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Some tips

Writing math.
LATEX. You can try it here, and you can install the full set afterwards.
You need to learn some commands, but once you know it it’s very
powerful. All my lecture notes and slides are written in LATEX
Word processor (MS Word, Apple Pages, Open Office, Libre Office
(Insert → Objects → Formula)...).

Doing quick computations.
Wolfram Math Alpha You can just type some formulas in and it shows
the result.
Programming languages. Python (I used it to make the graph of the
SIR model), Java, C,· · ·

How many of you are in Rome or plan to come to Rome soon? Please
take this survey (or click the link in the chat).
Today: Apostolo Vol. 1, Chapter I.3.
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https://arachnoid.com/latex/
https://www.wolframalpha.com/
https://www.python.org/
https://forms.office.com/Pages/ResponsePage.aspx?id=Kr7FJGTXxUCZdYLQiuR9DknPbVqQMz9NjziyU5XrpN1UQU9DU0pMTFVSQlY3NjRYU0dUUTFJMEZLUiQlQCN0PWcu


Are rational numbers all we need?

It is true that, in the real world, we can measure quantities to a certain
accuracy, so we get numbers in a decimal representation:

c = 299792458[m · s−1] (the speed of light)
G = 0.0000000000667430(15)[m3kg−1s−2] (the gravitational
constant), where (15) means these digits might be incorrect.
Any other measured quantity in the real world.

And any experiment has a certain accuracy, so it makes sense only to write
a certain number of digits, so rational numbers seem to suffice.

Lecturer: Yoh Tanimoto Mathematical Analysis I 25/09/2020 3 / 20



Are rational numbers all we need?

But for certain cases, we know that we should consider irrational
numbers. For example,

√
2 = 1.41421356 · · · , the number x such that x2 = 2.

π = 3.1415926535 · · · , the circumference of the circle with diameter
1.
e = 2.718281828 · · · , Napier’s number (we will define it in the
lecture).
Any decimal number which is not repeating.
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Figure: Left: the right triangle with equal sides 1. By the Pytagoras’ theorem, the
longest side is

√
12 + 12 =

√
2. Right: the unit circle with radius 1 (diamenter 2).

The length of the circle is 2π.
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Irrationality of
√

2

For the next theorem, we need a proof by contradiction: by assuming
the converse of the conclusion, we derive a contradiction, then we can
conclude that the converse of the conclusion is false, that is, the
conclusion is correct.
Recall that an integer p is even if it is a multiple of 2 (there is another
integer r such that p = 2r), and p is odd if it is not even.

Theorem
√

2 is not a rational number.
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Irrationality of
√

2

Proof.
We prove this by contradiction, that is, we assume that

√
2 is a rational

number. So there are integers p, q such that
√

2 = p
q . We may assume

that this is already reduced (that is, not a fraction like 4
8 but like 1

2 . It’s
the form which you cannot simplify further).
As
√

2 ·
√

2 = 2, we have p
q ·

p
q = p2

q2 = 2, hence p2 = 2q2. As p
q is

reduced, there are two cases.
if p is odd, then the equality p2 = 2q2 is even = odd, contradiction.
if p is even, then q is odd and we can write is as p = 2r , with another
integer r , and p2 = 4r2 = 2q2, and 2r2 = q2. This is even = odd,
contradiction.

So, in all cases we arrived a contradiction from the assumption that
√

2 is
rational. This means that

√
2 is irrational.
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Irrational numbers

Exercise. Prove that 2
√

2 is irrational.

It has been proven that π and e are irrational, but they are more difficult.
Instead, it can be easily proven that any nonrepeating decimal number
cannot be rational. This means there are many irrational numbers.
In other words, the set of rational numbers have “many spaces between
them”. We should fill them in with irrational numbers, so that the set of
real numbers is a “continuum”.
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The axioms of the real numbers

Here we start the study of Mathematical Analysis, based on the set of real
numbers. Our approach is synthetic, in the sense that we take the axioms
for real numbers for granted, and develop the theory on them. It is also
possible to “costruct” real numbers from rational numbers, and rational
numbers from integers, integers from natural numbers, and so on, but at
some point we have to assume certain axioms for simpler objects. If you
are interested, look at “Dedekint’s cut” (for real numbers), or “Peano’s
axioms” (for natural numbers).
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https://en.wikipedia.org/wiki/Dedekind_cut
https://en.wikipedia.org/wiki/Peano_axioms
https://en.wikipedia.org/wiki/Peano_axioms


The axioms of the real numbers
We assume that, the set R of real numbers is equipped with operations
+, · and an order relation < and for x , y , z real numbers, x + y and x · y
are again real numbers and they satisfy (just the same for Q)

(commutativity) x + y = y + x , x · y = y · x
(associativity) (x + y) + z = x + (y + z), (x · y) · z = x · (y · z)
(distributive law) (x + y) · z = xz + yz
(zero and unity) There are special distinct rational numbers, called 0
and 1, such that x + 0 = x and x · 0 = 0. And x · 1 = x .
(negative) There is a only one rational number, which we call −x ,
such that x + (−x) = 0.
(inverse) If x 6= 0, there is only one rational number, which we call
x−1, such that x · x−1 = 1.
if 0 < x , 0 < y , then 0 < xy and 0 < x + y .
if x < y , then x + z < y + z .
if x 6= 0, either 0 < x or x < 0 but not both.
0 � 0
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The axioms of the real numbers

We can prove Theorems for real numbers corresponding to Theorems on
rational numbers. Therefore, the real numbers have the same properties as
the rational numbers, concerning the sum, product and order.

In addition, we will add an axiom about completeness (or continuum).

We say that S ⊂ R is bounded above if there is x ∈ R such that for any
y ∈ S it holds that y ≤ x , and we write S ≤ x . S is said to be bounded
below if there is x ∈ R such that for any y ∈ S it holds that y ≥ x , and
we write S ≥ x .
If S is both bounded above and below, we say that S is bounded.

If S is bounded above, then any x ∈ R such that S ≤ x is called an upper
bound of S. Similarly, if x ≤ S, then x is said to be a lower bound of S.
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The axioms of the real numbers

If S has a least upper bound, that is there is x such that S ≤ x and x ≤ y
for any upper bound y of S, then x is called the supremum of S and we
denote it by x = sup S. Similarly, if S has a largest lower bound x , then it
is called the infimum of S and we denote it by x = inf S.

R includes Z and Q: 1 ∈ R, hence 2 = 1 + 1, 3 = 1 + 1 + 1, · · · and
−1,−2, · · · ∈ R. Also, if p, q ∈ Z, p

q ∈ R.
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The completeness axioms

What distinguishes R from Q is the following.
(the least upper bound axiom, or the completeness axiom) every
nonempty subset S of R which is bounded above has a supremum:
there is B ∈ R such that B = sup S.

This should imply that
√

2 = 1.41421356 · · · belongs to R! Indeed, let us
take, by chopping the digits of

√
2, S = {1, 1.4, 1.41, 1.414, 1.4142, · · · }.

S is bounded above, indeed, 1.5 > 1, 1.4, 1.41, 1.414, · · · . On the other
hand, if x has a decimal representation, e.g. 1.415, then there is a smaller
number x ′ = 1.4149. So, sup S should be exactly

√
2. We will see this

more precisely later.
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The axioms of the real numbers

1 1.4 1.41 1.414 1.5

Figure: The set S approximating
√

2, which is bounded by 1.5.
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The Archimedean property

(A lemma is a theorem (a consequence of axioms) used to prove a more
important theorem)

Lemma
If S ⊂ R is bounded above and B = sup S, then for any ε > 0, there is
x ∈ S such that B − ε < x.

Proof.
By contradiction, assume that there is ε > 0 such that B − ε ≥ x for all
x ∈ S. Then B is not the least upper bound, because B − ε is an upper
bound of S and B − ε < B.
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The Archimedean property

Theorem
The set N = {1, 2, 3, · · · } is not bounded above.

Proof.
By contradiction, assume that N were bounded above. Then by the
completeness axiom, there is x = supN. By the lemma above, for ε = 1

2 ,
there is n ∈ N such that x − 1

2 < n. But then x < n + 1
2 < n + 1 ∈ N, and

this contradicts the assumption that x were the upper bound of N. This
implies that N is not bounded above.
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The Archimedean property

(A corollary is a theorem which follows easily from a more complicated
theorem)

Corollary
For any x ∈ R, there is n ∈ N such that x < n. For any y , z ∈ R and
z > y, there is n ∈ N such that 1

n < z − y.

Proof.
By the theorem above, x is not an upper bound of N, so there is n such
that x < n. By applying this to 1

z−y , there is n such that 1
z−y < n, which

implies that 1
n < z − y .
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The graphical representation of R

Therefore, we can represent the set of real numbers by a straight line, and
any point x ∈ R is on the line and it falls between an integer n and
another n − 1 (possibly x = n). Conversely, any point on the line gives an
element in R.
Any real number R has a decimal representation (next lecture).

n − 3 n − 2 n − 1 nx

0 1 2x1
n

Figure: Any x ∈ R falls between n − 1 and n (including equality) for some n ∈ N.
For any x > 0, there is n ∈ N such that 1

n < x .
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Note that Q does not have the completeness property!

Theorem
Let A = {x ∈ Q : x2 < 2}(⊂ R). Then A is bounded above but sup A /∈ Q.

Proof.
A is bounded above, indeed, if x2 < 2, then x2 < 4 = 22, and hence x < 2.
Let s = sup A ∈ R. Then s2 = 2. We prove this by contradiction.

if s2 < 2, then we take ε > 0 such that 0 < ε < 2−s2

s (or sε < 2− s2)
and ε < s. Then
(s + ε

4)2 = s2 + s ε
2 + ε2

16 < s2 + sε
2 + sε

2 < s2 + sε < 2, therefore, s is
not an upper bound of A (because s + ε

4 ∈ A), contradiction.
if s2 > 2, then we take ε > 0 such that 0 < ε < s2−2

s (or sε < s2 − 2)
and ε < s. Then (s − ε

4)2 = s2 − s ε
2 + ε2

16 > s2 − sε > 2, therefore, s
is not the least upper bound of A (because s − ε

4 ∈ A is another
upper bound, smaller than s), contradiction.

But s ∈ Q never satisfies s2 = 2. Hence s = sup A(=
√

2) /∈ Q.
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Exercises

Prove that 2
√

2 is irrational.
Prove that

√
3 is irrational.

Let A = {1, 1
2 ,

1
3 , · · · } = { 1

n : n ∈ N}. Determine inf A and sup A.
Let A = {0.9, 0.99, 0.999, · · · }. Determine inf A and sup A.
Let A = {0.3, 0.33, 0.333, · · · }. Determine inf A and sup A.
x = 0.000001. For which n does it hold that 1

n < x?
Draw the graph of the set {(x , y) ∈ R× R : y = x}.
Draw the graph of the set {(x , y) ∈ R× R : y = x2}.
Draw the graph of the set {(x , y) ∈ R× R : y < x2 + 1}.
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