Mathematical Analysis I: Lecture 7

Lecturer: Yoh Tanimoto

01/10/2020 Start recording...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

• Today: Apostol Vol. 1, Chapters 1.1-4

★ ∃ ► ★

By a function we usually mean "a map" which assigns to a number x another number f(x), or an assignment

 $x \mapsto f(x).$

There are many "real-world" examples of functions: When a quantity changes with time, you can use x as time (or often you denote it by t) and the quantity by f(x). Or we can plot a set of data that depend on a parameter (more concretely: you take a path on a mountain and set x as the horizontal distance from the house and f(x) as the height at the point x).

More precisely, we can consider it as follows: for each number x there is another number f(x), and nothing else. We can express this situation using ordered pairs.

Let us assume that we know the correspondence $x \mapsto f(x)$, defined on a subset ("domain") *S*. Then we can draw the graph, namely, the subset $\{(x, y) \in S \times \mathbb{R} : y = f(x)\}$, or in other words, we collect all points (x, y) where y = f(x).

More generally we can define a **function** to be a subset f of $\mathbb{R} \times \mathbb{R}$ such that for each $x \in f$ there is one and only one y. Also in this case we denote the relation by y = f(x). In this sense, the graph and the function are the same thing.

Let us introduce some terminology.

- $\{x \in \mathbb{R} : \text{ there is some } (x, y) \in f\}$ is called the **domain** of f.
- $\{y \in \mathbb{R} : \text{ there is some } (x, y) \in f\}$ is called the **range** of f.

Example

- f(x) = x. Namely, $f = \{(x, y) \in \mathbb{R} \times \mathbb{R} : y = x\}$. The domain is \mathbb{R} , the range is \mathbb{R} .
- $f(x) = x^2$. Namely, $f = \{(x, y) \in \mathbb{R} \times \mathbb{R} : y = x^2\}$. The domain is \mathbb{R} , the range is $[0, \infty)$.

Figure: Left: the graph of y = x. Right: the graph of $y = x^2$.

Example

- $f(x) = x^5 2x^3 + 1$. $f = \{(x, y) \in \mathbb{R} \times \mathbb{R} : y = x^5 2x^3 + 1\}$. The domain is \mathbb{R} , the range is \mathbb{R} .
- $f(x) = \sqrt{x}$ for $x \ge 0$. Namely, $f = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x \ge 0, y = \sqrt{x}\}$. The domain is $[0, \infty)$, the range is $[0, \infty)$.

→ ∃ →

Figure: Left: the graph of $y = x^5 - 2x^3 + 1$. Right: the graph of $y = \sqrt{x}$.

Example

- $f(x) = \sqrt{1-x}$ for $1-x \ge 0$, or $x \le 1$. Namely, $f = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x \le 1, y = \sqrt{x-1}\}$. The domain is $(-\infty, 1]$, the range is $[0, \infty)$.
- The set $\{(x, y) \in \mathbb{R} \times \mathbb{R} : x^2 + y^2 = 1\}$ is not a function. Indeed, for each $x \in (-1, 1)$, there are two numbers $y = \sqrt{1 x^2}, -\sqrt{1 x^2}$ that satisfy the equation $x^2 + y^2 = 1$.

- 4 同 ト 4 三 ト - 4 三 ト - -

Figure: Left: the graph of $x^2 + y^2 = 1$, not a function of x. Right: the graph of $y = \sqrt{1 - x^2}$.

∃ ≻

Example

• Let us introduce the **absolute value** of $x \in \mathbb{R}$:

$$|x| := \begin{cases} x & \text{if } x \ge 0\\ -x & \text{if } x < 0 \end{cases}$$

where := means we define the left-hand side by the right-hand side. This is also a function with the domain R and the range [0,∞).
We define the sign of x ∈ R:

sign x :=
$$\begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x = 0 \\ -1 & \text{if } x < 0 \end{cases}$$

• We define the factorial of $x \in \mathbb{N}_0$: f(n) = n!. The domain is \mathbb{N}_0 .

Figure: Left: the graph of y = |x|. Right: the graph of $y = \operatorname{sign} x$, with a "jump" at x = 0.

When we have two or more functions, we can produce more functions. Let f(x) be a function with domain S and g(x) a function with domain T.

- Sum. We can define the sum h(x) = f(x) + g(x), defined on $S \cap T$. Example: with $f(x) = x, g(x) = x^2, h(x) = x + x^2$.
- Product. We can define the product $h(x) = f(x) \cdot g(x)$, defined on $S \cap T$.

Example: with $f(x) = x, g(x) = x^2, h(x) = x^3$.

• Division. We can define the division $h(x) = \frac{f(x)}{g(x)}$ defined on $S \cap \{x \in T : g(x) \neq 0\}$. Example: with $f(x) = x + 1, g(x) = (x + 2)(x - 1), h(x) = \frac{x+1}{(x+2)(x-1)}$, defined on $\mathbb{R} \setminus \{1, -2\} = (-\infty, -2) \cup (-2, 1) \cup (1, \infty)$.

イロト イヨト イヨト ・

Lecturer: Yoh Tanimoto

æ 01/10/2020 14/21

э

When we have two or more functions, we can produce more functions. Let f(x) be a function with domain S and g(x) a function with domain T.

• Composition. We can define the composed function h(x) = f(g(x)), defined on $\{x \in T : g(x) \in S\}$. Example: with $f(x) = \sqrt{x}, g(x) = x + 1, h_1(x) = \sqrt{x + 1}$, defined on $\{x \in \mathbb{R} : x + 1 \ge 0\}$. Note that this is different from the composition in the reversed order: $h_2(x) = g(f(x)) = \sqrt{x} + 1$, defined on $[0, \infty)$.

Operations on functions

We say that a function f(x) is **injective** if for any pair $x_1 \neq x_2$ in the domain, it holds that $f(x_1) \neq f(x_2)$. Similarly, we say that a function f(x) is **surjective** if the range is \mathbb{R} . A function which is both injective and surjective is said to be **bijective**.

For example, f(x) = x is injective and surjective (hence bijective), but $f(x) = x^2$ is neither injective nor surjective. But if we consider $f(x) = x^2$ with the restricted domain $[0, \infty)$, it is injective: for positive numbers $x_1 \neq x_2$, $x_1^2 \neq x_2^2$.

For an injective function f(x), we can define the **inverse function** f^{-1} : the domain of f^{-1} is the range R of f, and it assigns to f(x) the number x: it is characterized by $f^{-1}(f(x)) = x$. Its graph (its formal definition) is given by $\{(x, y) \in \mathbb{R} \times \mathbb{R} : x \in R, x = f(y)\}$. The range of f^{-1} is the domain of f.

For example, consider $f(x) = x^2$ on the domain $[0, \infty)$. The range of f is $[0, \infty)$, hence the domain of f^{-1} is $[0, \infty)$. For any $x \in [0, \infty)$, we should have $f^{-1}(f(x)) = f^{-1}(x^2) = x$, therefore, $f^{-1}(x) = \sqrt{x}$.

Figure: The graphs of $y = \sqrt{x}$ and $y = x^2$ on $[0, \infty)$.

Lemma

Let $x, a \in \mathbb{R}, a \ge 0$. Then $|x| \le a$ if and only if $-a \le x \le a$.

Proof.

Assume that $x \ge 0$.

• If
$$|x| = x \le a$$
, then $-a < 0 \le x \le a$.

• If
$$-a \le x \le a$$
, then $|x| = x \le a$.

Instead, if we assume that x < 0, then

• If
$$|x| = -x \le a$$
, then $-a \le x < 0 \le a$.

• If
$$-a \le x \le a$$
, then $|x| = -x \le a$.

(4) (3) (4) (4) (4)

Theorem

For any $x, y \in \mathbb{R}$, it holds that $|x + y| \le |x| + |y|$.

Proof.

We have $-|x| \le x \le |x|, -|y| \le y \le |y|$ by Lemma, therefore, $-|x| - |y| \le x + y \le |x| + |y|$, and again by Lemma this implies that $|x + y| \le |x| + |y|$.

イロト イヨト イヨト

Corollary

For any
$$x_1, x_2, \cdots, x_n \in \mathbb{R}$$
, it holds that $|\sum_{k=1}^n a_k| \leq \sum_{k=1}^n |a_k|$.

Proof.

By induction. For n = 1, $\left|\sum_{k=1}^{1} a_{1}\right| = |a_{1}| = \sum_{k=1}^{1} |a_{k}|$ is obvious. Assuming the inequality for n, we have

$$\begin{vmatrix} \sum_{k=1}^{n+1} a_k \end{vmatrix} = \left| \sum_{k=1}^n a_k + a_{n+1} \right| \le \left| \sum_{k=1}^n a_k \right| + |a_{n+1}| \qquad \text{by Theorem} \\ \le \sum_{k=1}^n |a_k| + |a_{n+1}| = \sum_{k=1}^{n+1} |a_k| \qquad \text{by induction hypothesis.} \end{aligned}$$

which concludes the induction.

< □ > < 凸

• Determine the domains of the following

•
$$f(x) = \sqrt{x^2 - 1}$$

• $f(x) = \frac{1}{x^3 + 2x^2 - x - 2}$

• Determine the inverse functions of the following.

•
$$f(x) = x + 1$$

• $f(x) = \frac{1}{x}$ on $(0, \infty)$.

Compare the graphs. How can one obtain one from the other?

•
$$f(x) = x^2, g(x) = (x - 1)^2 + 2.$$

• $f(x) = x^3 - x, g(x) = \frac{x^3}{8} - \frac{x}{2}.$
• $f(x) = x^3 - x, g(x) = \frac{x^3 - x}{2}$
• $f(x) = \sqrt{1 - x^2}, g(x) = \frac{1}{3}\sqrt{1 - 4x^2}$