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Tips

You solve exercises
Today: Apostol Vol. 1, Chapter I.4

Lecturer: Yoh Tanimoto Mathematical Analysis I 30/09/2020 2 / 22



Mathematical induction

The set N of natural numbers can be caracterized by the Peano axioms:
1 ∈ N
For every n ∈ N, n + 1 ∈ N
For every n ∈ N, n + 1 6= 1
Let S ⊂ N. If 1 ∈ S and n + 1 ∈ S for any n ∈ S, then S = N.

In other words, N consists of 1 and all other numbers obtained by adding 1
repeatedly to 1, and that is all. This is the precise definition of N.
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Mathematical induction

With this characterization, we obtain the mathematical induction. Let
ϕ(n) be a set of propositions depending on n ∈ N. If ϕ(1) is true, and if
we can prove ϕ(n + 1) from ϕ(n), then ϕ(n) is true for all natural
numbers. Indeed, let S = {n ∈ N : ϕ(n) is true }. S is a subset of N,
1 ∈ S and if n ∈ S, then n + 1 ∈ S. From the Peano axioms, we have
S = N. In other words, ϕ(n) holds for all n ∈ N.

Lecturer: Yoh Tanimoto Mathematical Analysis I 30/09/2020 4 / 22



Mathematical induction

Example
n2 ≥ 2n − 1 for all n.
Indeed, we apply mathematical induction to ϕ(n) = “n2 ≥ 2n − 1”. With
n = 1, we have 1 ≥ 2 · 1− 1 = 1.
If we assume that this holds for n, then (n + 1)2 = n2 + 2n + 1 ≥
2n − 1 + 2n + 1 = 4n = 2n + 2n ≥ 2n + 1 = 2(n + 1)− 1, therefore, we
proved ϕ(n + 1) from ϕ(n). We can now conclude that ϕ(n) is true for all
n ∈ N.
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The well-ordering principle

We combine a proof by contradiction and mathematical induction.

Theorem
For any nonempty subset S ∈ N, there is the smallest element in S. That
is, there is n ∈ S such that n ≤ m for all m ∈ S.

Proof.
Let us call A the assumption that S is not empty.
Let us assume the contrary, that S does not admit the smallest element
(call this assumption B). It means that, for any n ∈ S, there is m ∈ S such
that m < n.
Let T = {n ∈ N : m > n, for all m ∈ S}. We show that T = N by
induction.
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Proof.
First, 1 ∈ T . To prove this, assume that 1 /∈ T (call this C1). Then,
there must be m ∈ S such that m ≤ 1. This means 1 ∈ S. But 1 is
always the smallest element of any subset of N, contradicting B.
Therefore, C1 is false and we obtain 1 ∈ T .
Next, let n ∈ T and we prove that n + 1 ∈ T . Assume that
n + 1 /∈ T (call this Cn). Then, there is m ∈ S such that m ≤ n + 1,
but since n ∈ T , it must hold that n < m. This means that
m = n + 1, and any ` ≤ n does not belong to S. Therefore,
m = n + 1 would be the smallest element of S, contradicting B.
Therefore, Cn is false and we obtain n + 1 ∈ T .

Then by induction (the Peano axioms) we have T = N. This implies that
for any m ∈ S it it holds for m < n for all n ∈ T = N. But there is no
such m (larger than any natural number), hence S = ∅. This contradicts
the assumption A of the theorem. Therefore, the assumption B made in
the proof is wrong. That is, S admits the smallest element.
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The well-ordering principle

Corollary
Let x ∈ R, x > 0. There is n ∈ N such that n − 1 ≤ x < n.

Proof.
By the Archimedean principle, there is n such that x < n. Therefore, the
set {m ∈ N : x < m} is nonempty, and by the well-ordering principle, it
has the smallest element n. As this is the smallest element, n− 1 ≥ x .

We have used this property before to find the decimal representation of x .
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The summation and product notations

Assume that we have a sequence of numbers, that is a family {an}n∈S of
real numbers indexed by S ⊂ N. This means that we have numbers
a1, a2, a3, · · · . Sometimes we start the index from 0, and have
a0, a1, a2, · · · .

Example
a1 = 1, a2 = 2, a3 = 3, · · ·
a1 = 1, a2 = 4, a3 = 9, · · ·
a1 = 4, a2 = 2534, a3 = 3

361 (a finite sequence stops at some n ∈ N)

When we have a (finite) sequence, we can sum all these numbers up:
a1 + · · ·+ an.
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The summation and product notations

When we have a (finite) sequence, we can sum all these numbers up:
a1 + · · ·+ an.
We denote this by the following symbol.

n∑
k=1

ak = a1 + · · ·+ an

In this symbol, k is a dummy index and plays no specific role. We have

n∑
k=1

ak =
n−1∑
k=0

ak+1 = a1 + · · ·+ an.

On the other hand, the number on the top (n in this example) is where
the sequence stops. Similarly, we can define∑n

k=m ak = am + am+1 + · · ·+ an for n ≥ m.
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The summation and product notations

More precisely, this is a recursive definition: We define
∑1

k=1 = a1 and∑n+1
k=1 ak =

∑n
k=1 ak + an+1 Similarly to mathematical induction, we define

in this way
∑n

k=1 ak for all natural numbers n ∈ N.

Example
a1 = 1, a2 = 2, a3 = 3.

∑3
k=1 ak = 1 + 2 + 3 = 6.

a1 = 1, a2 = 4, a3 = 9, a4 = 16.
∑4

k=1 ak = 1 + 4 + 9 + 16 = 30.
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The summation and product notations
Let us also introduce a symbol for product.

n∏
k=1

ak = a0 · a1 · · · · · an

Example
a1 = 1, a2 = 2, a3 = 3.

∏3
k=1 ak = 1 · 2 · 3 = 6.

a1 = 1, a2 = 4, a3 = 9, a4 = 16.
∏4

k=1 ak = 1 · 4 · 9 · 16 = 576.

In particular, we denote
For a ∈ R, an =

∏n
k=1 a. For example, a1 = a, a2 = a · a, a3 = a · a · a.

By convention, for a 6= 0, we set a0 = 1.
n! =

∏n
k=1 k = 1 · 2 · · · · · n. For example, 2! = 2, 3! = 6, 4! = 24, · · · .

By convention, we set 0! = 1.
For n, k ∈ N, n ≥ k, we define

(n
k
)

= n!
k!(n−k)! . For example,(4

2
)

= 4!
2!2! = 6.
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The summation formulas

Theorem
We have the following.∑n

k=1 k = n(n+1)
2 .

Proof.
We prove them by induction.

∑1
k=1 k = 1 = 1·2

2 = 1 is correct. Assume
the formula

∑n
k=1 k = k(k+1)

2 for n, then

n+1∑
k=1

k =
n∑

k=1
k + (n + 1) = n(n + 1)

2 + (n + 1)

=
(n

2 + 1
)

(n + 1) = (n + 2)(n + 1)
2 .

Then by induction the formula holds for all n ∈ N.
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The summation formulas

Theorem
We have the following.

∑n
k=1 k2 = n(n+1)(2n+1)

6 .

Proof.
We prove them by induction.∑1

k=1 k2 = 12 = 1·2·3
6 = 1 is correct. Assume the formula for n, then

n+1∑
k=1

k2 =
n∑

k=1
k2 + (n + 1)2 = n(n + 1)(2n + 1)

6 + (n + 1)2

=
(n(2n + 1)

6 + (n + 1)
)

(n + 1) = (2n2 + n + 6n + 6)(n + 1)
6

= (2n + 3)(n + 2)(n + 1)
6 = (2(n + 1) + 1)((n + 1) + 1)(n + 1)

6 .

Then by induction the formula holds for all n ∈ N.
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The summation formulas

Theorem
We have the following.

For a 6= 1,
∑n

k=1 ak = a(1−an)
1−a .

Proof.
We prove them by induction.

∑1
k=1 ak = a = a(1−a)

1−a is correct. Assume
the formula

∑n
k=1 ak = a(1−an)

1−a for n, then

n+1∑
k=1

ak =
( n∑

k=1
ak
)

+ an+1 = a(1− an)
1− a + an+1

= a − an+1 + an+1 − an+2

1− a = a(1− an+1)
1− a

Then by induction the formula holds for all n ∈ N.
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The binomial theorem

Lemma(n+1
k
)

=
( n

k−1
)

+
(n

k
)

for n ≥ k.

Proof.
We prove this by induction, but in a slightly different form: we prove that
the formula is correct for n = k, and prove that it holds for n + 1 assuming
the formula for n. In this way, we prove the formula for n ≥ k.
If n = k, we have

(k+1
k
)

= (k+1)!
k!(k+1−k)! = k + 1 = k!

(k−1)! + 1 =
( k

k−1
)

+
(k

k
)
.
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Proof.
Assuming the formula for n, we have(

n + 2
k

)
= (n + 2)!

k!(n + 2− k)!

= n + 2
n + 2− k

(
n + 1

k

)

= n + 2
n + 2− k

((
n

k − 1

)
+
(

n
k

))

= n + 2
n + 2− k

( n!
(k − 1)!(n − k + 1)! + n!

k!(n − k)!

)
= (n + 1)!

(k − 1)!(n + 2− k)! + n!
(k − 1)!(n + 2− k)!

+ n + 2
n + 2− k ·

n!
k!(n − k)!
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Proof.
Assuming the formula for n, we have(

n + 2
k

)
= (n + 1)!

(k − 1)!(n + 2− k)! + n!
(k − 1)!(n + 2− k)!

+ n + 2
n + 2− k ·

n!
k!(n − k)!

= (n + 1)!
(k − 1)!(n + 2− k)!

+ n!
k!(n + 1− k)! ·

k + (n + 2)(n + 1− k)
n + 2− k

= (n + 1)!
(k − 1)!(n + 2− k)! + (n + 1)!

k!(n + 1− k)! =
(

n + 1
k − 1

)
+
(

n + 1
k

)

and this concludes the induction.
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The binomial theorem

Theorem
For any a, b ∈ R, n ∈ N, (a + b)n =

∑n
k=0

(n
k
)
akbn−k , where in this

theorem we mean 00 = 1.

Proof.
By induction. For n = 0, this holds in the sense of 1 = 1.
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Proof.
Assume that (a + b)n =

∑n
k=0

(n
k
)
akbn−k holds. Then,

(a + b)n+1 = (a + b)n · (a + b) = (a + b)
n∑

k=0

(
n
k

)
akbn−k

=
n∑

k=0

(
n
k

)
ak+1bn−k +

n∑
k=0

(
n
k

)
akbn−k+1

=
n+1∑
k=1

(
n

k − 1

)
akbn+1−k +

n∑
k=0

(
n
k

)
akbn−k+1

=
n∑

k=1

((
n

k − 1

)
+
(

n
k

))
akbn+1−k + an+1b0 + a0bn+1

=
n+1∑
k=0

(
n + 1

k

)
akbn+1−k .
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The binomial theorem

For example, we have
(x + y)2 = x2 + 2xy + y2

(x + y)3 = x3 + 3x2y + 3xy2 + y3

(x + y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4

and so on.
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Exercises

Compute
∑5

k=1(2k + 1)
Compute

∑6
k=2(2(k − 1) + 1)

Prove the formula
∑n

k=1(2k − 1) = k2.
Compute the sum

∑n
k=1 10−1.

Compute the sum
∑n

k=1 2−1.
Prove that

∑n
k=0

(n
k
)

= 2n.
Prove that

∑n
k=0(−1)k(n

k
)

= 0.
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