BSc Engineering Sciences — A. Y. 2018/19
Written exam of the course Mathematical Analysis 2
August 29, 2019

1. (1) Compute the derivative, with respect to ¢, of the function

(1) = /t Psinu
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(2) Let f € C*(R?) be a solution of the first order linear partial differential equation

Find ¢ € R such that f is also a solution of the one dimensional wave equation
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Solution.

(1) Fix t > 0. Take 0 < a < t and let us put F(s) = [ 2%y, then F'(s) = 25 Note

that F”(s) can be extended to a continuous function by setting £/(0) = 1. Then we have

f(t) = F(t?) — F(t*) and, by the chain rule,

sin t3 o sin t2 _ 3sin 3 2¢int?

/ _ 2F/3_2F/2: 2,
1) = 3 () — 2P (%) = 367 - > : :

Similarly, the same formula is valid also for ¢ < 0. For ¢ = 0, we have f'(0) = 0.

(2) We know that a general solution of the first differential equation can be written as
f(t,x) = g(2t — 3z), where g(s) is a differentiable function. As f € C?*(R?), g € C*(R)
as well.

By the chain rule, we have

of = 2%¢"(2t — 3z) = 49" (2t — 37) of = (=3)%¢"(2t — 3x) = 99" (2t — 3x).
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From this we see that 8_f = ?ﬂ In other words, ¢ = +—.
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2. Find the extremal values of the function f(z,y,2) = 2%+ y*+ 2? on the line L defined by
two equations r +y+z2=1and x — 2z = 2.

Solution.

Put G(z,y,2) = z+y+z—1and H(x,y, z) = x—2z—2. By Lagrange’s multiplier method,
there is A1, Ay € R such that Vf(x,y,2) = MVG(z,y, 2) + \oH(z,y, z) at stationary points
(x,y,z) of f(x,y,z). Let us compute these gradients:

Vi(x,y,z) = (2x,2y,22),
VG(z,y,z)=(1,1,1),
VG(z,y,z) = (1,0,—1).
From the equation of the multiplier method, for a stationary point (z,y, z), we have

(22,2y,22) = (M, A, A1) + (A2, 0, —Xo).

Or equivalently, 2z = Ay + A9, 2y = A, 22 = A\ — \o.
In addition (z,y,z) must satisfy z + y + z = 1,2 — z = 2. From this we have that
2=2(x+y+2z) =3\,2=1x— 2= ). By solving these equations, we have A\; = %, Ao = 2.

By putting them in the equations above, we obtain z = %, Yy = %, z= —%.
7
At this point (z,y, 2) = (%, %, —%), we have f(%, %, —%) =3 As Lisaline and f(z,y,2) =

-
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22 +y? + 22 can be arbitrarily large when (z,y, 2) is far from the origin, the point (
is the minimum.



3. Let C be the curve {(x,y) : zy = 1,1 < z < 3} in R?. Find a parametrization a(t) of C
starting at (1,1) and ending at (3,31), and compute the line integral

/Cf-da,

where f(x,y) = (y, —z?) is a vector field in R

Solution.

The equation xy = 1 can be written as y =
a(t) = (t, 1), for t € [1,3]. This indeed starts a
t=3.

To compute the line integral, we need o/(t) = (1, -

8] =

. By taking ¢t = x as a parameter, we have

(1,1) when ¢ = 1 and ends at (3,3) when

), fla(t)) = (1,—154). Now by
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the definition of line integral, we have
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4. Compute the integral

x? + y?
dxdyd 1)y | ————
///T:cyz(z—i- ) R

To={(z,y,2) €ER* 1 2® + 9" =2y <0, 2" + 9" + 2° <4},

where

Solution.
Since x* + y* — 2y = 2% + (y — 1)® — 1, the region T can be written as

T={(z,y,2) €R® : 2* + (y —1)* < 1, 2® +9° + 2* < 4}.

Namely, it is the intersection of the cylinder based on the disk 22 + (y — 1)> < 1 and the
sphere of radius 2 with the center at the origin. Note that, if 2% + y? + 22 < 4, then
22 + y*> < 4 and it also holds that 2% + (y — 1)? < 1. Therefore, T is zy-projectable with
S={(x,y) eR:2?+ (y —1)> <1} and

T=A(zx,y,2): (x,y) €S, —/4—a? —y?> < 2 < /4 — 22—y}

With this expression, we have

x? + y?

41271/ x2+y2
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To carry out the xy-integral, we go to the polar coordinate: x = rcos#,y = rsinf. Note that
(y—1)%2 = r?sin”*0 — 2rsin @+ 1 and hence 22+ (y — 1)? = r2cos? 0 +r?sin? 0 — 2rsinf + 1 =
r? — 2rsinf + 1. In the polar coordinate, S corresponds to

S ={(r,0) €[0,00) x [0,27) : 2 < 2rsin@} = {(r,0) € [0,00) x [0,27) : r < 2sin f}.

For any 6 € [0, 7], there is some r € [0, 00).
Finally, with the Jacobian determinant J(r, ) = r,

g 2sin 6
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5. Let F(z,y,2) = (zy, 6_92, yz) be a vector field on R?® and
S={(x,y.2): 2’ +2°=9,0<2,0<y <2}

be a surface in R3. Compute the surface integral

/ F -ndS,
S

where n is a unit normal vector on S with positive z-component.

Solution.
S is the surface of the cylinder based on the disk 22 4+ 22 < 9. As 0 < z, We can

parametrize it by

r(y,0) = (X(y,0),Y(y,0), Z(y,0)) = (3cosb,y,3sinb), RS [ W] y € [0,2]

T
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In order to compute the surface integral, we need

or

~ (0.1

ay (07 70)

or ,

ke (—3sinh, 0,3 cosh)
or 8
8y g7 = (3cos6,0,3sin6)

% x 55 has positive 2-component. From this, we have F(r(y,0)) = (3y cos, eV, 3ysinf).

Now by a formula for surface integral,

//F ndsS — // @x%( 0)dody

/ / 9y(cos? O + sin® 0)dOdy
1

:97T~§[y 72 = 187.
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