 < \epsilon$.

A 3 > 4

Tell whether $\{a_n\}$ converges, and if it does, compute the limit $a_n = \frac{1}{1 + \frac{1}{a}}$.

· ∢ /□ ▶ ∢ 글 ▶ ∢

Tell whether $\{a_n\}$ converges, and if it does, compute the limit $a_n = \frac{1}{1+\frac{1}{n}}$. Solution. $\frac{1}{n}$ converges to 0, and $1 + \frac{1}{n}$ converges to 1 (sum), and $\frac{1}{1+\frac{1}{n}}$ converges to $\frac{1}{1} = 1$ (quotient with nonzero denominator). Tell whether $\{a_n\}$ converges, and if it does, compute the limit $a_n = \frac{n}{1+n}$.

Tell whether $\{a_n\}$ converges, and if it does, compute the limit $a_n = \frac{n}{1+n}$. Solution. Note that $\frac{n}{n+1} = \frac{1}{1+\frac{1}{n}}$, hence this converges to 1 by the previous problem.

Tell whether $\{a_n\}$ converges, and if it does, compute the limit $a_n = \frac{n^3 + n^2 + 4}{n^3 + 100}$.

▲ 伺 ▶ ▲ 三 ▶ ▲

Tell whether $\{a_n\}$ converges, and if it does, compute the limit $a_n = \frac{n^3 + n^2 + 4}{n^3 + 100}$. Solution. Note that $\frac{n^3 + n^2 + 4}{n^3 + 100} = \frac{1 + \frac{1}{n} + \frac{4}{n^2}}{1 + \frac{100}{n^3}}$. The numerator tends to 1 and the denominator tends to 1 as well, therefore, $a_n \to 1$. Let $x = 0.12341234\cdots$. Represent x as a rational number.

< □ > < 同 >

→ ∃ →

Let $x = 0.12341234\cdots$. Represent x as a rational number. Solution. x is approximated by

$$0.1 + 0.02 + 0.003 + 0.0004 + \dots = \sum_{k=1}^{n} 1234 \cdot 10000^{-k}$$
$$= \frac{1234(1 - 10000^{-n})}{1 - 10000}$$
$$\rightarrow \frac{1234}{10000 - 1} = \frac{1234}{9999}.$$

-

★ ∃ ►

Compute $\lim_{x\to 2} x^2$.

イロト イヨト イヨト イヨト

Compute $\lim_{x\to 2} x^2$. Solution. We have seen that f(x) = x is continuous, therefore, $\lim_{x\to 2} x = 2$ and with $g(x) = x \cdot x$ we have $\lim_{x\to 2} x^2 = 2 \cdot 2 = 4$.

Compute $\lim_{x\to 1} \frac{x+2}{x-3}$.

イロト イヨト イヨト イヨ

Compute $\lim_{x\to 1} \frac{x+2}{x-3}$. Solution. It is easy to see that f(x) = x + 2 and g(x) = x - 3 are continuous, therefore, the quotient $\frac{x+2}{x-3}$ is continuous as long as $x \neq 3$. That is, $\lim_{x\to 1} \frac{x+2}{x-3} = \frac{\lim_{x\to 1} x+2}{\lim_{x\to 1} x-3} = \frac{3}{-2} = -\frac{3}{2}$.

Compute
$$\lim_{x\to -1} \frac{x^2+3x+2}{x^2-1}$$
.

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ →

Compute $\lim_{x\to -1} \frac{x^2+3x+2}{x^2-1}$. Solution. As it is written, the denominator tends to 0 as $x \to -1$. But actually we have $\frac{x^2+3x+2}{x^2-1} = \frac{(x+2)(x+1)}{(x-1)(x+1)} = \frac{x+2}{x-1}$ for $x \neq -1$. Therefore,

$$\lim_{x \to -1} \frac{x^2 + 3x + 2}{x^2 - 1} = \lim_{x \to -1} \frac{x + 2}{x - 1} = \frac{1}{-2} = -\frac{1}{2}.$$

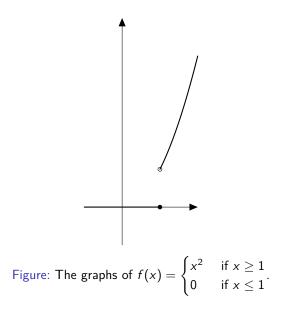
Let
$$f(x) = \begin{cases} x^2 & \text{if } x \ge 1 \\ 0 & \text{if } x \le 1 \end{cases}$$
. Is f continuous or not? If not, where is it not continuous?

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶

Let $f(x) = \begin{cases} x^2 & \text{if } x \ge 1 \\ 0 & \text{if } x \le 1 \end{cases}$. Is f continuous or not? If not, where is it not

continuous?

Solution. We know that x^2 and 0 are continuous for x > 1 and x < 1, respectively. The problem is at x = 1. If $x_n > 1, x_n \rightarrow 1$, then $f(x_n) = x_n^2 \rightarrow 1$, but if $x_n < 1, x_n \rightarrow 1$, then $f(x_n) = 0 \rightarrow 0$, and they do not conincide. Hence f is not continuous at x = 1.



→
≥
>

>

</

イロト イロト イヨト イ

Let
$$f(x) = \begin{cases} \frac{x^2+3x+2}{x^2-1} & \text{for } x \neq 1, -1 \\ -\frac{1}{2} & \text{for } x = -1 \end{cases}$$
, defined on $\mathbb{R} \setminus \{1\}$. Is f continuous or not? If not, where is it not continuous?

Lecturer: Yoh Tanimoto

09/10/2020 15/24

▲口▶▲□▶▲目▶▲目▶ 目 のへで

Let $f(x) = \begin{cases} \frac{x^2+3x+2}{x^2-1} & \text{for } x \neq 1, -1 \\ -\frac{1}{2} & \text{for } x = -1 \end{cases}$, defined on $\mathbb{R} \setminus \{1\}$. Is f continuous or not? If not, where is it not continuous? Solution. As we saw before, $\frac{x^2+3x+2}{x^2-1} = \frac{x+2}{x-1}$ and $\lim_{x \to -1} \frac{x^2+3x+2}{x^2-1} = -\frac{1}{2}$. As $f(-1) = -\frac{1}{2}$ by definition, f is continuous at x = -1. It is also continuous at $x \neq 1$. Therefore, it is continuous on $\mathbb{R} \setminus \{1\}$ (not defined at x = 1).

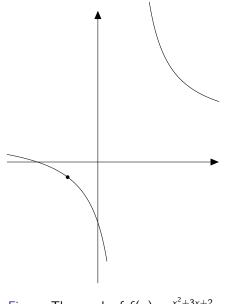


Figure: The graph of
$$f(x) = \frac{x^2+3x+2}{x^2-1}$$
.

Lecturer: Yoh Tanimoto

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 二百

Let $f(x) = x^4 + 3x^3 - x - 2$. Show that the equation f(x) = 0 has at least two solutions.

A D > A A > A > A

Let $f(x) = x^4 + 3x^3 - x - 2$. Show that the equation f(x) = 0 has at least two solutions.

Solution. Note that f(0) = -2, f(1) = 1. Hence by the intermediate value theorem there is $x_1 \in (-2, 1)$ such that $f(x_1) = 0$. Similarly,

f(0) = -2, f(-3) = 1. Hence by the intermediate value theorem there is $x_2 \in (-3, 0)$ such that $f(x_2) = 0$.

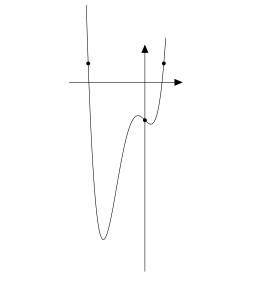


Figure: The graphs of $f(x) = x^4 + 3x^3 - x - 2$.

Lecturer: Yoh Tanimoto

09/10/2020 18/24

Compute $\lim_{x\to 1} \sqrt{x + 3\sqrt{x}}$.

イロト イヨト イヨト イヨト

Compute $\lim_{x\to 1} \sqrt{x + 3\sqrt{x}}$. Solution. We know that $\sqrt{x} = x^{\frac{1}{2}}$ is continuous (on $\mathbb{R}_+ \cup \{0\}$), hence $\lim_{x\to 1} \sqrt{x} = 1$. Further $x + 3\sqrt{x}$ is continuous and $\lim_{x\to 1} x + 3\sqrt{x} = 4$. Finally $\lim_{x\to 1} \sqrt{x + 3\sqrt{x}}$ is continuous (on $\mathbb{R}_+ \cup \{0\}$) and $\lim_{x\to 1} \sqrt{x + 3\sqrt{x}} = \sqrt{4} = 2$. Show that $a^{\frac{1}{n}}b^{\frac{1}{n}}=(ab)^{\frac{1}{n}}$ for $a,b\geq 0$.

Show that $a^{\frac{1}{n}}b^{\frac{1}{n}} = (ab)^{\frac{1}{n}}$ for $a, b \ge 0$. Solution. Note that $(a^{\frac{1}{n}}b^{\frac{1}{n}})^n = (a^{\frac{1}{n}})^n (b^{\frac{1}{n}})^n = ab$, hence we can take the *n*-th root of both sides.

Compute
$$\lim_{x\to 0} \frac{1-\sqrt{1-x^2}}{x^2}$$
.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - の々で

Compute $\lim_{x\to 0} \frac{1-\sqrt{1-x^2}}{x^2}$. Solution. At first sight, it would yield $\frac{0}{0}$. However, for $x \neq 0$, we have

$$\frac{1 - \sqrt{1 - x^2}}{x^2} = \frac{(1 - \sqrt{1 - x^2})(1 + \sqrt{1 - x^2})}{x^2(1 + \sqrt{1 - x^2})}$$
$$= \frac{1 - (1 - x^2)}{x^2(1 + \sqrt{1 - x^2})}$$
$$= \frac{1}{1 + \sqrt{1 - x^2}}$$

Therefore,
$$\lim_{x\to 0} \frac{1-\sqrt{1-x^2}}{x^2} = \lim_{x\to 0} \frac{1}{1+\sqrt{1-x^2}} = \frac{1}{2}$$
.

Compute
$$\lim_{x\to 0} \frac{\sqrt{1-x}-\sqrt{1+x}}{x}$$
.

▲口▶▲□▶▲目▶▲目▶ 目 のへで

Compute
$$\lim_{x\to 0} \frac{\sqrt{1-x}-\sqrt{1+x}}{x}$$
. Solution.

$$\frac{\sqrt{1-x} - \sqrt{1+x}}{x} = \frac{(\sqrt{1-x} - \sqrt{1+x})(\sqrt{1-x} + \sqrt{1+x})}{x(\sqrt{1-x} + \sqrt{1+x})}$$
$$= \frac{(1-x) - (1+x)}{x(\sqrt{1-x} + \sqrt{1+x})}$$
$$= \frac{-2}{\sqrt{1-x} + \sqrt{1+x}}$$

Therefore,
$$\lim_{x\to 0} \frac{\sqrt{1-x}-\sqrt{1+x}}{x} = \lim_{x\to 0} \frac{-2}{\sqrt{1-x}+\sqrt{1+x}} = -1.$$

▲口▶▲□▶▲目▶▲目▶ 目 のへで

Consider $f(x) = x^2$. For $\epsilon = 0.1$, find a δ which shows the continuity of f at x = 1.

Consider $f(x) = x^2$. For $\epsilon = 0.1$, find a δ which shows the continuity of f at x = 1.

Solution. Note that $(1 + y)^2 = 1 + 2y + y^2$. We need that $|2y + y^2| < 0.1$, and this is achieved with |y| < 0.04.

Consider $f(x) = x^{\frac{1}{3}}$. For $\epsilon = 0.1$, find a δ which shows the continuity of f at x = 0.

Consider $f(x) = x^{\frac{1}{3}}$. For $\epsilon = 0.1$, find a δ which shows the continuity of f at x = 0. Solution. We need that $x^{\frac{1}{3}} < 0.1$, hence x < 0.001 (and $x \ge 0$).