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Announcements

Today: Apostol Vol 1, Chapter 3.1-4.
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Decimal representation of real numbers

Now that we have defined convergence of sequences, we can make sense
of all decimal representations as real numbers.

Theorem
Let an ∈ N0 and 0 ≤ an ≤ 9. Then bn =

∑n
k=0 ak10−k converges to a real

number.

Proof.
Let bn =

∑n
k=0 ak10−k . This is nondecreasing and bounded above by

a0 + 1. By Lemma of Monday, this converges to a real number.

When the sequence converges, it converges to only one number. In this
way, we can say that a decimal representation a0.a1a2a3 · · · defines a real
number.
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Decimal representation of real numbers
Now we can prove that any repeating decimal representation gives a
rational number. For example consider 0.123123123 · · · . This can be
written as

0.1 + 0.02 + 0.003 + 0.0001 + 0.00002 + 0.000003 + · · · =
n∑

k=0
ak10−k ,

where a1 = 1, a2 = 2, a3 = 3, a4 = 1, a5 = 2, a6 = 3, · · · . It is easy to see
that this is equal to
0.123 + 0.000123 + · · · =

∑n
k=1(100a3k+1 + 10a3k+2 + a3k+3)1000−k . We

know that this sum converges and compute
n∑

k=1
(100a3k+1 + 10a3k+2 + a3k+3)1000−k = 123

n∑
k=1

1000−k

→ 123 1000−1

1− 1000−1 = 123
999 .
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Decimal representation of real numbers

Theorem
Any real number given by a repeating decimal representation is rational.

Proof.
Indeed, let us take a repeating sequence 0 ≤ an ≤ 9 as above. That is,
there is m ∈ N such that an+m = am. Then, for j , ` ∈ N,

j∑̀
k=0

ak = a0 +
∑̀
j=1

10−jm
m∑

k=1
ak10m−k

= a0 + (
m∑

k=1
ak10m−k)10−m(1− 10−j`)

1− 10−m

→ a0 + (
m∑

k=1
ak10m−k) 10−m

1− 10−m = a0 + (
m∑

k=1
ak10m−k) 1

10m − 1

as `→∞. The last expression is evidently rational.
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Continuity of functions

Let us go back to studying functions. Among functions, we saw the sign
function

sign x :=


1 if x > 0
0 if x = 0
−1 if x < 0

and its graph has a “jump” at x = 0.
Intuitively, the “jump” means that, the value at x = 0 is 0, but if one
approaches to 0 from the right, the value of the function remains 1, while
it is −1 from the left.
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Continuity of functions

x

y

Figure: The graph of y =
{

1 if x 6= 0
0 if x = 0

.
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Continuity of functions

Let us make this precise.

Definition
Let f be a function defined on S (the domain), and let a ∈ R such that
there is a sequence xn ∈ S, xn 6= a such that xn → a. We write

lim
x→a

f (x) = L

if for any ε > 0 there is δ > 0 such that |f (x)− L| < ε for any
x 6= a, |x − a| < δ.
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Continuity of functions

x

y = f (x)

L + ε

L− ε

a + δa − δ

Figure: The limit limx→a f (x).
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Continuity of functions

Example

Let f (x) =
{

1 if x 6= 0
0 if x = 0

.

Consider a = 2. Then, for any ε, we can take δ = 1
2 and

|f (x)− 1| = |1− 1| = 0 for any x ∈ (2− δ, 2 + δ) = (3
2 ,

5
2).

Therefore, limx→2 f (x) = 1. A similar situation holds for any x 6= 0.
Consider a = 0. Then, for any x 6= 0, f (x) = 1, hence again we have
limx→0 f (x) = 1, although f (0) = 0 by definition.
For the function sign x , there is no limit limx→0 f (x) at x = 0.
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Continuity of functions

x

y

Figure: The graph of y = sign x , with a “jump” at x = 0.
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Continuity of functions

The limit makes precise the concept of “approaching a point”. The
absence of “jump” can also be formalized using limit.

Definition
Let f be a function defined on S (the domain), and let a ∈ S (this time a
is in the domain) such that there is a sequence xn ∈ S, xn 6= a such that
xn → a. We say that f is continuous at a if limx→a f (x) = f (a). We say
that f is continuous on S if it is continuous at each point in S.
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Continuity of functions

Now we can understand the “jumps” in terms of limit and continuity.

Example
The function sign x is not continuous at x = 0, because it does not
have limx→0 sign x .

The function f (x) =
{

1 if x 6= 0
0 if x = 0

is not continuous at x = 0,

because limx→0 f (x) = 1 6= 0 = f (0).
The function f (x) = c is continuous. Indeed, let us fix a ∈ R. For
any ε, |f (x)− c| = |c − c| = 0 < ε, hence limx→a f (x) = c = f (a).
The function f (x) = x is continuous. Indeed, let us fix a ∈ R. Then,
for each ε > 0, we take δ = ε and for |h| < δ = ε it holds that
|f (a + h)− a| = |a + h − a| = |h| < δ = ε, therefore,
limx→a f (x) = a = f (a).
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Continuity of functions

Theorem
Let f , g be functions defined on S, and let a such that there is {xn} ⊂ S,
xn → a. Assume that limx→a f (x) = L and limx→a g(x) = M. Then

There is δ > 0 such that if |x − a| < δ, x 6= a then |g(x)| ≤ |M|+ 1.
limx→a(f (x) + g(x)) = L + M and limx→a(f (x)g(x)) = LM.
If M 6= 0, then limx→a

f (x)
g(x) = L

M .
Furthermore, if a ∈ S and if f , g are continuous at a, then f + g , fg are
continuous at a. If g(a) 6= 0, then f

g is continuous at a.
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Continuity of functions

Proof.
The proof is similar to that of Theorem for sequences.

Let δ > 0 such that |g(x)−M| < 1 for x such that
|x − a| < δ, x 6= a. Then |g(x)| < |M|+ 1.
For a given ε > 0, let δ > 0 such that |f (x)− L| < ε

2 , |g(x)−M| < ε
2

for |x − a| < δ, x 6= a. Then |f (x) + g(x)− L−M| < ε
2 + ε

2 = ε.
For the product, for a given ε > 0, let δ > 0 such that
|f (x)− L| < ε

2(|M|+1) , |g(x)−M| < ε
2(|L|+1) and |g(x)| < |M|+ 1 for

|x − a| < δ, x 6= a. Then |f (x)g(x)− LM| =
|f (x)− L||g(x)|+ |g(x)−M||L| < ε(|M|+1)

2(|M|+1) + ε|L|
2(|L|+1) < ε, which

shows the desired limit.
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Continuity of functions

Proof.
We show that limx→a

1
g(x) = 1

M . Then the general case follows from
this and the limit of product. Assume M 6= 0, and let ε > 0. Then
there is δ > 0 such that |g(x)−M| < |M|

2 for x 6= a, |x − a| < δ and
hence |g(x)| > |M|

2 , in particular g(x) 6= 0. Now, there is δ̃ > 0, δ̃ < δ

such that for x 6= a, |x − a| < δ̃ it holds that |g(x)−M| < εM2

2 . Then

∣∣∣∣ 1
g(x) −

1
M

∣∣∣∣ = |M − g(x)|
|M||g(x)| <

εM2

2
M2
2

= ε,

which shows the desired limit.
If f , g are continuous, then limx→a f (x) = f (a), limx→a g(x) = g(a),
hence limx→a(f (x) + g(x)) = f (a) + g(a), limx→a f (x)g(x) =
f (a)g(a), limx→a

f (x)
g(x) = f (a)

g(a) .
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Continuity of functions

From this, we know that
If f (x) = a0 + a1x1 + · · · anxn (a polynomial), then f is continuous.
f (x) = x2, f (x) = x5 + 34x3 − 454...
If f (x) = P(x)

Q(x) and P(x),Q(x) are polynomial, then f is continuous
at x if Q(x) 6= 0. f (x) = x−2

x2 is continuous on x 6= 0 (actually
defined on {x ∈ R : x 6= 0}, f (x) = x3

x2−1 = x3

(x−1)(x+1) is continuous
on x 6= −1, 1.
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Exercises

Let x = 0.12341234 · · · . Represent x as a rational number.
Compute limx→2 x2.
Compute limx→1

x+2
x−3 .

Compute limx→−1
x2+3x+2

x2−1 .

Let f (x) =
{

x2 if x ≥ 1
0 if x ≤ 0

. Is f continuous or not? If not, where is it

not continuous?
Let f (x) = x2+3x+2

x2−1 . Is f continuous or not? If not, where is it not
continuous?
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