Mathematical Analysis II, 2018/19 First semester

Yoh Tanimoto

Dipartimento di Matematica, Università di Roma Tor Vergata Via della Ricerca Scientifica 1, I-00133 Roma, Italy email: hoyt@mat.uniroma2.it

We basically follow the textbook "Calculus" Vol. I,II by Tom M. Apostol, Wiley.

Nov 26. Implicit functions and partial derivatives

1. The equation $x+z+(y+z)^2=6$ defines implicitly a function f(x,y)=z. Compute $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ in terms of x,y,z. Check that (1,1,1) satisfies the equation, and compute $\frac{\partial f}{\partial x}(1,1), \frac{\partial f}{\partial y}(1,1)$. Solution. Put $F(x,y,z)=x+z+(y+z)^2-6$. The partial derivatives are $\frac{\partial F}{\partial x}=1, \frac{\partial F}{\partial y}=2(y+z), \frac{\partial F}{\partial z}=1+2(y+z)$. For the partial derivatives of f, using the formula of the lecture,

$$\frac{\partial f}{\partial x}(x,y) = -\frac{\frac{\partial F}{\partial x}(x,y,f(x,y))}{\frac{\partial F}{\partial z}(x,y,f(x,y))} = -\frac{1}{1+2(y+f(x,y))},$$
$$\frac{\partial f}{\partial y}(x,y) = -\frac{\frac{\partial F}{\partial y}(x,y,f(x,y))}{\frac{\partial F}{\partial z}(x,y,f(x,y))} = -\frac{2(y+f(x,y))}{1+2(y+f(x,y))}.$$

By putting (x, y, f(x, y)) = (1, 1, 1),

$$\begin{split} &\frac{\partial f}{\partial x}(1,1) = -\frac{1}{5},\\ &\frac{\partial f}{\partial y}(1,1) = -\frac{\frac{\partial F}{\partial y}(x,y,f(x,y))}{\frac{\partial F}{\partial z}(x,y,f(x,y))} = -\frac{4}{5}. \end{split}$$

- 2. Consider two surfaces $2x^2+3y^2-z^2-25=0$, $x^2+y^2-z^2=0$. The intersection C can be parametrized as (X(z),Y(z),z).
 - (a) Check that C passes the point $P = (\sqrt{7}, 3, 4)$.
 - (b) Find a tangent vector of C at P.

Solution.

- (a) By substituting $(x, y, z) = (\sqrt{7}, 3, 4)$.
- (b) i. By implicit computations. Put $F(x,y,z)=2x^2+3y^2-z^2-25, G(x,y,z)=x^2+y^2-z^2$. We use the formula $\begin{pmatrix} X'\\ Y' \end{pmatrix}=\begin{pmatrix} \frac{\partial F}{\partial x} & \frac{\partial F}{\partial y}\\ \frac{\partial G}{\partial x} & \frac{\partial G}{\partial y} \end{pmatrix}^{-1}\begin{pmatrix} -\frac{\partial F}{\partial z}\\ -\frac{\partial g}{\partial z} \end{pmatrix}$. These partial derivatives can be computed:

1

$$\frac{\partial F}{\partial x} = 4x, \frac{\partial F}{\partial y} = 6y, \frac{\partial F}{\partial z} = -2z, \frac{\partial G}{\partial x} = 2x, \frac{\partial G}{\partial y} = 2y, \frac{\partial G}{\partial z} = -2z.$$

By putting the value $P = (\sqrt{7}, 3, 4)$, we obtain

$$\begin{pmatrix} X'(4) \\ Y'(4) \end{pmatrix} = \begin{pmatrix} 4\sqrt{7} & 18 \\ 2\sqrt{7} & 6 \end{pmatrix}^{-1} \begin{pmatrix} -(-8) \\ -(-8) \end{pmatrix}$$
$$= \frac{1}{-12\sqrt{7}} \begin{pmatrix} 6 & -18 \\ -2\sqrt{7} & 4\sqrt{7} \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} = \begin{pmatrix} \frac{8}{\sqrt{7}} \\ -\frac{4}{3} \end{pmatrix}.$$

ii. By direct computations. We have, from $3G - F = 0, x^2 + 25 = 2z^2$, which is equivalent to $x = X(z) = \pm \sqrt{2z^2 - 25}$. Similarly, from F - 2G = 0, it follows that $y^2 = 25 - z^2$, which is equivalent to $y = Y(z) = \pm \sqrt{25 - z^2}$. Since we are interested in the point $(\sqrt{7}, 3, 4)$, we take the + solutions. By differentiating

them,
$$X'(z) = \frac{2z}{\sqrt{2z^2 - 25}}, Y'(z) = -\frac{z}{\sqrt{25 - z^2}}.$$
 At P , $\begin{pmatrix} X'(4) \\ Y'(4) \end{pmatrix} = \begin{pmatrix} \frac{8}{\sqrt{7}} \\ -\frac{4}{3} \end{pmatrix}.$

Hence a tangent vector is $\begin{pmatrix} \frac{8}{\sqrt{7}} \\ -\frac{4}{3} \\ 1 \end{pmatrix}$.

Nov 26. Stationary points.

- 1. Locate and classify the stationary points.
 - (a) $f(x,y) = x^2 + (y-1)^2$
 - (b) $f(x,y) = 2x^2 xy 3y^2 3x + 7y$
 - (c) $f(x,y) = \sin x \cosh y$

Solution.

- (a) $\nabla f(x,y) = (2x,2(y-1))$. $\nabla f(x,y) = \mathbf{0} \Leftrightarrow (x,y) = (0,1)$. $H(x,y) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$, hence $H(0,1) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$, and this has positive eigenvalues 2, 2. Therefore, (0,1) is a local minumum.
- (b) $\nabla f(x,y) = (4x y 3, -x 6y + 7)$. $\nabla f(x,y) = \mathbf{0} \Leftrightarrow (x,y) = (1,1)$. $H(x,y) = \begin{pmatrix} 4 & -1 \\ -1 & -6 \end{pmatrix}$, hence $H(1,1) = \begin{pmatrix} 4 & -1 \\ -1 & -6 \end{pmatrix}$, and this has positive and negative eigenvalues, because its determinant is -26. Therefore, (1,1) is a saddle point.
- (c) $\nabla f(x,y) = (\cos x \cosh y, \sin x \sinh y)$. $\nabla f(x,y) = \mathbf{0} \Leftrightarrow \cos x = 0$ and $\sinh y = 0 \Leftrightarrow (x,y) = \left((m+\frac{1}{2})\pi,0\right)$. $H(x,y) = \begin{pmatrix} -\sin x \cosh y & \cos x \sinh y \\ \cos x \sinh y & \sin x \cosh y \end{pmatrix}$. Note that $\sin\left(m+\frac{1}{2}\right) \neq 0$. hence $H(\left(m+\frac{1}{2}\right),0)$ has the determinant -1, and hence has positive and negative eigenvalues. Therefore, $\left(\left(m+\frac{1}{2}\right),0\right)$ is a saddle point.
- 2. Let x_1, \dots, x_n be distinct numbers, $y_1, \dots, y_n \in \mathbb{R}$. Let $a, b \in \mathbb{R}, f(x) = ax + b$. With $E(a, b) = \sum_{j=1}^{n} |f(x_j) y_j|^2$. Find a, b which minimize E(a, b).

Solution. We can write

$$E(a,b) = \sum_{j=1}^{n} (ax_j + b - y_j)^2.$$

Therefore,

$$\nabla E(a,b) = \left(\sum_{j=1}^{n} 2x_j(ax_j + b - y_j), \sum_{j=1}^{n} 2(ax_j + b - y_j)\right)$$

From $\nabla E(a,b) = \mathbf{0}$, we obtain

$$a\sum_{j=1}^{n} x_j^2 + b\sum_{j=1}^{n} x_j = \sum_{j=1}^{n} x_j y_j, \qquad a\sum_{j=1}^{n} x_j + b\sum_{j=1}^{n} = \sum_{j=1}^{n} y_j$$

Put $x^* = \frac{1}{n} \sum_{j=1}^n x_j$, $y^* = \frac{1}{n} \sum_{j=1}^n y_j$, then the second equation is $x^*a + b = y^*$, or $(x^*)^2 + x^*b = x^*y^*$. Set $u_j = x_j - x^*$, then the first equation is

$$\frac{a}{n}\sum_{j=1}^{n}x_{j}^{2} + x^{*}b = \frac{1}{n}\sum_{j=1}^{n}x_{j}y_{j}.$$

By subtracting $(x^*)^2 + x^*b = x^*y^*$, we have

$$\frac{a}{n} \sum_{j=1}^{n} x_j u_j = \frac{1}{n} \sum_{j=1}^{n} u_j y_j,$$

hence by noting that $\sum_{j} u_{j} = 0$, $a = \sum_{j=1}^{n} u_{j} y_{j} / \sum_{j=1}^{n} x_{j} u_{j} = \sum_{j=1}^{n} u_{j} y_{j} / \sum_{j=1}^{n} u_{j}^{2}$, $b = y^{*} - x^{*}a$.

Nov. 9. Lagrange's multiplier method

- 1. Find the maximum and minimum distances from the origin to the curve $5x^2+6xy+5y^2=8$.
- 2. Assume $a, b \in \mathbb{R}, a, b > 0$.
 - (a) Find the extreme values of $f(x,y) = \frac{x}{a} + \frac{y}{b}$ on $x^2 + y^2 = 1$.
 - (b) Find the extreme values of $f(x,y) = x^2 + y^2$ on $\frac{x}{a} + \frac{y}{b} = 1$.
- 3. Find the nearest point from the origin to the curve of intersection of $x^2 xy + y^2 z^2 1 = 0$ and $x^2 + y^2 = 1$.

Nov. 9. Line integrals

- 1. Compute the line integrals $\int \mathbf{f} \cdot d\mathbf{\alpha}$
 - (a) $\mathbf{f}(x,y) = (x^2 2xy, y^2 2xy), \mathbf{\alpha}(t) = (t, t^2), t \in [-1, 1].$
 - (b) $\boldsymbol{f}(x,y,z) = (y^2 z^2, 2yz, -x^2), \boldsymbol{\alpha}(t) = (t,t^2,t^3), t \in [-1,1].$
 - (c) $\mathbf{f}(x,y) = (y,-x), \mathbf{\alpha}(t) = (\cos t, \sin t), t \in [0,\pi] \text{ and } \mathbf{\beta}(t) = (-t, \sqrt{1-t^2}), t \in [-1,1].$
- 2. A wire has a shape $x^2 + y^2 = a^2$, a > 0 with density $\varphi(x, y) = |x| + |y|$. Compute the mass.

Nov. 9. Gradients and line integrals

- 1. Show that the following vector fields \boldsymbol{f} are not gradient. Find a closed path $\boldsymbol{\alpha}$ such that $\int \boldsymbol{f} \cdot d\boldsymbol{\alpha} \neq 0$.
 - (a) f(x, y, z) = (y, x, x)
 - (b) $\mathbf{f}(x, y, z) = (xy, x^2 + 1, z^2)$
- 2. Show that, for a continuous function f, the vector field

$$\mathbf{f}(x,y) = \left(xf\left(\sqrt{x^2 + y^2}\right), yf\left(\sqrt{x^2 + y^2}\right)\right)$$

is a gradient.

- 3. Let $S = \{(x,y) \in \mathbb{R}^2, (x,y) \neq (0,0)\}, \boldsymbol{f}(x,y) = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right)$.
 - (a) Show that $\partial_2 f_1 = \partial_1 f_2$.
 - (b) For $\alpha(t) = (\cos t, \sin t), t \in [0, 2\pi]$, show that $\int \mathbf{f} \cdot d\mathbf{\alpha} = 2\pi$, therefore, \mathbf{f} is not a gradient on S.

Nov. 16. Potentials

- 1. Determine whether the following vector fields \mathbf{f} are a gradient. If so, find a potential.
 - (a) $\boldsymbol{f}(x,y) = \left(\frac{e^x}{e^x + y^2} \frac{2y}{e^x + y^2}\right)$ on \mathbb{R}^2 .
 - (b) $\mathbf{f}(x, y, z) = (2xyz + z^2 2y^2 + 1, x^2z 4xy, x^2y + 2xy 2)$ on \mathbb{R}^3 .
 - (c) $\mathbf{f}(x, y, z) = (2xz^3, x^2z^3, 3x^2yz^2).$
- 2. Solve the following differential equations.
 - (a) $\frac{dy}{dx} = -\frac{3x^2 + 6xy^2}{6x^2y + 4y^3}$.
 - (b) y + 2xy' = 0

Nov. 16. Double integrals

- 1. Show that the function $f(x,y) = xy^3$ on $Q = [0,1] \times [0,1]$ is integrable.
- 2. The following functions are integrable. Compute $\iint_Q f(x,y) dx dy$.
 - (a) $f(x,y) = xy(x+y), Q = [0,1] \times [0,1].$
 - (b) $f(x,y) = \sin(x+y), Q = \left[0, \frac{\pi}{2}\right] \times \left[0, \frac{\pi}{2}\right].$
 - (c) $f(x,y) = y^{-3}e^{x/y}, Q = [0,1] \times [1,2].$

Nov. 23. Double integrals

- 1. Compute the following integrals.
 - (a) $\iint_Q (x \sin y ye^x) dx dy$, $Q = [-1, 1] \times [0, \frac{\pi}{2}]$.
 - (b) $\iint_Q \sqrt{|y-x^2|} dx dy$, $Q = [-1, 1] \times [0, 2]$.
- 2. Compute the integral $\iint_S f dx dy$.
 - (a) $f(x,y) = x\cos(x+y), S = \{(x,y) : 0 \le x \le \pi, 0 \le y \le x\}.$
 - (b) $f(x,y) = x^2 y^2, S = \{(x,y) : 0 \le x \le \pi, 0 \le y \le \sin x\}.$
 - (c) $f(x,y) = 3x + y, S = \{(x,y) : 4x^2 + 9y^2 \le 36, x \ge 0, y \ge 0\}.$
 - (d) $f(x,y) = y + 2x + 20, S = \{(x,y) : x^2 + y^2 \le 16\}.$
- 3. Write S as a type II region.
 - (a) $S = \{(x, y) : 0 \le x \le 1, x^3 \le y \le x^2\}.$
 - (b) $S = \{(x, y) : 1 \le x \le e, 0 \le y \le \log x\}.$
- 4. Find the centroid of S.
 - (a) $S = \{(x, y) : 0 \le x \le \frac{\pi}{4}, \sin x \le y \le \cos x\}.$
 - (b) $S = \{(x, y) : 1 \le x \le e, 0 \le y \le \log x\}.$

Nov. 30. Green's theorem

- 1. Compute the following line integrals.
 - (a) $\int_C \mathbf{f} \cdot d\mathbf{\alpha}$, $\mathbf{f}(x,y) = (y^2,x)$ and C is the boundary of $[0,2] \times [0,2]$.
 - (b) $\int_C \mathbf{f} \cdot d\mathbf{\alpha}$, $\mathbf{f}(x,y) = (3x 3y, 4y + x)$ and $\mathbf{\alpha}(t) = (\cos t, \sin t)$, $t \in [0, 2\pi]$.
- 2. With $S = \{(x,y) \in \mathbb{R}^2, (x,y) \neq (0,0)\}, \mathbf{f}(x,y) = \left(y + \frac{-y}{x^2 + y^2}, 2x + \frac{x}{x^2 + y^2}\right)$, show that $\int_C \mathbf{f} \cdot d\mathbf{\alpha}$, where $\mathbf{\alpha}(t) = (a\cos t, b\sin t), t \in [0, 2\pi]$ does not depend on a, b > 0.

Nov. 30. Change of coordinates

- 1. Find the corresponding region in the new coordinates.
 - (a) $S = \{(x,y) : 0 \le x, 0 \le y, x + y \le 2\}, x = \frac{1}{2}(v-u), y = \frac{1}{2}(v+u).$
 - (b) $S = \{(x, y) : 0 \le x \le 1, x^2 + y^2 \le 1\}, x = r \cos \theta, y = r \sin \theta.$
 - (c) $S = \{(x,y) : (x-a)^2 + y^2 \le a^2\}, x = r\cos\theta, y = r\sin\theta.$
- 2. Computer the integrals in the new coordinages.
 - (a) $\iint_S e^{(y-x)/(y+x)} dx dy$, $S = \{(x,y) : 0 \le x, 0 \le y, x+y \le 2\}$, $x = \frac{1}{2}(v-u)$, $y = \frac{1}{2}(v+u)$.
 - (b) $\iint_S (x^2 + y^2) dx dy$, $S = \{(x, y) : (x a)^2 + y^2 \le a^2\}$, $x = r \cos \theta$, $y = r \sin \theta$.
- 3. Compute the volume of the sphere $V = \{(x, y, z) : x^2 + y^2 + z^2 \le a^2\}$.

Dec. 14. Surface

- 1. Find a parametrization of the cylinder $\{(x,y,z): x^2+y^2=a^2, 0\leq z\leq 1\}$.
- 2. Compute $\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}$.
 - (a) $\mathbf{r}(u,v) = (u+v, u-v, 4v^2).$
 - (b) $\mathbf{r}(u, v) = (a \sin u \cosh v, b \cos u \cosh v, c \sinh v).$
- 3. Compute the area.
 - (a) the intersection of x + y + z = a, $x^2 + y^2 \le a^2$.

Dec. 14. Surface integrals

- 1. Let $S: x^2 + y^2 + z^2 = 1, z \ge 0$ and $\boldsymbol{F}(x, y, z) = (x, y, 0)$. Compute $\iint_S \boldsymbol{F} \cdot \boldsymbol{n} dS$ with the parametrization $z = \sqrt{1 x^2 y^2}$.
- 2. Let S be a triangle with vertices (1,0,0),(0,1,0),(0,0,1) and $\mathbf{F}(x,y,z)=(x,y,z)$. Compute $\iint_S \mathbf{F} \cdot \mathbf{n} dS$, where \mathbf{n} has positive z-component.
- 3. Compute curl and div.
 - (a) $\mathbf{F}(x, y, z) = (2z 3y, 3x z, y 2x)$
 - (b) $\mathbf{F}(x, y, z) = (e^{xy}, \cos xy, \cos xz^2)$

Dec. 21. Stokes' theorem

- 1. Let C be the curve of the intersection $x^2 + y^2 + z^2 = a^2$, x + y + z = 0. Compute $\int \mathbf{F} \cdot d\mathbf{\alpha}$, where $\mathbf{F}(x,y,z) = (y,z,x)$.
- 2. Let $\mathbf{F}(x,y,z) = (e^{zy^2}, e^{yx^2}, e^{xz^2})$, C be the boundary of the square which has the vertices (0,0,0),(1,0,0),(1,1,0),(0,1,0). Compute $\int_C \mathbf{F} \cdot d\boldsymbol{\alpha}$, where $\boldsymbol{\alpha}$ is a parametrization of C going counterclockwise.

Dec. 21. Gauss' theorem

- 1. Let S be the surface of the unit cube $V = \{(x, y, z) : 0 \le x, y, z \le 1\}$, \boldsymbol{n} be the outgoing unit vector on S, $\boldsymbol{F}(x, y, z) = (x^2, y^2, z^2)$. Compute $\iint_S \boldsymbol{F} \cdot \boldsymbol{n} dS$ and $\iiint_V \operatorname{div} \boldsymbol{F} dx dy dz$.
- 2. Let $\mathbf{F}(x,y,z)=(x^3,y^3,z^3)$, $S:\{(x,y,z):x^2+y^2+z^2=a^2\}$, and \mathbf{n} the outgoing normal unit vector on S at each point of S. Compute the surface integral $\iint_S \mathbf{F} \cdot \mathbf{n} \, dS$.