
BSc Engineering Sciences – A. Y. 2018/19
Written exam of the course Mathematical Analysis 2

June 24, 2019

Last name: ................................................. First name: ........................................................
Matriculation: .................................................

Solve the following problems, motivating in detail the answers.

1.

(1) Find a function g : R→ R such that the solution u(x, t) of the wave equation
∂2u

∂t2
= c2

∂2u

∂x2

u(x, 0) =
1

1 + x2
∂u

∂t
(x, 0) = g(x)

is given by u(x, t) = 1
1+(x−ct)2 . (Note after the exam: in the original paper there was a

typo in the last line: ∂u
∂x

should have been ∂u
∂t

).

(2) Find a function g : (0,+∞) → R such that f(x, y) = g(
√
x2 + y2) is a solution of the

2-dimensional Poisson equation

∂2f

∂x2
+
∂2f

∂y2
=
√
x2 + y2

(Hint: express the Laplacian ∂2f
∂x2

+ ∂2f
∂y2

in polar coordinates.)

Solution.

(1) As u(x, t) = 1
1+(x−ct)2 is given, we can compute

∂u

∂x
(x, t) =

−2(x− ct)
(1 + (x− ct)2)2

and hence g(x) = ∂u
∂x

(x, 0) = −2x
(1+x2)2

.

(2) We know that, with the polar coordinates x = r cos θ, y = r sin θ,

∂2f

∂x2
(r, θ) +

∂2f

∂y2
(r, θ) =

∂2f

∂r2
(r, θ) +

1

r

∂f

∂r
(r, θ) +

1

r2
∂2f

∂θ2
(r, θ).

The function f(x, y) = g(
√
x2 + y2) depends only on r =

√
x2 + y2, therefore, f(r, θ) =

g(r). The given equation is equivalent to

r =
∂2f

∂r2
(r, θ) +

1

r

∂f

∂r
(r, θ) =

d2g

dr2
(r) +

1

r

dg

dr
(r),



which, in terms of h(r) := g′(r) becomes the first order linear ordinary differential equa-
tion

h′(r) +
1

r
h(r) = r.

This has the general solution

h(r) = e−
∫

dr
r

(∫
dr e

∫
dr
r r + c1

)
=
r2

3
+
c1
r

and therefore g(r) =
∫
dr h(r) = r3

9
+ c1 log r + c2, with c1, c2 ∈ R arbitrary integration

consants. Therefore the required solution is

f(x, y) =
1

9
(x2 + y2)

3
2 +

c1
2

log(x2 + y2) + c2.
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2.

(1) Let us set (x1, y1) = (1, 2), (x2, y2) = (2, 3), (x3, y3) = (−1, 1). Find and classify all the
stationary points (a, b) ∈ R2 of the function f(a, b) =

∑3
n=1(axn + b− yn)2.

(2) Compute the derivative of the following function g(x) of x:

g(x) =

∫ 1

− sinx

cos(t3)dt.

Solution.
(1) For the f given above, it holds that

∇f(a, b) =

(
∂f

∂a
,
∂f

∂b

)
=

(
3∑

n=1

2xn(axn + b− yn),
3∑

n=1

2(axn + b− yn)

)
.

By putting the concrete coordinates (x1, y1) = (1, 2), (x2, y2) = (2, 3), (x3, y3) = (−1, 1), this
is

∇f(a, b)

= (2(a+ b− 2) + 4(2a+ b− 3)− 2(−a+ b− 1), 2(a+ b− 2) + 2(2a+ b− 3) + 2(−a+ b− 1))

= (2(6a+ 2b− 6), 2(2a+ 3b− 6))

At stationary points, ∇f(a, b) = 000 holds. Namely,

2(6a+ 2b− 6) = 0, 2(2a+ 3b− 6) = 0.

By solving these equations, we obtain a = 9
14
, b = 11

7
.

To classify this point, let us compute the Hessian matrix:(
6 2
2 3

)
.

Its determinant is 6× 3− 2× 2 = 14 > 0, its trace is 6 + 3 = 9 > 0, therefore, the eigenvalues
are positive, and the point ( 9

14
, 11

7
) is a minimum.

(2)
Let us put F (t) a primitive function of cos(t3), namely F ′(t) = cos(t3), then g(x) =

F (1)−F (− sinx). By the chain rule, g′(x) = −(− cosx)·F ′(− sinx) = cos x cos((− sinx)3) =
cosx cos(− sin3 x).



Matriculation: .................................................

3. Determine whether the following vector field on R2

fff(x, y) =
(
cosxy − xy sinxy, −x2 sinxy + x3

)
is a gradient of some scalar field. Depending on this result,

• If fff(x, y) is a gradient, find one of these scalar fields ϕ such that fff(x, y) = ∇ϕ(x, y).

• If fff(x, y) is not a gradient, compute
∫
C
fff · dααα, where

ααα(t) =


(t, 0) 0 ≤ t ≤ 1

(1− (t− 1), (t− 1)) 1 ≤ t ≤ 2

(0, 1− (t− 2)) 2 ≤ t ≤ 3

Solution.
Let us call fff(x, y) = (P (x, y), Q(x, y)), where P (x, y) = cos xy − xy sinxy, Q(x, y) =
−x2 sinxy + x3. We compute:

∂P

∂y
(x, y) = −x sinxy − x sinxy − x2y cosxy = −2x sinxy − x2y cosxy,

∂Q

∂x
(x, y) = −2x sinxy − x2y cosxy + 3x2,

and we see that they are different. This implies that fff is not a gradient.
To compute the line integral

∫
C
fff · dααα, this is equal to

∫∫
S
∂Q
∂y

(x, y) − ∂P
∂x

(x, y)dxdy by
Green’ theorem, where S is the region surrounded by the curve C, namely S is the triangle
{(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1− x}. We carry out the integral:∫

C

fff · dααα =

∫∫
S

∂Q

∂y
(x, y)− ∂P

∂x
(x, y)dxdy

=

∫∫
S

3x2dxdy = 3

∫ 1

0

x2
[∫ 1−x

0

dy

]
dx

= 3

∫ 1

0

x2(1− x)dx = 3

[
x3

3
− x4

4

]1
0

=
1

4
.
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4. Compute the integral ∫∫∫
D

(sinx+ y2)z dxdydz

where

D =

{
(x, y, z) ∈ R3 :

√
x2

9
+
y2

4
≤ z ≤

√
1− x2

9
− y2

4

}
.

Solution.

There is z ∈ R such that
√

x2

9
+ y2

4
≤ z ≤

√
1− x2

9
− y2

4
for some x, y ∈ R if and

only if
√

x2

9
+ y2

4
≤
√

1− x2

9
− y2

4
, or equivalently x2

9
+ y2

4
≤ 1

2
. Therefore, the region D is

xy-projectable and can be written as

D =

{
(x, y, z) ∈ R3 : (x, y) ∈ S,

√
x2

9
+
y2

4
≤ z ≤

√
1− x2

9
− y2

4

}
,

where S =
{

(x, y, z) ∈ R2 : 0 ≤ x2

9
+ y2

4
≤ 1

2

}
.

The integral can be reduced to∫∫∫
D

(sinx+ y2)z dxdydz =

∫∫
S

(sinx+ y2)

∫ √
1−x2

9
− y2

4√
x2

9
+ y2

4

zdz

 dxdy
=

1

2

∫∫
S

(sinx+ y2)
[
z2
] ∫ √

1−x2

9
− y2

4√
x2

9
+ y2

4

dxdy

=

∫∫
S

(sinx+ y2)

(
1

2
− x2

9
− y2

4

)
dxdy

As sinx is an antisymmetric function (sin(−x) = − sinx) and
(

1
2
− x2

9
− y2

4

)
is symmetric in

x, and the integral region is symmetric in x, the term with sinx vanishes.
If we change to the coordinate x = 3r cos θ, y = 2r sin θ, then the Jacobian is

det

(
3 cos θ 2 sin θ
−3r sin θ 2r cos θ

)
= 6r,

and S corresponds to S̃ = {(r, θ) : 0 ≤ r ≤ 1√
2
, 0 ≤ θ ≤ 2π}. The remaining integral becomes∫∫

S

y2
(

1

2
− x2

9
− y2

4

)
dxdy =

∫∫
S̃

4r2 sin2 θ

(
1

2
− r2

)
6rdrdθ

=

∫ 2π

0

[∫ 1√
2

0

sin2 θ
(
12r3 − 24r5

)
dr

]
dθ =

[
θ

2
− sin 2θ

4

]2π
0

[
3r4 − 4r6

] 1√
2

0

= π

(
3

4
− 1

2

)
=
π

4
.
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5. Let FFF (x, y, z) = (xz, yz, 0) be a vector field on R3 and

S = {(x, y, z) : x2 + y2 − z2 = −4, 0 ≤ z ≤ 3}

be a surface in R3. Compute the surface integral∫
S

∫
FFF · nnn dS,

where nnn is a unit normal vector on S with positive z-component.

Solution.
x2 + y2 − z2 = −4 ⇐⇒ x2 + y2 = z2 − 4, hence there is such a triple (x, y, z) of real

numbers if and only if z2 ≥ 4. Together with the condition 0 ≤ z ≤ 3, this means that
2 ≤ z ≤ 3. Correspondingly, 0 ≤ x2 + y2 ≤ 5, and for such (x, y), there is a unique z with
x2 + y2 − z2 = −4, namely, z =

√
x2 + y2 + 4.

Now we can paramezrize S by rrr(u, v) = (u, v, f(u, v)), where f(u, v) =
√
u2 + v2 + 4.

Then ∂rrr
∂u

(u, v) = (1, 0, u√
u2+v2+4

), ∂rrr
∂v

(u, v) = (0, 1, v√
u2+v2+4

) and

∂rrr

∂u
× ∂rrr

∂v
(u, v) =

(
−u√

u2 + v2 + 4
,

−v√
u2 + v2 + 4

, 1

)
.

Therefore, by the formula for the surface integral of a vector field,∫
S

∫
FFF · nnn dS

=

∫∫
0≤u2+v2≤5

(u
√
u2 + v2 + 4, v

√
u2 + v2 + 4, 0) ·

(
−u√

u2 + v2 + 4
,

−v√
u2 + v2 + 4

, 1

)
dudv

= −
∫∫

0≤u2+v2≤5

(u2 + v2)dudv = −
∫ 2π

0

[∫ √5
0

r2rdr

]
dθ = −1

4
· 2π · 25 = −25π

2
.

Note: as the surface S is not the boundary of a solid, one cannot use directly Gauss’
theorem. One way to use it is to add the upper surface S̃ = {(x, y, z) : x2 + y2 = 5}. Then
S ∪ S̃ is the boundary of the solid V = {(x, y, z) : x2 + y2 − z2 ≤ −4, 2 ≤ z ≤ 3}. Then one
can apply Gauss’ theorem, but now the vector field in the question is incoming for V , hence
one has to reverse the sign. Now the volume integral reduces to the integral of the function
2z, which is not diffucult.


