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Announcements

@ Today: Apostol Vol 1, Chapter 3.1-4.
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Decimal representation of real numbers

Now that we have defined convergence of sequences, we can make sense
of all decimal representations as real numbers.

Let a, € Ng and 0 < a, < 9. Then b, = 1, a,10~% converges to a real

number. J
Proof.

Let by = > r—o ax10~K. This is nondecreasing and bounded above by

ap + 1. By Lemma of Monday, this converges to a real number. O

v

When the sequence converges, it converges to only one number. In this
way, we can say that a decimal representation ag.ajazas - - - defines a real
number.
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Decimal representation of real numbers

Now we can prove that any repeating decimal representation gives a

rational number. For example consider 0.123123123---. This can be
written as
0.1+ 0.02 + 0.003 + 0.0001 + 0.00002 + 0.000003 + - - = > 2,10 %,
k=0
where a1 = 1,ap =2,a3 =3,a4 = 1,35 = 2,35 = 3,---. It is easy to see
that this is equal to
0.123 +0.000123 + - - - = 2221(10033k+1 + 10a3k42 + 33k+3)10007k. We

know that this sum converges and compute

n

> (1002311 + 1033442 + a3k+3)1000 % = 123 Y 1000~ *
k=1 k=1
10001 123

13— <2
T 1000 T 999
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Decimal representation of real numbers
Any real number given by a repeating decimal representation is rational.

Indeed, let us take a repeating sequence 0 < a, < 9 as above. That is,
there is m € N such that a,+,m» = a,. Then, for j, £ € N,

Jje / om
dak=a+» 10773 a10m*
k=0 Jj=1 k=1

10~™(1 — 10749

= ap + (Z aklo’"’k)

= 1—-10—m
= K 107 - K 1
10" ) ———— = 10" ) ——
—>a0—|—(Zak0 )1_107m ao+(Zak0 )10m_1
k=1 k=1
as £ — oco. The last expression is evidently rational. Ol

4
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Continuity of functions

Let us go back to studying functions. Among functions, we saw the sign
function

1 if x>0
sighx ;=140 if x=0
-1 ifx<0

and its graph has a “jump” at x = 0.

Intuitively, the “jump” means that, the value at x = 0 is 0, but if one
approaches to 0 from the right, the value of the function remains 1, while
it is —1 from the left.
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Continuity of functions

y

v

if x#£0

1
Figure: The graph of y = {0 £ 0
if x =
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Continuity of functions

Let us make this precise.

Definition

Let f be a function defined on S (the domain), and let a € R such that
there is a sequence x, € S, x, # a such that x, — a. We write

lim f(x)=1L

X—a

if for any € > 0 there is § > 0 such that |f(x) — L| < € for any
x # a,|x —a| < 0.
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Continuity of functions

A Y= f(x)

v

a—90 a+aé

Figure: The limit lim,_, , f(x).
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Continuity of functions

1 if 0
Let f(x) = ifx#0
0 ifx=0

@ Consider a = 2. Then, for any €, we can take § = 5 and

[f(x)— 1| =[1—1]=0forany x € (2—6,2+6) = (3,3).
Therefore, limy_,» f(x) = 1. A similar situation holds for any x # 0.

o Consider a = 0. Then, for any x # 0, f(x) = 1, hence again we have
limy—o f(x) = 1, although f(0) = 0 by definition.

@ For the function sign x, there is no limit lim,_,o f(x) at x = 0.
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Continuity of functions

v

Figure: The graph of y = sign x, with a “jump” at x = 0.
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Continuity of functions

The limit makes precise the concept of “approaching a point”. The
absence of “jump” can also be formalized using limit.

Definition

Let f be a function defined on S (the domain), and let a € S (this time a
is in the domain) such that there is a sequence x, € S, x, # a such that
Xn — a. We say that f is continuous at a if limy_,, f(x) = f(a). We say
that f is continuous on S if it is continuous at each point in S.
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Continuity of functions

Now we can understand the “jumps” in terms of limit and continuity.

Example

@ The function sign x is not continuous at x = 0, because it does not
have limy_,g sign x.

@ The function f(x is not continuous at x = 0,

) 1 ifx#0
0 ifx=0
because limy_,o f(x) =1 # 0 = £(0).
@ The function f(x) = c is continuous. Indeed, let us fix a € R. For
any ¢, |f(x) —c| =|c—c| =0 <, hence limy_,, f(x) = c = f(a).
@ The function f(x) = x is continuous. Indeed, let us fix a € R. Then,
for each € > 0, we take § = € and for |h| < 0 = € it holds that
|f(a+ h) —a| =|a+ h—a| = |h| <& =¢, therefore,
limy_, f(x) = a=f(a).
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Continuity of functions

Theorem
Let f, g be functions defined on S, and let a such that there is {x,} C S,
Xn — a. Assume that limy_,, f(x) = L and limy_,,g(x) = M. Then
@ There is § > 0 such that if |[x — a| < 0,x # a then |g(x)| < [M| + 1.
o limy,,(f(x)+g(x))=L+M and lime—a(f(x)g(x)) = LM.
o If M0, then lim,,, £ =
Furthermore, if a € S and if f, g are continuous at a, then f + g, fg are
continuous at a. If g(a) # 0, then g is continuous at a.
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Continuity of functions

The proof is similar to that of Theorem for sequences.

@ Let & > 0 such that |g(x) — M| < 1 for x such that
|x —a|] < d,x # a. Then |g(x)| < |M|+ 1.

@ For a given € > 0, let § > 0 such that [f(x) — L| < 5, |g(x) — M| < §

for [x —a| <d,x #a. Then |[f(x)+g(x)—L-M|<5+5=¢
For the product, for a given € > 0, let 4 > 0 such that

(x) = LI < sqairay» 18(3) = M| < 5ty and [g(x)] < [M]| + 1 for

|x —a] < §,x # a. Then |f(x)g(x) — LM| =
1£0) — Llig(l + lg(x) — MIL] < $HER + sy < e, which
shows the desired limit.
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Continuity of functions

@ We show that lim,_,, ﬁ = ﬁ Then the general case follows from
this and the limit of product. Assume M # 0, and let € > 0. Then
there is 6 > 0 such that |g(x) — M| < % for x # a, |x —:?| < 6~and
hence |g(x)| > % in particular g(x) # 0. Now, thereis 0 > 0,0 < ¢
such that for x # a, |x — a| < 4 it holds that |g(x) — M| < # Then

eM?
‘ 1 _1‘:|Mg(x)|< 2
gk M| Mgk M

:67

which shows the desired limit.

If f,g are continuous, then limy_,, f(x) = f(a),limy_,g(x) = g(a),

hence limy_,(f(x) + g(x)) = f(a) + g(a), limy—, f(x)g(x) =

flx) _ f(a)

f(a)g(a)a |imx—>a g(x) — z(a) Ll

v
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Continuity of functions

From this, we know that

o If f(x) = ap+ aix! +---a,x" (a polynomial), then f is continuous.
f(x) = x2,f(x) = x> + 34x3 — 454...

o If f(x) = (PJE);% and P(x), Q(x) are polynomial, then f is continuous
at x if Q(x) #0. f(x) =232 is contlnuous on x ;é 0 (actually
defined on {x € R: x # 0}, f(x) = X2 7= (X—l)(x+1) is continuous
on x # —1,1.
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Exercises

o Let x =0.12341234---. Represent x as a rational number.

e Compute limy_; x2.

o Compute limy_1 f(—f%

o Compute limy_,_1 %
2 .
X if x>1
o Let f(x) = 7 . Is f continuous or not? If not, where is it
0 if x <0

not continuous?

2 . ..
o Let f(x) = X5>**2 s f continuous or not? If not, where is it not

continuous?
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