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» You solve exercises
@ Today: Apostol Vol. 1, Chapter 1.4
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Mathematical induction

The set N of natural numbers can be caracterized by the Peano axioms:
eleN

@ Foreveryne N, n+1e€N
@ Forevery ne N, n+1#1
oletSCN.IfleSandn+1€SforanyneS, then S=N.

In other words, N consists of 1 and all other numbers obtained by adding 1
repeatedly to 1, and that is all. This is the precise definition of N.
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Mathematical induction

With this characterization, we obtain the mathematical induction. Let
©(n) be a set of propositions depending on n € N. If (1) is true, and if
we can prove ¢(n+ 1) from ¢(n), then (n) is true for all natural
numbers. Indeed, let S = {n € N : ¢(n) is true }. S is a subset of N,
leSandifne S, then n4+1€ S. From the Peano axioms, we have

S = N. In other words, ¢(n) holds for all n € N.
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Mathematical induction

Example

n? > 2n—1 for all n.

Indeed, we apply mathematical induction to ¢(n) = “n? > 2n — 1". With
n=1 wehavel >2.-1—-1=1.

If we assume that this holds for n, then (n+1)2 =n?>+2n+1>
2n—1+42n+1=4n=2n+2n>2n+1=2(n+1) — 1, therefore, we
proved ¢(n + 1) from (n). We can now conclude that ¢(n) is true for all
neN.

v
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The well-ordering principle

We combine a proof by contradiction and mathematical induction.

For any nonempty subset S € N, there is the smallest element in S. That
is, there is n € S such that n < m for allm € S.

Proof.

Let us call A the assumption that S is not empty.

Let us assume the contrary, that S does not admit the smallest element
(call this assumption B). It means that, for any n € S, there is m € S such
that m < n.

Let T={neN:m>n, for all me S}. We show that T =N by
induction.
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e First, 1 € T. To prove this, assume that 1 ¢ T (call this C1). Then,
there must be m € S such that m < 1. Thismeans1 € S. But 1 is
always the smallest element of any subset of N, contradicting B.
Therefore, C; is false and we obtain 1 € T.

@ Next, let n € T and we prove that n+1 € T. Assume that
n+1¢ T (call this C,). Then, there is m € S such that m < n+1,
but since n € T, it must hold that n < m. This means that
m=n+1, and any £ < n does not belong to S. Therefore,
m = n+ 1 would be the smallest element of S, contradicting B.
Therefore, C,, is false and we obtain n+1 ¢ T.

Then by induction (the Peano axioms) we have T = N. This implies that
for any m € S it it holds for m < n for all n € T = N. But there is no
such m (larger than any natural number), hence S = (). This contradicts
the assumption A of the theorem. Therefore, the assumption B made in
the proof is wrong. That is, S admits the smallest element. Ol
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The well-ordering principle
Let x e R,x > 0. There isn € N such that n—1 < x < n. \

By the Archimedean principle, there is n such that x < n. Therefore, the
set {m € N : x < m} is nonempty, and by the well-ordering principle, it
has the smallest element n. As this is the smallest element, n—1 > x. [

We have used this property before to find the decimal representation of x.
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The summation and product notations

Assume that we have a sequence of numbers, that is a family {ap}necs of
real numbers indexed by S C N. This means that we have numbers

ai, a», as, - --. Sometimes we start the index from 0, and have
dg,d1,d2, """ .

(] a1=1,32=2,a3=3,---

4 3121,3224,3329,---

@ a; =4,a, = 2534, a3 = 3%1 (a finite sequence stops at some n € N)

When we have a (finite) sequence, we can sum all these numbers up:
a1+ + ap.
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The summation and product notations

When we have a (finite) sequence, we can sum all these numbers up:
a+--+an
We denote this by the following symbol.

n
Zak:31+“'+an
k=1
In this symbol, k is a dummy index and plays no specific role. We have
n n—1
Zakzzak+1:31+"'+an.
k=1 k=0

On the other hand, the number on the top (n in this example) is where
the sequence stops. Similarly, we can define
Y hemd = am~+ ams1+ -+ ap for n > m.

Lecturer: Yoh Tanimoto Mathematical Analysis | 30/09/2020

10/22



The summation and product notations

More precisely, this is a recursive definition: We define Z}(:l = a; and

Zii ag = Y k—q ak + ans1 Similarly to mathematical induction, we define

in this way >~}_; ax for all natural numbers n € N.

@eaj=1la=2a3=3 Y3 a=1+2+3=6.
eaj=1la=4a=9a=16 >f jak=1+4+9+16=30.
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The summation and product notations

Let us also introduce a symbol for product.

ey =1a=2a3=3 [[_;ak=1-2-3=6.
@ aj=1a=4a3=9,a,=16. [[j_;ak=1-4-9-16 =576.

In particular, we denote
@ Forac R, a" =[];_; a. For example, al=aa*=a-aa*=a-a-a
By convention, for a # 0, we set =1
o nl=][i_1k=1-2-----n. Forexample, 2! =231 =6,41=24,....
By convention, we set 0! = 1.

@ For n,k € N,n > k, we define (}) = Wlk)' For example,

(3) = 51z = 6.
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The summation formulas

We have the following.
e > 1k w

Proof.
We prove them by induction. Zk 1k=1= 72 =1 is correct. Assume

the formula >°}_; k = @ for n, then

il n(n+1)

kzlk_zk+ f—i—(n—i—l)

()<)<><>
L]

Then by induction the formula holds for all n € N.
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The summation formulas

Theorem

. n 1)(2n+1
We have the following. S 7_ k? = w.

| \

Proof.

We prove them by induction.
i k2=12= % = 1 is correct. Assume the formula for n, then

n+1 n
Zkz _ Zkz—l—(n—i—l)z _ n(n+1)(2n+ 1) +(n+1)?
6
k=1 k=1
2n+1 2n? 1
:(”( ot )+(n+1))(n+1)=( manrontontl
~(2n+3)(n+2)(n+1)  (2(n+1)+1)((n+1)+1)(n+1)
N 6 N 6 ’
Then by induction the formula holds for all n € N. O

v

Lecturer: Yoh Tanimoto Mathematical Analysis | 30/09/2020 14 /22



The summation formulas

We have the following.
@ Fora#1,Y1_,a

a(l a")

Proof

We prove them by induction. > ,_; a
the formula Y_7_; a* M for n, then

ak is correct. Assume

&
v
L1

o a(l aa)

n+1 n
1— g

Z ak = <Z ak> + an+1 a( a ) a
1—a

k=1 k=1

a—a"tl 4"t — a2 5(1 — a"tl)
- 1-—a - 1-a
Then by induction the formula holds for all n € N. O

30/09/2020
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The binomial theorem

("t = (") + () forn > k.

Proof.
We prove this by induction, but in a slightly different form: we prove that
the formula is correct for n = k, and prove that it holds for n+ 1 assuming
the formula for n. In this way, we prove the formula for n > k.

If n = k, we have (“}") = ziilr = k+1= &5 +1= (5 + ().

| A\

v
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Proof.

Assuming the formula for n, we have
n+2\ (n+2)!
k ~ k(n+2— k)
_ n+2 n+1
S on+2—k\ k

“iax () ()

n+2 n! n!
:n+2—k(w—1mn—k+nr+m@—kﬂ>
. (n+1)! n!

S h—Dnt2—R T G=Din+2—Fk)
n+2 n!

n+2—k ki(n— k)
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Proof.

Assuming the formula for n, we have
<n+2> B (n+1)! N n!
k (k—=D!(n+2-k)!  (k—1)(n+2—k)!
n+2 n!
T 2=k K@=k
B (n+1)!
(k=1 (n+2—k)!
n! k+(n+2)(n+1— k)
HTCES TR n+2—k
_ (n+1)! N (n+1)! :<n+1>+<n+1>
(k=D (n+2—k)  kl(n+1—k)! k—1 k
and this concludes the induction. [

v
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The binomial theorem

For any a,b € R,n €N, (a+ b)" = 31_q (})a*b"~k, where in this
theorem we mean 0° = 1.

By induction. For n = 0, this holds in the sense of 1 = 1.
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Assume that (a + b)" =

(a + b)n+1

I
S x
LI

Il Il
s x x
LIM=1
/—\/—\/»—\/—\
|

>
Il
o

(a+b)"- (a—l—b)—(a—l—b)z

S h—o (1)a*b" ¥ holds. Then,

k p.n—k

b
k=0 <k>
ak+1bn—k + En

”) <”> Sk pn—k+1
k = k

n k pn+1—k = (n k pn—k+1
1)3 b" —i—Z(k)a b"

S/

>~ +
—

) akb"+1_k.

n n k pn+1—k n+1,.0 04n+1
k—1>+(k>>ab +a"" b + a’b

Ol
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The binomial theorem

For example, we have
o (x+y)P=x>+2y+y>
o (x+y)P=x3+3x%y+3xy? +y3
o (x+y)=x*+4x3y +6x2y? + dxy3 + y*

and so on.
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Exercises

Compute Y 3_;(2k +1)

Compute 6_,(2(k — 1) + 1)

Prove the formula >7_;(2k — 1) = k2.
Compute the sum >°7_; 1071,
Compute the sum >7_; 271

Prove that Y_7_, (}) = 2".

Prove that 3_7_o(—1)*(}) = 0.
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