Mathematical Analysis I: Lecture 8

Lecturer: Yoh Tanimoto

02/10/2020 Start recording...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- A supplemental course on mathematics (Trigonometry and Cartesian Geometry, Equalities and inequalities, Exponentials and logarithms, Radicals and absolute values)
- MS teams code: avc0vdz
- Starting on Tuesday 6 October
- If you do not understand the slides or notes, ask questions.
- If you find something strange, most probably you are right... I often make errors. Please point them out.

Exercises

イロト イヨト イヨト イヨト

Draw the set on the line $[-1,2] \cup (-3,-2) \cup (0,5]$.

(日)

Draw the set on the line $[-1,2] \cup (-3,-2) \cup (0,5]$. Solution.

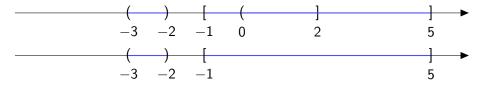
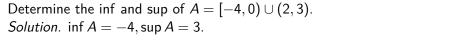


Figure: $[-1,2] \cup (-3,-2) \cup (0,5] = [-1,5] \cup (-3,-2).$

→ ∃ →

Determine the inf and sup of $A = [-4, 0) \cup (2, 3)$.

• • • • • • • • • • • •



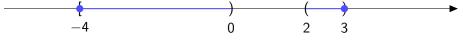
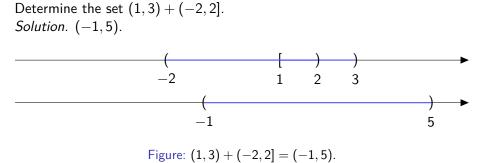


Figure: $[-4, 0) \cup (2, 3)$.

< ∃ ►

Determine the set (1, 3) + (-2, 2].

イロト イヨト イヨト イ



Lecturer: Yoh Tanimoto

Mathematical Analysis I

02/10/2020 6/33

.

Determine the set $5 \cdot (2, 3)$.

イロト イヨト イヨト イヨ

Determine the set $5 \cdot (2,3)$. *Solution.* (10, 15).

イロト イヨト イヨト イヨ

Represent the set $\{x \in \mathbb{R} : x^2 - 2x < 0\}$ as an interval.

Represent the set $\{x \in \mathbb{R} : x^2 - 2x < 0\}$ as an interval. Solution. The condition $x^2 - 2x < 0$ can be written equivalently as

$$\begin{aligned} x^2 - 2x < 0 & \Longleftrightarrow x(x-2) < 0 \\ & \Leftrightarrow (x < 0, x-2 > 0) \text{ or } (x > 0, x-2 < 0) \\ & \Leftrightarrow (x < 0, x > 2) \text{ or } (x > 0, x < 2) \\ & \Leftrightarrow (0 < x < 2) \end{aligned}$$

hence it is the interval (0, 2).

Represent the set $\{x \in \mathbb{R} : x^2 - 5x + 6 > 0\}$ as a union of intervals.

∃ >

Represent the set $\{x \in \mathbb{R} : x^2 - 5x + 6 > 0\}$ as a union of intervals. Solution. The condition $x^2 - 5x + 6 > 0$ can be written equivalently as

$$x^{2} - 5x + 6 > 0 \iff (x - 2)(x - 3) > 0$$

$$\iff (x - 2 < 0, x - 3 < 0) \text{ or } (x - 2 > 0, x - 3 < 0)$$

$$\iff (x < 2, x < 3) \text{ or } (x > 2, x > 3)$$

$$\iff x < 2 \text{ or } x > 3$$

hence it is the union $(-\infty, 2) \cup (3, \infty)$.

Determine the decimal representation of $\frac{3}{7}$.

(日)

Determine the decimal representation of $\frac{3}{7}$. Solution. Let $\frac{3}{7} = a_0.a_1a_2\cdots$. Note that $\frac{3}{7} < 1$, hence we have $a_0 = 0$. Next, $\frac{3}{7} \times 10 = \frac{30}{7} = 4 + \frac{2}{7}$, hence we have $a_1 = 4$. Next, $\frac{2}{7} \times 10 = \frac{20}{7} = 2 + \frac{6}{7}$, hence we have $a_2 = 2$, and so on. Therefore, we have $\frac{3}{7} = 0.428571428571\cdots$.

		0.	4	2	8	5	7	1
7)	3						
		0						
		3	0					
		2	8					
			2	0				
			1	4				
				6	0			
				5	6			
					4	0		
					3	5		
						5	0	
						4	9	
							1	0
								7
								3

02/10/2020 11/33

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - の々で

Give an algorithm to produce a nonrepeating decimal representation.

Give an algorithm to produce a nonrepeating decimal representation. *Solution.* Just an example. Set 0.10100100001000001....

Compute $\sum_{k=1}^{5} (2k + 1)$.

イロト イヨト イヨト イヨ

Compute
$$\sum_{k=1}^{5} (2k+1)$$
. Solution.

$$\sum_{k=1}^{5} (2k+1) = (2+1) + (4+1) + (6+1) + (8+1) + (10+1)$$

$$= 3 + 5 + 7 + 9 + 11 = 35.$$

▲口 > ▲圖 > ▲ 国 > ▲ 国 >

Compute $\sum_{k=2}^{6} (2(k-1)+1)$.

イロト イヨト イヨト イヨ

Compute
$$\sum_{k=2}^{6} (2(k-1)+1)$$
. Solution.

$$\sum_{k=1}^{5} (2(k-1)+1) = (2+1) + (4+1) + (6+1) + (8+1) + (10+1)$$
$$= 3+5+7+9+11 = 35.$$

▲口▶▲□▶▲目▶▲目▶ 目 のへで

Prove the formula $\sum_{k=1}^{n} (2k - 1) = n^2$.

Prove the formula $\sum_{k=1}^{n} (2k-1) = n^2$. Solution. By induction. For n = 1, we have $\sum_{k=1}^{1} (2k-1) = 1 = 1^2$. Assuming the formula for n, we compute

$$\sum_{k=1}^{n+1} (2k-1) = \sum_{k=1}^{n} (2k-1) + (2(n+1)-1)$$
$$= n^2 + 2n + 1 = (n+1)^2.$$

(日)

Write $\sum_{k=1}^{n} (2k-1)$ as a sum from k = 0 to n-1.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

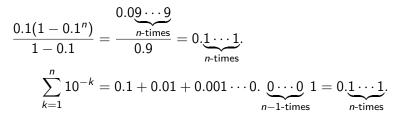
Write $\sum_{k=1}^{n} (2k-1)$ as a sum from k = 0 to n-1. Solution. $\sum_{k=0}^{n-1} (2(k+1)-1) = \sum_{k=0}^{n-1} (2k+1)$.

(日)

Compute the sum $\sum_{k=1}^{n} 10^{-k}$.

イロト イヨト イヨト イ

Compute the sum $\sum_{k=1}^{n} 10^{-k}$. Solution. By the formula for the sum of powers, we have



くぼう くほう くほう しゅ

Compute the sum $\sum_{k=1}^{n} 2^{-1}$.

イロト イヨト イヨト イヨト

Compute the sum $\sum_{k=1}^{n} 2^{-1}$. Solution. By the formula for the sum of powers, we have

$$\sum_{k=1}^{n} 2^{-1} = \frac{\frac{1}{2}(1-(\frac{1}{2})^n)}{1-\frac{1}{2}} = 1 - \left(\frac{1}{2}\right)^n$$
$$\sum_{k=1}^{1} 2^{-1} = \frac{1}{2}.$$
$$\sum_{k=1}^{2} 2^{-1} = \frac{1}{2} + \frac{1}{4} = \frac{3}{4}.$$
$$\sum_{k=1}^{3} 2^{-1} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} = \frac{7}{8}.$$

.

A D > A A > A > A

Expand $(x + y)^5$.

メロト メポト メヨト メヨト

Expand $(x + y)^5$. Solution. By the binomial theorem,

$$(x+y)^{5} = {\binom{5}{0}}x^{5} + {\binom{5}{1}}x^{4}y + {\binom{5}{2}}x^{3}y^{2} + {\binom{5}{3}}x^{2}y^{3} + {\binom{5}{4}}xy^{4} + {\binom{5}{5}}y^{5} = \frac{5!}{0!5!}x^{5} + \frac{5!}{1!4!}x^{4}y + \frac{5!}{2!3!}x^{3}y^{2} + \frac{5!}{3!2!}x^{2}y^{3} + \frac{5!}{4!1!}xy^{4} + \frac{5!}{5!0!}y^{5} = x^{5} + 5x^{4}y + 10x^{3}y^{2} + 10x^{2}y^{3} + 5xy^{4} + y^{5}.$$

(日)

Prove that $\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$.

イロト イヨト イヨト イヨト

Prove that $\sum_{k=0}^{n} {n \choose k} = 2^{n}$. Solution. By the binomial theorem, $2^{n} = (1+1)^{n} = \sum_{k=0}^{n} {n \choose k} 1^{k} 1^{n-k} = \sum_{k=0}^{n} {n \choose k}$.

• • • • • • • • • • • •

Prove that $\sum_{k=0}^{n} (-1)^k {n \choose k} = 0.$

イロト イヨト イヨト イヨト

Prove that $\sum_{k=0}^{n} (-1)^{k} {n \choose k} = 0$. Solution. By the binomial theorem, $0 = 0^{n} = ((-1) + 1)^{n} = \sum_{k=0}^{n} {n \choose k} (-1)^{k} 1^{n-k} = \sum_{k=0}^{n} {n \choose k} (-1)^{k}$.

A (1) > A (2) > A

Determine the domains of the following $f(x) = \sqrt{x^2 - 1}$

• • • • • • • • • • • •

Determine the domains of the following $f(x) = \sqrt{x^2 - 1}$ Solution. To have the square root, the number must be positive or zero. That is,

$$egin{aligned} x^2-1 &\geq 0 &\iff (x-1)(x+1) \geq 0 \ &\iff (x-1 \geq 0, x+1 \geq 0) ext{ or } (x-1 \leq 0, x+1 \leq 0) \ &\iff (x \geq 1, x \geq -1) ext{ or } (x \leq 1, x \leq -1) \ &\iff (x \geq 1) ext{ or } (x \leq -1) \end{aligned}$$

hence the domain is $(-\infty, -1] \cup [1, \infty)$.

Determine the domains of the following $f(x) = \frac{1}{x^3 + 2x^2 - x - 2}$

イロト イヨト イヨト イヨ

Determine the domains of the following $f(x) = \frac{1}{x^3+2x^2-x-2}$ Solution. To have the division, the denominator must not be zero. That is,

$$x^{3} + 2x^{2} - x - 2 \neq 0 \iff (x+2)(x^{2}-1) \neq 0$$
$$\iff (x+2)(x-1)(x+1) \neq 0$$

hence the domain is $(-\infty, -2) \cup (-2, -1) \cup (-1, 1) \cup (1, \infty)$.

Determine the inverse functions of the following. f(x) = x + 1

(日)

Determine the inverse functions of the following. f(x) = x + 1Solution. The inverse f^{-1} should satisfy $f^{-1}(x+1) = x$. We see that $f^{-1}(x) = x - 1$. Then we indeed have (x - 1) + 1 = x.

Image: Image:

Determine the inverse functions of the following. $f(x) = \frac{1}{x}$ on $(0, \infty)$.

A D > A A > A > A

Determine the inverse functions of the following. $f(x) = \frac{1}{x}$ on $(0, \infty)$. Solution. The inverse f^{-1} should satisfy $f^{-1}(\frac{1}{x}) = x$. We see that $f^{-1}(x) = \frac{1}{x}$. Then we indeed have $\frac{1}{\frac{1}{x}} = x$. Compare the graphs. How can one obtain one from the other? $f(x) = x^2, g(x) = (x - 1)^2 + 2.$

3 1 4

Compare the graphs. How can one obtain one from the other? $f(x) = x^2, g(x) = (x - 1)^2 + 2.$ Solution. g can be obtained by shifting f by (1,2). Indeed, their graphs are

$$f = \{(x, y) \in \mathbb{R} \times \mathbb{R} : y = x^2\}$$

$$g = \{(x', y') \in \mathbb{R} \times \mathbb{R} : y' = (x' - 1)^2 + 2\}$$

$$= \{(x', y') \in \mathbb{R} \times \mathbb{R} : y' - 2 = (x' - 1)^2\}$$

Therefore, if the point (x, y) is on the graph of f, then the point (x', y') = (x + 1, y + 2) is on the graph of g.

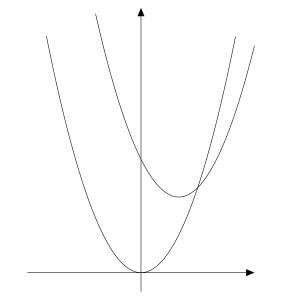


Figure: The graphs of $y = x^2$ and $y = (x - 1)^2 + 2$.

Compare the graphs. How can one obtain one from the other? $f(x) = \frac{1}{2}x^3 - x, g(x) = \frac{x^3}{16} - \frac{x}{2}.$

* 夏 ト *

Compare the graphs. How can one obtain one from the other? $f(x) = \frac{1}{2}x^3 - x, g(x) = \frac{x^3}{16} - \frac{x}{2}.$ *Solution.* $g(x) = \frac{1}{2}(\frac{x}{2})^3 - \frac{x}{2}$ can be obtained by dilating the *x*-direction of *f* by 2. Indeed, their graphs are

$$f = \{(x, y) \in \mathbb{R} \times \mathbb{R} : y = \frac{1}{2}x^3 - x\}$$
$$g = \{(x', y') \in \mathbb{R} \times \mathbb{R} : y' = \frac{1}{2}(\frac{x'}{2})^3 - \frac{x'}{2}\}$$

Therefore, if the point (x, y) is on the graph of f, then the point (x', y') = (2x, y) is on the graph of g.

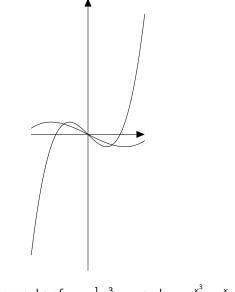


Figure: The graphs of
$$y = \frac{1}{2}x^3 - x$$
 and $y = \frac{x^3}{16} - \frac{x}{2}$.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 二百

Compare the graphs. How can one obtain one from the other? $f(x) = x^3 - x, g(x) = \frac{x^3 - x}{2}$

Image: Image:

.

Compare the graphs. How can one obtain one from the other? $f(x) = x^3 - x, g(x) = \frac{x^3 - x}{2}$ *Solution.* g(x) can be obtained by dilating the *y*-direction of *f* by $\frac{1}{2}$. Indeed, their graphs are

$$f = \{(x, y) \in \mathbb{R} \times \mathbb{R} : y = x^3 - x\}$$

$$g = \{(x', y') \in \mathbb{R} \times \mathbb{R} : y' = \frac{1}{2}(x'^3 - x')\}$$

$$= \{(x', y') \in \mathbb{R} \times \mathbb{R} : 2y' = x'^3 - x'\}$$

Therefore, if the point (x, y) is on the graph of f, then the point $(x', y') = (x, \frac{y}{2})$ is on the graph of g.

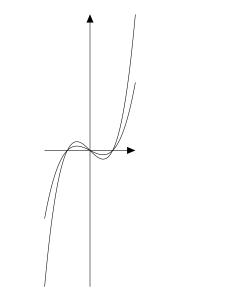


Figure: The graphs of
$$y = x^3 - x$$
 and $y = \frac{1}{2}(x^3 - x)$.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 二百

Compare the graphs. How can one obtain one from the other? $f(x) = \sqrt{1-x^2}, g(x) = \frac{1}{3}\sqrt{1-4(x+2)^2}$

Compare the graphs. How can one obtain one from the other? $f(x) = \sqrt{1 - x^2}, g(x) = \frac{1}{3}\sqrt{1 - 4(x + 2)^2}$

Solution. g(x) can be obtained by dilating the y-direction of f by $\frac{1}{3}$ and by dilating by $\frac{1}{2}$ then shifting the x-direction by -2. Indeed, their graphs are

$$f = \{(x, y) \in \mathbb{R} \times \mathbb{R} : y = \sqrt{1 - x^2}\}$$
$$g = \{(x', y') \in \mathbb{R} \times \mathbb{R} : y' = \frac{1}{3}\sqrt{1 - 4(x' + 2)^2}\}$$
$$= \{(x', y') \in \mathbb{R} \times \mathbb{R} : 3y' = \sqrt{1 - (2(x' + 2))^2}\}$$

Therefore, if the point (x, y) is on the graph of f, then the point $(x', y') = (\frac{x}{2} - 2, \frac{y}{3})$ is on the graph of g.

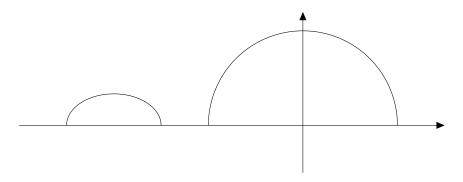


Figure: The graphs of
$$y = \sqrt{1 - x^2}$$
 and $y = \frac{1}{3}\sqrt{1 - 4(x+2)^2}$.

Lecturer: Yoh Tanimoto

02/10/2020 33/33

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで