BSc Engineering Sciences — A. Y. 2018/19
Written exam of the course Mathematical Analysis 2
June 24, 2019
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Solve the following problems, motivating in detail the answers.

1.
(1) Find a function g : R — R such that the solution u(z,t) of the wave equation

Pu 0%

o ¢ @1
u(z,0) = ——

1+ 22
ou

5.0 = g(2)

is given by u(z,t) = m (Note after the exam: in the original paper there was a

typo in the last line: % should have been g—?).

(2) Find a function g : (0,+00) — R such that f(z,y) = g(\/2% + y?) is a solution of the
2-dimensional Poisson equation

an an 5 5
%+a—3/2—\/$ +vy

(Hint: express the Laplacian % + giyé in polar coordinates.)

Solution.
(1) As u(z,t) = 1+(zlfct)2 is given, we can compute
8u( 9 —2(z — ct)
— ‘/I/‘ f—
or (14 (x — ct)?)?
and hence g(z) = 2%(z,0) = (11?5)2-

(2) We know that, with the polar coordinates z = rcos @,y = rsin#,

0? 0?
a—;;@: ) + —f(r, 0)

oy?
The function f(z,y) = g(v/2% + y?) depends only on r = \/z2 + y2, therefore, f(r,0) =
g(r). The given equation is equivalent to
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which, in terms of h(r) := ¢'(r) becomes the first order linear ordinary differential equa-
tion ]
h'(r) + =h(r) =r.
r

This has the general solution

2
h(r):e_f% </d7“e (f"TT—FCl) :%4—%

and therefore g(r) = [drh(r) = g + 1 logr + ¢, with ¢, co € R arbitrary integration
consants. Therefore the required solution is

1 -
fay) = 5@ +9")} + T log(a +47) + o
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2.

(1) Let us set (x1,11) = (1,2), (x2,92) = (2,3), (x3,93) = (—1,1). Find and classify all the
stationary points (a,b) € R? of the function f(a,b) = 3°_ (az, + b — y,)>.

(2) Compute the derivative of the following function g(z) of x:

o(z) = /_ C cos(B)t

sinz

Solution.
(1) For the f given above, it holds that

3
Vf(a, b) = (Z_ﬁa %) = (Z QIn(axn +b— yn)7 Z2(al’n +b— yn)) .

n=1

By putting the concrete coordinates (z1,y1) = (1,2), (2, y2) = (2,3), (x3,y3) = (=1, 1), this
is

Vf(a,b)
=2(a+b—-2)+42a+b—-3)—2(—a+b—-1), 2(a+b—2)+22a+b—3)+2(—a+b—1))
= (2(6a + 2b —6), 2(2a + 3b—6))

At stationary points, V f(a,b) = 0 holds. Namely,

2(6a + 2b — 6) = 0, 2(2a+ 3b — 6) = 0.

By solving these equations, we obtain a = 1%, b= %

To classify this point, let us compute the Hessian matrix:

6 2

2 3 /)
Its determinant is 6 x 3—2 x 2 = 14 > 0, its trace is 6 +3 = 9 > 0, therefore, the eigenvalues
are positive, and the point (%, 1—71) is a minimum.
(2)

Let us put F(t) a primitive function of cos(#?), namely F’(t) = cos(t?), then g(z) =

F(1)— F(—sinz). By the chain rule, ¢'(x) = —(— cosx)- F'(—sinz) = cos x cos((— sinx)3) =
cos x cos(— sin® z).
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3. Determine whether the following vector field on R?
f(z,y) = (coszy — zysinzy, —a*sinzy + z°)
is a gradient of some scalar field. Depending on this result,

o If f(z,y) is a gradient, find one of these scalar fields ¢ such that f(z,y) = Vo(z,y).

o If f(x,y) is not a gradient, compute [, f - da, where

(t,0) 0<t<1
a(t) =4 (1—(t—1),(t—1) 1<t<?2
(0,1 (t —2)) 2<t<3

Solution.

Let us call f(a: y) = (P(z,y),Q(z,y)), where P(z,y) = cosxy — xysinzy, Q(z,y) =
—x?sinxy + x3. We compute:

oP . . 2 . 2
a—(x,y) = —xsinzy — xsinxy — r°ycosxy = —2x sinxy — 7Y cos 1y,
Y

0
a—Q(x, y) = —2wsinzy — 2%y cos vy + 317,
x

and we see that they are different. This implies that f is not a gradient

To compute the line integral fcf dex, this is equal to [[ 22 55 (T:Y) — 98 (x,y)dzdy by
Green’ theorem, where S is the region surrounded by the curve C namely S is the triangle
{(z,y): 0<2<1,0<y<1-—2z}. Wecarry out the integral:

[ £eda= [ G -5 )
//Siiazzdxdy—3 2{/0133 }

1 3
— 2(1 — z)da = x——x— _
3/0:0( x)dx 3[3 1 1

dxdy
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/// (sinz + y°)z devdydz
D
2 2 2 2
D = R‘”’:\/x— v < <\/1—x——y— .
{(x,y,z)e 9 + 4 PN 9 1
Solution.
There is z € R such that \/%2—1—% < z <y —%2—% for some z,y € R if and

2

only if \/%2 + yff < \/1 — “%2 — %, or equivalently % + 4 < % Therefore, the region D is

xy-projectable and can be written as

2 2 2 2
D= R3 - JELY 28

where S = {(:L',y,z) eR?2:0< %24- % < %}
The integral can be reduced to

4. Compute the integral

where

2 2

A1z _ Y~
sinx + y*)z dovdydz = sina + 1° s zdz | dxdy
2 2
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1 Vi=% -7
= - //(sinx +v7) [2°] / dxdy
2/ /s =222

4

1 2 2
://S(sinx—i—yQ) (5—%—%) dzdy

o : . : : : 2,2 . i
As sinz is an antisymmetric function (sin(—z) = —sinx) and <% - - yz) is symmetric in

x, and the integral region is symmetric in z, the term with sin z vanishes.
If we change to the coordinate x = 3r cosf,y = 2rsin ), then the Jacobian is

3cost 2sin 6
. ( —3rsinf  2rcost ) = 6r,

and S corresponds to S = {(r,0):0<r< \/Li’ 0 < 6 < 2x}. The remaining integral becomes

1 22 g2 1
2 (- _ =2 _J _ 2 2 L2
//Sy <2 9 4)dxdy //547" sin 9(2 r)6rdrd9

27 % : 2m 1
_ / [ / " sin?0 (120 — 241°) dr] do = {g - Slrfq [3r* — 4552
0 0

0
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5. Let F(x,y,2) = (z2z,yz,0) be a vector field on R? and
S={(r,y,2): 2> +y* — 2= -4, 0< 2 < 3}

be a surface in R®. Compute the surface integral

/ F -ndS,

S

where n is a unit normal vector on S with positive z-component.

Solution.

2?2 +y? — 22 = —4 < 2% + y?> = 2? — 4, hence there is such a triple (x,y, z) of real

numbers if and only if 22 > 4. Together with the condition 0 < z < 3,

this means that

2 < z < 3. Correspondingly, 0 < z% + y* < 5, and for such (z,y), there is a unique z with

22 + 9% — 22 = —4, namely, 2 = /22 + 2 + 4.

Now we can paramezrize S by r(u,v) = (u,v, f(u,v)), where f(u,v)

Then %(U,’U) = (17()’ ﬁ)? %(U,U) = ( L ﬁ) and

& X @(u v) = ( —u Y 1)
ou  ov Viz+ 2 +4 Vi +02+4 )

Therefore, by the formula for the surface integral of a vector field,

/F-ndS

S

—U —v

= Vu?+0v2+4.

— // (u\/u2+v2—|—4,v\/u2+v2+4,0)~(

0<u2+v2<5

V2 + 02 + 4" Vul + 02 +4°

1) dudv

27 \/5
1 2
== // (uz—i-UQ)dudU:—/ [/ 7’27’d7’] d@z——‘27r-25:—ﬁ.
0 0 4 2

0<u2+v2<5

Note: as the surface S is not the boundary of a solid, one cannot use directly Gauss’
theorem. One way to use it is to add the upper surface S = {(z,v, 2) : 22 + y*> = 5}. Then
SU S is the boundary of the solid V = {(z,y, 2) : 22 + y> — 2> < —4, 2 < z < 3}. Then one
can apply Gauss’ theorem, but now the vector field in the question is incoming for V', hence
one has to reverse the sign. Now the volume integral reduces to the integral of the function

2z, which is not diffucult.



