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Announcements

A supplemental course on mathematics (Trigonometry and Cartesian
Geometry,Equalities and inequalities, Exponentials and logarithms,
Radicals and absolute values)
MS teams code: avc0vdz
Starting on Tuesday 6 October

Today: Apostol Vol 1, Chapter 10.2-3.
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Convergence of sequences

We saw sequences of real numbers a1, a2, · · · . A sequence can be infinite,
that is, it continues infinitely. For example,

a1 = 1, a2 = 2 and in general, an = n.
a1 = 1, a2 = 4 and in general, an = n2.

A sequence can be considered as a function with the domain N.
Among sequences, we have seen the following:

a1 = 1, a2 = 1
2 and an = 1

n .
a1 = 1

2 , a2 = 3
4 and an = 1− 1

2n .
Intuitively, the first of them gets closer and closer to 0, while the second
one gets closer and closer to 1. But what does it mean that it gets closer
to a number?
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Figure: Up: the sequence an = 1
n plotted on the line. Bottom: the sequene

an = 1
n as a function on N.
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Convergence of sequences

We make precise the notion that a sequence get “arbitrarily” close to a
number as follows.

Definition
Let {an} be a sequence of real numbers. If there is L ∈ R such that for
each ε > 0 there is Nε such that for n ≥ Nε it holds that |an − L| < ε, we
say that {an} converges to L.

We write this situation as limn→∞ an = L, or simply an → L.
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Convergence of sequences

Example
Let us see some convergent sequences.

a1 = 1, a2 = 1
2 and an = 1

n . We expect that this sequence converges
to 0. Indeed, for any ε > 0, there is Nε such that 1

Nε
< ε (the

Archimedean property). Furthermore, if n > Nε, then
| 1n − 0| = 1

n <
1

Nε
< ε, therefore, with L = 0, we have that {an}

converges to 0.
a1 = 1

2 , a2 = 3
4 and an = 1− 1

2n . We expect that this sequence
converges to 1. Indeed, for any ε > 0, there is Nε such that 1

Nε
< ε

and note that 1
2Nε

< 1
Nε

. Furthermore, if n > Nε, then 1
2n <

1
Nε

and
hence |1− 1

2n − 1| = 1
2n <

1
Nε
< ε, therefore, with L = 1, we have that

{an} converges to 1.
The sequence an = 1√

n converges to 0. Indeed, for each ε, there is Nε

such that 1
Nε
< ε, and hence if n > N2

ε , then 1√
n <

1√
N2

ε

= 1
Nε
< ε.
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Convergence of sequences

Note that
If {an} converges to L, then it does not converge to any other
number. Indeed, if x 6= L, then take N such that |an − L| < 1

2 |L− x |
for n > N. Then by the triangle inequality
|L− x | < |an − x |+ |an − L|, and hence
|an − x | > |x − L| − |an − L| > 1

2 |L− x | 6= 0. Therefore, {an} does
not converge to x .
The sequence a1 = 1, a2 = 0, a3 = 1, · · · , an = 1

2(1− (−1)n) does not
converge to any number.
The sequence a1 = 1, a2, · · · , an = n does not converge to any
number.
In general, if for any x there is an Nx ∈ N such that for n > Nx it
holds that |an| > x , then we say that {an} diverges.
The sequence an = 2n diverges.
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Convergence of sequences
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Figure: The sequence an = 1
2 (1− (−1)n) as a function on N.
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Properties of convergent sequences

Given a sequence {an}, one can take a subsequence of it. That is, we
take an increasing sequence of natural numbers m1 < m2 < m3 < · · · and
define a new sequence bn = amn .

Example
Given an = 1

n and mn = 2n, the subsequence is a2n = 1
2n .

If {an} is convergent to L, then any subsequence {amn} is convergent to L.
Indeed, as m1 < m2 < m3 · · · , we have n ≤ mn and hence, for any ε > 0,
we take N such that |an − L| < ε for n > N, hence all n > N,
|amn − L| < ε.

Lecturer: Yoh Tanimoto Mathematical Analysis I 05/10/2020 9 / 17



Properties of convergent sequences

a2 = b1a4 = b2a8 = b30

Figure: The subsequence a2n of the sequence an = 1
n .
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Properties of convergent sequences

We say that {an} is nondecreasing (respectively nonincreasing) if
an ≤ an+1 (respectively an ≥ an+1) holds for all n ∈ N. A sequence {an} is
said to be bounded above (respectively bounded below) if there is
M ∈ R such that an ≤ M (respectively an ≥ M) for all n ∈ N).

Lemma

Let {an} be a nondecreasing sequence and bounded above. Then an
converges to a certain real number L ∈ R.

Proof.
Let A = {an : n ∈ N}. As {an} is bounded above, A is bounded above.
We put L = sup A. We know that, for each ε > 0, there is N ∈ N such
that L− ε < aN . As an is nondecreasing, we have L− ε < an for all n > N.
On the other hand, we have an ≤ L because L = sup A. Altogether,
|an − L| < ε for such n. As n was arbitrary, an converges to L.
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Properties of convergent sequences

Note that |ab| = |a||b|.

Lemma
The following hold.

If an → L, then there is L̃ such that |an| < L̃ for all n.
If an → L, bn → M, then an + bn → L + M, an · bn → LM. If M 6= 0,
then bn 6= 0 for sufficiently large n and an

bn
→ L

M .
If an > 0 diverges, then 1

an
converges to 0.

Proof.
Assume that an → L. Given, say 1, there is N such that |an − L| < 1
for n > N, hence |an| < L + 1 for n > N. Then, we can take a
number L̃ such that |a1|, · · · , |aN−1| < L̃ and L + 1 < L̃.
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Proof.
Let ε > 0 be arbitrary. There are N1,N2 ∈ N such that for n > N1
(respectively n > N2) it holds that |an − L| < ε

2 (respectively
|bn −M| < ε

2). Let N be the largest of N1,N2. Then we have

|an + bn − L−M| ≤ |an − L|+ |bn −M| < ε

2 + ε

2 = ε.

hence an + bn converges to L + M.
As for the product, given ε > 0, we take N such that
|an − L| < ε

2(|M|+1) , |bn −M| < ε
2|L| and |bn| < |M|+ 1 for n > N

(this can be done as in the case of sum). Then

|anbn − LM| = |anbn − bnL + bnL− LM|
≤ |(an − L)bn)|+ |(bn −M)L|

≤ |an − L||bn|+ |bn −M||L| ≤ ε

2 + ε

2 = ε,

which shows the desired convergence.
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Properties of convergent sequences

Proof.
We prove 1

bn
→ M. If bn → M and M 6= 0, then |bn −M| < |M|

2 for
sufficiently large n, and hence |bn| > |M|

2 , in particular bn 6= 0. We
can now show that 1

bn
→ 1

M . Indeed, by taking N such that
|bn −M| < εM2

2 ∣∣∣∣ 1
bn
− 1

M

∣∣∣∣ = |M − bn|
|M||bn|

<
εM2

2
M2
2

= ε,

which shows 1
bn
→ M. Now an

bn
→ L

M follows from this and the
product with an.
For any ε > 0, there is N such that for n > N it holds that |an| > 1

ε ,
that is 1

an
< ε, hence 1

an
converges to 0.
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Powers

We denote a−n = 1
an .

Theorem
The following hold.

Let a > 1. Then an diverges.
Let 0 < a < 1. Then an converges to 0.
Let 0 < a < 1. Then bn =

∑n
k=1 ak converges to a

1−a .
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Proof.
If a > 1, we can write a = 1 + y where y > 0. By the binomial
theorem, we have

an = (1 + y)n =
n∑

k=0

(
n
k

)
1kyn−k > 1 + ny ,

by only taking the terms k = n, n − 1. Now it is clear that for any x
there is large enough n such that 1 + ny > x , therefore,
x < 1 + ny < an, that is, an diverges.
If 0 < a < 1, then 1

a > 1 and (1
a )n diverges. Therefore, an = (1

a )−n

converges to 0.
We know that bn =

∑n
k=1 ak = a(1−an)

1−a , and an → 0.
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Exercises

Let an = 1√√
n

and ε = 0.01. Find N such that for n > N it holds
|an| < ε.
Let an = 1

2n and ε = 0.00001. Find N such that for n > N it holds
|an| < ε.
Show that a constant sequence an = C ∈ R is convergent.
Tell whether {an} converges, and if it does, compute the limit
an = 1

1+ 1
n

.

Tell whether {an} converges, and if it does, compute the limit
an = n

1+n .
Tell whether {an} converges, and if it does, compute the limit
an = n3+n2+4

n3+100 .
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