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1. (1) Compute the derivative, with respect to t, of the function

f(t) =

∫ t3

t2

sinu

u
du.

(2) Let f ∈ C2(R2) be a solution of the first order linear partial differential equation

3
∂f

∂t
+ 2

∂f

∂x
= 0.

Find c ∈ R such that f is also a solution of the one dimensional wave equation

∂2f

∂t2
= c2

∂2f

∂x2
.

Solution.

(1) Fix t > 0. Take 0 < a < t and let us put F (s) =
∫ s
a

sinu
u
du, then F ′(s) = sin s

s
. Note

that F ′(s) can be extended to a continuous function by setting F ′(0) = 1. Then we have
f(t) = F (t3)− F (t2) and, by the chain rule,

f ′(t) = 3t2F ′(t3)− 2tF ′(t2) = 3t2 · sin t3

t3
− 2t · sin t2

t2
=

3 sin t3

t
− 2 sin t2

t
.

Similarly, the same formula is valid also for t < 0. For t = 0, we have f ′(0) = 0.

(2) We know that a general solution of the first differential equation can be written as
f(t, x) = g(2t − 3x), where g(s) is a differentiable function. As f ∈ C2(R2), g ∈ C2(R)
as well.

By the chain rule, we have

∂2f

∂t2
= 22g′′(2t− 3x) = 4g′′(2t− 3x),

∂2f

∂x2
= (−3)2g′′(2t− 3x) = 9g′′(2t− 3x).

From this we see that
∂2f

∂t2
=

9

4

∂2f

∂x2
. In other words, c = ±3

2
.



2. Find the extremal values of the function f(x, y, z) = x2 + y2 + z2 on the line L defined by
two equations x+ y + z = 1 and x− z = 2.

Solution.
Put G(x, y, z) = x+y+z−1 and H(x, y, z) = x−z−2. By Lagrange’s multiplier method,

there is λ1, λ2 ∈ R such that ∇f(x, y, z) = λ1∇G(x, y, z) + λ2H(x, y, z) at stationary points
(x, y, z) of f(x, y, z). Let us compute these gradients:

∇f(x, y, z) = (2x, 2y, 2z),

∇G(x, y, z) = (1, 1, 1),

∇G(x, y, z) = (1, 0,−1).

From the equation of the multiplier method, for a stationary point (x, y, z), we have

(2x, 2y, 2z) = (λ1, λ1, λ1) + (λ2, 0,−λ2).

Or equivalently, 2x = λ1 + λ2, 2y = λ1, 2z = λ1 − λ2.
In addition (x, y, z) must satisfy x + y + z = 1, x − z = 2. From this we have that

2 = 2(x+ y + z) = 3λ1, 2 = x− z = λ2. By solving these equations, we have λ1 = 2
3
, λ2 = 2.

By putting them in the equations above, we obtain x = 4
3
, y = 1

3
, z = −2

3
.

At this point (x, y, z) = (4
3
, 1
3
,−2

3
), we have f(4

3
, 1
3
,−2

3
) =

7

3
. As L is a line and f(x, y, z) =

x2 + y2 + z2 can be arbitrarily large when (x, y, z) is far from the origin, the point (4
3
, 1
3
,−2

3
)

is the minimum.



3. Let C be the curve {(x, y) : xy = 1, 1 ≤ x ≤ 3} in R2. Find a parametrization ααα(t) of C
starting at (1, 1) and ending at (3, 1

3
), and compute the line integral∫

C

fff · dααα,

where fff(x, y) = (y,−x4) is a vector field in R2.

Solution.
The equation xy = 1 can be written as y = 1

x
. By taking t = x as a parameter, we have

ααα(t) = (t, 1
t
), for t ∈ [1, 3]. This indeed starts at (1, 1) when t = 1 and ends at (3, 1

3
) when

t = 3.

To compute the line integral, we need ααα′(t) =

(
1,− 1

t2

)
, fff(ααα(t)) =

(
1

t
,−t4

)
. Now by

the definition of line integral, we have∫
C

fff · dααα =

∫ 3

1

(
1

t
,−t4

)
·
(

1,− 1

t2

)
dt

=

∫ 3

1

1

t
+ t2dt

=

[
log t+

t3

3

]3
1

= (log 3 + 9)−
(

0 +
1

3

)
= log 3 +

26

3
.



4. Compute the integral ∫∫∫
T

dxdydz (z + 1)

√
x2 + y2

4− x2 − y2

where
T := {(x, y, z) ∈ R3 : x2 + y2 − 2y ≤ 0, x2 + y2 + z2 ≤ 4}.

Solution.
Since x2 + y2 − 2y = x2 + (y − 1)2 − 1, the region T can be written as

T = {(x, y, z) ∈ R3 : x2 + (y − 1)2 ≤ 1, x2 + y2 + z2 ≤ 4}.

Namely, it is the intersection of the cylinder based on the disk x2 + (y − 1)2 ≤ 1 and the
sphere of radius 2 with the center at the origin. Note that, if x2 + y2 + z2 ≤ 4, then
x2 + y2 ≤ 4 and it also holds that x2 + (y − 1)2 ≤ 1. Therefore, T is xy-projectable with
S = {(x, y) ∈ R : x2 + (y − 1)2 ≤ 1} and

T = {(x, y, z) : (x, y) ∈ S,−
√

4− x2 − y2 ≤ z ≤
√

4− x2 − y2}.

With this expression, we have∫∫∫
T

dxdydz (z + 1)

√
x2 + y2

4− x2 − y2

=

∫∫
S

dxdy

∫ √4−x2−y2

−
√

4−x2−y2
(z + 1)

√
x2 + y2

4− x2 − y2
dz

=

∫∫
S

dxdy

√
x2 + y2

4− x2 − y2
·
[
z2

2
+ z

]√4−x2−y2

−
√

4−x2−y2

=

∫∫
S

dxdy

√
x2 + y2

4− x2 − y2
· 2
√

4− x2 − y2 = 2

∫∫
S

√
x2 + y2dxdy

To carry out the xy-integral, we go to the polar coordinate: x = r cos θ, y = r sin θ. Note that
(y− 1)2 = r2 sin2 θ− 2r sin θ+ 1 and hence x2 + (y− 1)2 = r2 cos2 θ+ r2 sin2 θ− 2r sin θ+ 1 =
r2 − 2r sin θ + 1. In the polar coordinate, S corresponds to

S̃ = {(r, θ) ∈ [0,∞)× [0, 2π) : r2 ≤ 2r sin θ} = {(r, θ) ∈ [0,∞)× [0, 2π) : r ≤ 2 sin θ}.

For any θ ∈ [0, π], there is some r ∈ [0,∞).
Finally, with the Jacobian determinant J(r, θ) = r,

2

∫∫
S

√
x2 + y2dxdy = 2

∫∫
S̃

r · rdrdθ = 2

∫ π

0

∫ 2 sin θ

0

r2drdθ

= 2

∫ π

0

[
r3

3

]2 sin θ
0

dθ =
16

3

∫ π

0

sin θ(1− cos2 θ)dθ =
16

3

[
− cos θ +

cos3 θ

3

]π
0

=
64

9
.



5. Let FFF (x, y, z) = (xy, e−y
2
, yz) be a vector field on R3 and

S = {(x, y, z) : x2 + z2 = 9, 0 ≤ x, 0 ≤ y ≤ 2}

be a surface in R3. Compute the surface integral∫
S

∫
FFF · nnn dS,

where nnn is a unit normal vector on S with positive x-component.

Solution.
S is the surface of the cylinder based on the disk x2 + z2 ≤ 9. As 0 ≤ x, We can

parametrize it by

rrr(y, θ) = (X(y, θ), Y (y, θ), Z(y, θ)) = (3 cos θ, y, 3 sin θ), θ ∈
[
−π

2
,
π

2

]
, y ∈ [0, 2]

In order to compute the surface integral, we need

∂rrr

∂y
= (0, 1, 0)

∂rrr

∂θ
= (−3 sin θ, 0, 3 cos θ)

∂rrr

∂y
× ∂rrr

∂θ
= (3 cos θ, 0, 3 sin θ)

∂rrr
∂y
× ∂rrr

∂θ
has positive x-component. From this, we have FFF (rrr(y, θ)) = (3y cos θ, e−y

2
, 3y sin θ).

Now by a formula for surface integral,∫
S

∫
FFF · nnn dS =

∫ 2

0

∫ π
2

−π
2

FFF (rrr(y, θ)) · ∂r
rr

∂y
× ∂rrr

∂θ
(y, θ)dθdy

=

∫ 2

0

∫ π
2

−π
2

9y(cos2 θ + sin2 θ)dθdy

= 9π · 1

2
[y2]20 = 18π.


