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Announcement and corrections

Office hour: Tuesday 10:00–11:00 (if this does not suit you, just drop
me a line on Teams or via email)
A make-up lecture: September 29th (exercises on rational and real
numbers and sets)

Take notes! Even though I upload slides and lecture notes, it is very
useful for you to write formulas and graphs by yourselves. Try to
follow the arguments in the proofs, compute the examples, do
exercises.
Today: Apostol Vol. 1, Chapter I.3.

(commutativity) x + y = y + x , x · y = y · x
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Corrections

Theorem
Let A = {x ∈ Q : x2 < 2}(⊂ R). Then A is bounded above but sup A /∈ Q.

Proof.
A is bound above. Let s = sup A ∈ R. We prove s2 = 2 by contradiction.

if s2 < 2, then we take ε > 0 such that 0 < ε < 2−s2

s (or sε < 2− s2)
and ε < s. Then
(s + ε

4)2 = s2 + s ε
2 + ε2

16 < s2 + sε
2 + sε

2 < s2 + sε < 2, therefore, s is
not an upper bound of A (because s + ε

4 ∈ A), contradiction.
if s2 > 2, then we take ε > 0 such that 0 < ε < s2−2

s (or sε < s2 − 2)
and ε < s. Then (s − ε

4)2 = s2 − s ε
2 + ε2

16 > s2 − sε > 2, therefore, s
is not the least upper bound of A (because s − ε

4 ∈ A is another
upper bound, smaller than s), contradiction.

But s ∈ Q never satisfies s2 = 2. Hence s = sup A(=
√

2) /∈ Q.
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Intervals
In the set of real numbers, we can consider intervals: let a, b ∈ R and
a < b. We introduce

(a, b) = {x ∈ R : a < x , x < b} (an open interval)
(a, b] = {x ∈ R : a < x , x ≤ b}
[a, b) = {x ∈ R : a ≤ x , x < b}
[a, b] = {x ∈ R : a ≤ x , x ≤ b} (a closed interval)
(a,∞) = {x ∈ R : a < x}
[a,∞) = {x ∈ R : a ≤ x}
(−∞, b) = {x ∈ R : x < b}
(−∞, b] = {x ∈ R : x ≤ b}

Remember that, a, b are given numbers, and x is a “dummy” number.
You can write them in a different way, without using x :

(a, b) is the set of all numbers larger than a and smaller than b
[a, b] is the set of all numbers larger than or equal to a and smaller
than or equal to b
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Intervals

Example
Consider (0, 1).

0.1, 0.2, 0.5, 0.999 ∈ (0, 1).
0, 1, 2, 3, 10,−1,−2 /∈ (0, 1).
sup(0, 1) = 1.
inf(0, 1) = 0.

Consider [0, 1].
0, 0.1, 0.2, 0.5, 0.999, 1 ∈ (0, 1).
2, 3, 10,−1,−2 /∈ (0, 1).
sup(0, 1) = 1.
inf(0, 1) = 0.
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Intervals

( )

0 10.4−1 3
[ ]

0 10.4

Figure: Open and closed intervals (0, 1) and [0, 1]. The open interval does not
include the edges 0, 1, while the closed interval [0, 1] does.

Lecturer: Yoh Tanimoto Mathematical Analysis I 28/09/2020 6 / 20



Operations on sets

Let A,B be subsets of R and a ∈ R. We denote various subsets R as
follows.

A + a = {x ∈ R : x = y + a for some y ∈ A} = {y + a : y ∈ A}
A− a = {x ∈ R : x = y − a for some y ∈ A} = {y − a : y ∈ A}
aA = {x ∈ R : x = ay for some y ∈ A} = {ay : y ∈ A}
A + B = {x ∈ R : x = y + z for some y ∈ A, z ∈ B} = {y + z : y ∈
A, z ∈ B}
A− B = {x ∈ R : x = y − z for some y ∈ A, z ∈ B} = {y − z : y ∈
A, z ∈ B}
AB = {x ∈ R : x = yz for some y ∈ A, z ∈ B} = {yz : y ∈ A, z ∈ B}
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Operations on sets

We write a < x < b as a shorthand notation for a < x and x < b.

Example
Consider A = (0, 1), x = 2. Then A + x = (2, 3), because if
0 < y < 1, 2 < y + 2 < 3. Note that the boundary 2, 3 is not
included.
Consider A = [1, 2], B = (2.4, 2.6). Then A + B = (3.4, 4.6). Note
that the boundary 2, 3 is not included, because there is no
x ∈ A, y ∈ B such that x + y = 3.4 or 4.6.
Consider A = [−1, 1), a = 2. Then 2A = [−2, 2).
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Operations on sets

( )
1 2

A x

3
( )
4 5

A + x

( )
1 2

A
[ ]

2.4 2.6

B
( )

3.4 4.6

A + B

[ )
−1 1

A (the smaller)
[ )
−2 2

2A (the larger)

Figure: Intervals and their operations. Top: (1, 2) + 3 = (4, 5). Middle:
(1, 2) + [2.4, 2, 6] = (3.4, 4.6). Bottom: 2[−1, 1) = [−2, 2).
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Operations on sets

Let us have a set defined by specification: A = {x ∈ R : ϕ(x)}, where
ϕ(x) is a statement on x . For example,
A = {x ∈ R : x > 0, x < 1} = (0, 1).
If you have another set B = {x ∈ R : ψ(x)} but ψ(x) and ϕ(x) are
equivalent, then the two sets contain the same elements, hence are the
same: A = B.

Example
0 < x < 1 and 1 < x + 1 < 2 are equivalent, therefore,
A = {x ∈ R : 0 < x < 1} = {x ∈ R : 1 < x + 1 < 2} = B(= (0, 1)).
x2 < 4 and −2 < x < 2 are equivalent, therefore,
A = {x ∈ R : x2 < 4} = {x ∈ R : −2 < x < 2} = B(= (−2, 2)).

Exercise Represent the set A = {x ∈ R : x2 ≥ 2} as an interval.
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Some properties of upper and lower bounds

Note that sup A, inf A are only defined for nonempty sets (otherwise the
definition is meaningless).

Lemma

If x , y ∈ R and x − ε < y for any ε > 0, then x ≤ y.

Proof.
By contradiction. If x > y , then by Archimedean property, we have n such
that 1

n < x − y , in other words, x − 1
n > y , which contradicts the

assumption that x − ε < y for arbitrary ε > 0.
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Some properties of upper and lower bounds

Recall that, for A ⊂ R bounded above, we have shown that for any ε > 0
there is x ∈ A such that sup A− ε < x .

Theorem
Let A,B ⊂ R and define C = A + B.

if A,B are bounded above, then A + B is bounded above and
sup A + sup B = sup C.
if A,B are bounded below, then A + B is bounded below and
inf A + inf B = inf C.
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Some properties of upper and lower bounds

Proof.
We prove only the first one, because the second one is analogous.
By the completeness axiom, A and B have the supremum sup A, sup B. As
sup A and sup B are upper bounds of A and B respectively, for any
element z ∈ C we have x ∈ A, y ∈ B such that z = x + y and x ≤ sup A,
y ≤ sup B hence z = x + y ≤ sup A + sup B. In particular, sup A + sup B
is an upper bound of C , hence sup C ≤ sup A + sup B.
Conversely, we know that, for any ε > 0, there is x ∈ A (and y ∈ B) such
that sup A− ε

2 < x (and sup B − ε
2 < y). Therefore,

sup A + sup B − ε
2 −

ε
2 = sup A + sup B − ε < x + y ≤ sup C for arbitrary

ε > 0, hence by Lemma, sup A + sup B ≤ sup C . Altogether, hence
sup C = sup A + sup B.
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Some properties of upper and lower bounds

Remember that sup A is the least (smallest) upper bound and inf B is the
greatest (largest) lower bound.

Theorem
Let A,B ⊂ R. If for any x ∈ A and y ∈ B it holds that x < y, then
sup A ≤ inf B.

Proof.
Any y ∈ B is an upper bound of A, hence sup A ≤ y . This means that
sup A is a lower bound of B, hence sup A ≤ inf B.
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The square roots of real numbers

Theorem
For any a ∈ R, a > 0, there is s ∈ R, s > 0 such that s2 = a.

We denote it by s =
√

a.
For any n ∈ N, we can define the n-th root of any positive number a and
we denote it by a 1

n . The existence can be proved similarly.
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Proof.
Let A = {x ∈ R : x2 < a} ⊂ R. Then A is bounded above: Indeed, as
x2 < a, there are two cases:

if a > 1, then x2 < a2 and hence x < a.
if a ≤ 1, then x2 < 1 and hence x < 1.

In either case, A is bounded.
Let s = sup A ∈ R. We prove s2 = a by contradiction.

if s2 < a, then we take ε > 0 such that 0 < ε < a−s2

s (or sε < a − s2)
and ε < s. Then
(s + ε

4)2 = s2 + s ε
2 + ε2

16 < s2 + sε
2 + sε

2 < s2 + sε < a, therefore, s is
not an upper bound of A (because s + ε

4 ∈ A), contradiction.
if s2 > 2, then we take ε > 0 such that 0 < ε < s2−a

s (or sε < s2 − a)
and ε < s. Then (s − ε

4)2 = s2 − s ε
2 + ε2

16 > s2 − sε > a, therefore, s
is not the least upper bound of A (because s − ε

4 ∈ A is another
upper bound, smaller than s), contradiction.
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Decimal representations of real numbers

We denote N0 = N ∪ {0}.
Any (positive) real number x ∈ R can be written in the form
x = a0 + a1

10 + a2
100 + · · · , where a0 is an integer and a1, a2, · · · are integers

between 0 and 9 (negative numbers can be most commonly written as
−
√

2 = −1.41421 · · · , although an analogous representation can apply to
negative numbers).
Examples:

1
3 = 0.33333 · · ·
√

2 = 1.41421 · · ·
π = 3.14159 · · ·
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Decimal representations of real numbers

Indeed, let x ∈ R be a real number and x > 0. By the Archimedean
property, there is a natural number n ∈ N0 such that n − 1 ≤ x < n (this
is possible, because any subset of N has the minimal element, which we
prove below). We take a0 = n − 1.
Note that 0 < x − a0 < 1. Therefore, 0 < 10(x − a0) < 10. Take a1 ∈ N0
the largest natural number such that a1 ≤ 10(x − a0). As it is the largest,
we have again 0 < 10(x − a0)− a1 < 1.
We can repeat this procedure and obtain an, and it always hold that
x − a0.a1 · · · an < 0.0 · · · 01︸ ︷︷ ︸

n-digits

.

Let A = {a0, a0.a1, a0.a1a2, a0.a1a2a3, · · · }. This A is bounded (by
a0 + 1), hence it has the supremum s. Note that x is un upper bound of
A, hence sup A ≤ x . On the other hand, if for any ε = 0.0 · · · 01︸ ︷︷ ︸

n-digits

, we have

x − ε < a0.a1 · · · an ∈ A, therefore, x ≤ sup A. Altogether, x = sup A = s.
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Decimal representations of real numbers

Theorem
A real number that is has nonrepeating decimal representation is irrational.

Proof.
We prove that any (positive) rational number has a repeating decimal
representation. Then the claim follows by contradiction.
Let x = a0.a1a2 · · · = p

q , p, q ∈ N. We can write p = nq + r , where
n, r ∈ N and 0 ≤ r < q (division with remainder). We set a0 = n. Then
we write 10r = n1q + r1 again, and wet a1 = n1. In this way, we obtain
the decimal representation of p

q , but there are only finitely many possible
values 0, 1, · · · q − 1 of r1 because we are doing the division with remainder
by q. This means that the numbers repeat after at largest q digits.

The converse of this (any irrational number has a nonrepeating decimal
representation) will be proven later.
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Exercises

Draw the set on the line [−1, 2] ∪ (−3,−2) ∪ (0, 5].
Determine the inf and sup of [−4, 0) ∪ (2, 3).
Determine the set (1, 3) + (−2, 2].
Determine the set 5 · (2, 3).
Represent the set {x ∈ R : x2 − 2x + 1 < 0} as an interval.
Represent the set {x ∈ R : x2 − 5x + 6 > 0} as a union of intervals.
Determine the decimal representation of 3

7 .
Give an algorithm to produce a nonrepeating decimal representation.
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