Mathematical Analysis I: Lecture 9

Lecturer: Yoh Tanimoto

05/10/2020 Start recording...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- A supplemental course on mathematics (Trigonometry and Cartesian Geometry, Equalities and inequalities, Exponentials and logarithms, Radicals and absolute values)
- MS teams code: avc0vdz
- Starting on Tuesday 6 October
- Today: Apostol Vol 1, Chapter 10.2-3.

We saw sequences of real numbers a_1, a_2, \cdots . A sequence can be infinite, that is, it continues infinitely. For example,

•
$$a_1 = 1, a_2 = 2$$
 and in general, $a_n = n$.

•
$$a_1 = 1, a_2 = 4$$
 and in general, $a_n = n^2$.

A sequence can be considered as a function with the domain \mathbb{N} . Among sequences, we have seen the following:

•
$$a_1 = 1, a_2 = \frac{1}{2}$$
 and $a_n = \frac{1}{n}$.
• $a_1 = \frac{1}{2}, a_2 = \frac{3}{4}$ and $a_n = 1 - \frac{1}{2^n}$.

Intuitively, the first of them gets closer and closer to 0, while the second one gets closer and closer to 1. But what does it mean that it gets closer to a number?

Figure: Up: the sequence $a_n = \frac{1}{n}$ plotted on the line. Bottom: the sequene $a_n = \frac{1}{n}$ as a function on \mathbb{N} .

05/10/2020 4/17

We make precise the notion that a sequence get "arbitrarily" close to a number as follows.

Definition

Let $\{a_n\}$ be a sequence of real numbers. If there is $L \in \mathbb{R}$ such that for each $\epsilon > 0$ there is N_{ϵ} such that for $n \ge N_{\epsilon}$ it holds that $|a_n - L| < \epsilon$, we say that $\{a_n\}$ converges to L.

We write this situation as $\lim_{n\to\infty} a_n = L$, or simply $a_n \to L$.

Example

Let us see some convergent sequences.

- $a_1 = 1, a_2 = \frac{1}{2}$ and $a_n = \frac{1}{n}$. We expect that this sequence converges to 0. Indeed, for any $\epsilon > 0$, there is N_{ϵ} such that $\frac{1}{N_{\epsilon}} < \epsilon$ (the Archimedean property). Furthermore, if $n > N_{\epsilon}$, then $|\frac{1}{n} 0| = \frac{1}{n} < \frac{1}{N_{\epsilon}} < \epsilon$, therefore, with L = 0, we have that $\{a_n\}$ converges to 0.
- $a_1 = \frac{1}{2}, a_2 = \frac{3}{4}$ and $a_n = 1 \frac{1}{2^n}$. We expect that this sequence converges to 1. Indeed, for any $\epsilon > 0$, there is N_{ϵ} such that $\frac{1}{N_{\epsilon}} < \epsilon$ and note that $\frac{1}{2^{N_{\epsilon}}} < \frac{1}{N_{\epsilon}}$. Furthermore, if $n > N_{\epsilon}$, then $\frac{1}{2^n} < \frac{1}{N_{\epsilon}}$ and hence $|1 \frac{1}{2^n} 1| = \frac{1}{2^n} < \frac{1}{N_{\epsilon}} < \epsilon$, therefore, with L = 1, we have that $\{a_n\}$ converges to 1.
- The sequence $a_n = \frac{1}{\sqrt{n}}$ converges to 0. Indeed, for each ϵ , there is N_{ϵ} such that $\frac{1}{N_{\epsilon}} < \epsilon$, and hence if $n > N_{\epsilon}^2$, then $\frac{1}{\sqrt{n}} < \frac{1}{\sqrt{N_{\epsilon}^2}} = \frac{1}{N_{\epsilon}} < \epsilon$.

Note that

- If $\{a_n\}$ converges to L, then it does not converge to any other number. Indeed, if $x \neq L$, then take N such that $|a_n L| < \frac{1}{2}|L x|$ for n > N. Then by the triangle inequality $|L x| < |a_n x| + |a_n L|$, and hence $|a_n x| > |x L| |a_n L| > \frac{1}{2}|L x| \neq 0$. Therefore, $\{a_n\}$ does not converge to x.
- The sequence $a_1 = 1$, $a_2 = 0$, $a_3 = 1$, \cdots , $a_n = \frac{1}{2}(1 (-1)^n)$ does not converge to any number.
- The sequence $a_1 = 1, a_2, \cdots, a_n = n$ does not converge to any number.
- In general, if for any x there is an $N_x \in \mathbb{N}$ such that for $n > N_x$ it holds that $|a_n| > x$, then we say that $\{a_n\}$ diverges.
- The sequence $a_n = 2^n$ diverges.

イロン イヨン イヨン

Convergence of sequences

Figure: The sequence $a_n = \frac{1}{2}(1 - (-1)^n)$ as a function on \mathbb{N} .

Given a sequence $\{a_n\}$, one can take a **subsequence** of it. That is, we take an increasing sequence of natural numbers $m_1 < m_2 < m_3 < \cdots$ and define a new sequence $b_n = a_{m_n}$.

Example

Given $a_n = \frac{1}{n}$ and $m_n = 2^n$, the subsequence is $a_{2^n} = \frac{1}{2^n}$.

If $\{a_n\}$ is convergent to L, then any subsequence $\{a_{m_n}\}$ is convergent to L. Indeed, as $m_1 < m_2 < m_3 \cdots$, we have $n \le m_n$ and hence, for any $\epsilon > 0$, we take N such that $|a_n - L| < \epsilon$ for n > N, hence all n > N, $|a_{m_n} - L| < \epsilon$.

Figure: The subsequence a_{2^n} of the sequence $a_n = \frac{1}{n}$.

Lecturer: Yoh Tanimoto

Mathematical Analysis I

05/10/2020 10/17

Properties of convergent sequences

We say that $\{a_n\}$ is **nondecreasing** (respectively **nonincreasing**) if $a_n \leq a_{n+1}$ (respectively $a_n \geq a_{n+1}$) holds for all $n \in \mathbb{N}$. A sequence $\{a_n\}$ is said to be **bounded above** (respectively **bounded below**) if there is $M \in \mathbb{R}$ such that $a_n \leq M$ (respectively $a_n \geq M$) for all $n \in \mathbb{N}$).

Lemma

Let $\{a_n\}$ be a nondecreasing sequence and bounded above. Then a_n converges to a certain real number $L \in \mathbb{R}$.

Proof.

Let $A = \{a_n : n \in \mathbb{N}\}$. As $\{a_n\}$ is bounded above, A is bounded above. We put $L = \sup A$. We know that, for each $\epsilon > 0$, there is $N \in \mathbb{N}$ such that $L - \epsilon < a_N$. As a_n is nondecreasing, we have $L - \epsilon < a_n$ for all n > N. On the other hand, we have $a_n \leq L$ because $L = \sup A$. Altogether, $|a_n - L| < \epsilon$ for such n. As n was arbitrary, a_n converges to L.

A D F A B F A B F A B

Note that |ab| = |a||b|.

Lemma

The following hold.

- If $a_n \to L$, then there is \tilde{L} such that $|a_n| < \tilde{L}$ for all n.
- If $a_n \to L, b_n \to M$, then $a_n + b_n \to L + M, a_n \cdot b_n \to LM$. If $M \neq 0$, then $b_n \neq 0$ for sufficiently large n and $\frac{a_n}{b_n} \to \frac{L}{M}$.
- If $a_n > 0$ diverges, then $\frac{1}{a_n}$ converges to 0.

Proof.

• Assume that $a_n \to L$. Given, say 1, there is N such that $|a_n - L| < 1$ for n > N, hence $|a_n| < L + 1$ for n > N. Then, we can take a number \tilde{L} such that $|a_1|, \cdots, |a_{N-1}| < \tilde{L}$ and $L + 1 < \tilde{L}$.

Proof.

• Let $\epsilon > 0$ be arbitrary. There are $N_1, N_2 \in \mathbb{N}$ such that for $n > N_1$ (respectively $n > N_2$) it holds that $|a_n - L| < \frac{\epsilon}{2}$ (respectively $|b_n - M| < \frac{\epsilon}{2}$). Let N be the largest of N_1, N_2 . Then we have

$$|a_n+b_n-L-M|\leq |a_n-L|+|b_n-M|<rac{\epsilon}{2}+rac{\epsilon}{2}=\epsilon.$$

hence $a_n + b_n$ converges to L + M. As for the product, given $\epsilon > 0$, we take N such that $|a_n - L| < \frac{\epsilon}{2(|M|+1)}, |b_n - M| < \frac{\epsilon}{2|L|}$ and $|b_n| < |M| + 1$ for n > N(this can be done as in the case of sum). Then

$$\begin{aligned} |a_nb_n - LM| &= |a_nb_n - b_nL + b_nL - LM| \\ &\leq |(a_n - L)b_n|| + |(b_n - M)L| \\ &\leq |a_n - L||b_n| + |b_n - M||L| \leq \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon, \end{aligned}$$

which shows the desired convergence.

Lecturer: Yoh Tanimoto

Proof.

• We prove $\frac{1}{b_n} \to M$. If $b_n \to M$ and $M \neq 0$, then $|b_n - M| < \frac{|M|}{2}$ for sufficiently large n, and hence $|b_n| > \frac{|M|}{2}$, in particular $b_n \neq 0$. We can now show that $\frac{1}{b_n} \to \frac{1}{M}$. Indeed, by taking N such that $|b_n - M| < \frac{\epsilon M^2}{2}$

$$\left|\frac{1}{b_n}-\frac{1}{M}\right|=\frac{|M-b_n|}{|M||b_n|}<\frac{\frac{\epsilon M^2}{2}}{\frac{M^2}{2}}=\epsilon,$$

which shows $\frac{1}{b_n} \to M$. Now $\frac{a_n}{b_n} \to \frac{L}{M}$ follows from this and the product with a_n .

• For any $\epsilon > 0$, there is N such that for n > N it holds that $|a_n| > \frac{1}{\epsilon}$, that is $\frac{1}{a_n} < \epsilon$, hence $\frac{1}{a_n}$ converges to 0.

We denote $a^{-n} = \frac{1}{a^n}$.

Theorem

The following hold.

- Let a > 1. Then a^n diverges.
- Let 0 < a < 1. Then a^n converges to 0.
- Let 0 < a < 1. Then $b_n = \sum_{k=1}^n a^k$ converges to $\frac{a}{1-a}$.

Proof.

• If a > 1, we can write a = 1 + y where y > 0. By the binomial theorem, we have

$$a^{n} = (1+y)^{n} = \sum_{k=0}^{n} {n \choose k} 1^{k} y^{n-k} > 1 + ny,$$

by only taking the terms k = n, n - 1. Now it is clear that for any x there is large enough n such that 1 + ny > x, therefore, $x < 1 + ny < a^n$, that is, a^n diverges.

- If 0 < a < 1, then $\frac{1}{a} > 1$ and $(\frac{1}{a})^n$ diverges. Therefore, $a^n = (\frac{1}{a})^{-n}$ converges to 0.
- We know that $b_n = \sum_{k=1}^n a^k = \frac{a(1-a^n)}{1-a}$, and $a^n \to 0$.

- Let $a_n = \frac{1}{\sqrt{\sqrt{n}}}$ and $\epsilon = 0.01$. Find N such that for n > N it holds $|a_n| < \epsilon$.
- Let $a_n = \frac{1}{2^n}$ and $\epsilon = 0.00001$. Find N such that for n > N it holds $|a_n| < \epsilon$.
- Show that a constant sequence $a_n = C \in \mathbb{R}$ is convergent.
- Tell whether $\{a_n\}$ converges, and if it does, compute the limit $a_n = \frac{1}{1 + \frac{1}{a}}$.
- Tell whether $\{a_n\}$ converges, and if it does, compute the limit $a_n = \frac{n}{1+n}$.
- Tell whether $\{a_n\}$ converges, and if it does, compute the limit $a_n = \frac{n^3 + n^2 + 4}{n^3 + 100}$.