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We basically follow the textbook “Calculus” Vol. L,II by Tom M. Apostol, Wiley.

Nov 26. Implicit functions and partial derivatives
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1. The equation =+ z+ (y+2)? = 6 defines implicitly a function f(z,y) = z. Compute 57 Oy

in terms of x,y, z. Check that (1,1,1) satisfies the equation, and compute % of ~(1,1)

Solution. Put F(z,y,z) = 2+ z + (y + 2)? — 6. The partial derivatives are
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2y+z), 2L 5> = 14+2(y+2). For the partial derivaties of f, using the formula of the lecture,
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By putting (z,y, f(z,y)) = (1,1,1)
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2. Consider two surfaces 222 4 3y? — 22 — 25 = 0, 22 + y? — 22 = 0. The intersection C' can

be parametrized as (X (z),Y (2), 2).

(a) Check that C passes the point P = (\/7,3,4).
(b) Find a tangent vector of C' at P.

Solution.

(a) By substituting (z,y, 2) = (V/7,3,4).

(b) i. By implicit computations. Put F(z,y,z) = 222 + 3y? — 22
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partial derivatives can be computed:
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By putting the value P = (1/7,3,4), we obtain
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ii. By direct computations. We have, from 3G — F = 0,22 + 25 = 222, which is
equivalent to x = X(z) = £v222 — 25. Similarly, from F — 2G = 0, it follows

that 4?2 = 25 — 22, which is equivalent to y = Y (z) = £v25 — 22. Since we
are interested in the point (1/7,3,4), we take the + solutions. By differentiating
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Hence a tangent vector is
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Nov 26. Stationary points.

1. Locate and classify the stationary points.

(a) flz,y) =2"+ (y—1)?

(b) fz,y) =22 —ay —3y* — 3z + Ty

(¢) f(x,y) =sinxcoshy
Solution.

(@) VHe0) = (20,20~ ). Vi) =05 (o) = 0.0 Hea) = (5 3 ).
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hence H(0,1) = ( 0 2

), and this has positive eigenvalues 2,2. Therefore, (0,1) is

a local minumum.

( _41 :é ), hence H(1,1) = < _41 :é >, and this has positive and negative

eigenvalues, because its determinant is —26. Therefore, (1, 1) is a saddle point.

Vf(x,y) = (coszcoshy,sinzsinhy). Vf(z,y) = 0 < cosz = 0 and sinhy =

_ 1 [ —sinzcoshy coszsinhy
0« (z,y) = (m+ 3)m,0). H(z,y) = < coszsinhy  sinz coshy > Note that
sin (m + %) # 0. hence H((m + %) ,0) has the determinant —1, and hence has posi-

tive and negative eigenvalues. Therefore, ((m + %) ,0) is a saddle point.

2. Let 1, ,x, be distinct numbers, y1, -+ ,y, € R. Let a,b € R, f(x) = ax + b. With

E(a,

b) = >0 | f() — y;|?. Find a,b which minimize E(a,b).

Solution. We can write

n

E(a,b) = Z(amj +b— yj)2.

Therefore,

n

n
VE(a,b) = ZQ:Uj(a:Ej +b—y;), > 2(ax;+b—y;)
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From VE(a,b) =0, we obtain
n n n n n n
o) ai+b) wp=) wy, ey wi+b)y =) v
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Put z* = 1 D1 T Y= %Z?:l y;, then the second equation is z*a + b = y*, or (z*)? +
b = x*y*. Set u; = x; — 2, then the first equation is

fo +z*b Z:ij]

By subtracting (z*)? 4+ 2*b = z*y*, we have
0 — 1<
E Zl’juj = E Z’U,jyj,
7=1 7=1

hence by noting that > . u; = 0, a = >0 ujy;/ >0 ) wjuy = Y0 ujy;/ D0 L udb =
y* —x*a.

Nov. 9. Lagrange’s multiplier method

1. Find the maximum and minimum distances from the origin to the curve 522 +6xy+5y> = 8.
2. Assume a,b € R,a,b > 0.

(a) Find the extreme values of f(z,y) = £ + % on 2? + y* = 1.

(b) Find the extreme values of f(z,y) =2*+y*on £+ ¥ =1.

a

3. Find the nearest point from the origin to the curve of intersection of z2 —xy+y?—22—1 =0
and 22 +y? = 1.

Nov. 9. Line integrals

1. Compute the line integrals [ f - do

(a) flx,y) = (2% — 22y,9? — 22y),a(t) = (t,t%),t € [-1,1].
(b) (:U y, 2) = (y? — 22, 2yz, —22),a(t) = (82, 13),t € [-1,1].
(¢) f(z,y) = (y,—x),a(t) = (cost,sint),t € [0,7] and B(t) = (—t,V1 —t2),¢t € [-1,1].

2. A wire has a shape 22 +y? = a2, a > 0 with density ¢(x,y) = |z|+ |y|. Compute the mass.

Nov. 9. Gradients and line integrals

1. Show that the following vector fields f are not gradient. Find a closed path a such that
[ f-da#0.

(a) f(w,y,z) = (yvxax)
(b) f(z,y,2) = (zy,2® +1,2%)

2. Show that, for a continuous function f, the vector field

flzy) = (wf (\/m)yf (\/m))

is a gradient.



3. Let § = {(,y) € B2, (2.9) # (0.0)}, f(@,) = (7. 7557 ).

(a) Show that 62f1 == 81f2.
(b) For a(t) = (cost,sint),t € [0,2n], show that [ f-da = 2m, therefore, f is not a

gradient on S.

Nov. 16. Potentials

1. Determine whether the following vector fields f are a gradient. If so, find a potential

= 2
(&) f(z,y) = (emeTyzﬁ) on R?.
(b) f(z,y,2) = 2wyz + 22 — 2y% + 1,222 — day, 2%y + 22y — 2) on R3.
(©) flz,y,2) = (2227, 227, 32%y2?).
2. Solve the following differential equations.

(a) dy _  33246wy?
de = 6z2y+4y3-

(b) y+2xy =0.

Nov. 16. Double integrals
1. Show that the function f(z,y) = xy® on Q = [0,1] x [0, 1] is integrable.
2. The following functions are integrable. Compute [f, f(z,y)dzdy.
(a) f(z,y) = zy(z +y),Q = [0,1] x [0,1].

(b) f(z,y) =sin(z +y),Q =[0,5] x [0, 3].
(C) f(x,y) = y73€x/y7Q - [07 1] X [1’2]

Nov. 23. Double integrals

1. Compute the following integrals.

(a) [fo(zsiny —ye®)dzdy, Q = [-1,1] x [0, 7.

(b) [Jo vy — a?ldzdy, Q@ = [-1,1] x [0,2].

2. Compute the integral [[ fdzdy.
=zcos(z+y),S={(z,y): 0<z<m0<y<a}

(a) f(z,y)

(b) f(z,y) =22 —y%, S ={(z,y):0< 2 <7,0<y<sinz}.
(c) f(z,y) =3x+y,S = {(z,y) : 42% + 9y* < 36,2 > 0,y > 0}.
(d) f(z,y) =y +2x+20,5 = {(z,y) : 2% +y? < 16}.

3. Write S as a type II region.
(a) S={(z,9):0<2<1,2% <y<a2?}
(b) S={(z,y): 1 <x<e0<y<logx}.

4. Find the centroid of S.
(a) S={(z,y):0< 2 < §,sinx <y < cosx}.
(b) S={(z,y):1<z<e0<y<logz}.



Nov. 30. Green’s theorem

1. Compute the following line integrals.
(a) [of - da, f(x,y) = (y*,2) and C is the boundary of [0,2] x [0,2].
(b) Jo f - da, f(z,y) = 3z — 3y,4y + =) and a(t) = (cost,sint),t € [0, 27].

2. With § = {(z.9) € B (2.9) # (0.0)}.f(@.9) = (y+ 7520 + 122z ). show that
Jo f - do, where a(t) = (acost,bsint),t € [0,27] does not depend on a,b > 0.

Nov. 30. Change of coordinates

1. Find the corresponding region in the new coordinates.
(a) S={(z,9):0<z,0<y,a+y<2},x=350—-u),y=3w+u).
(b) S={(z,y):0<x<1,22+y%<1},2 =rcosf,y = rsiné.
(c) S={(z,y): (x —a)®> +y? <a®},z =rcosh,y = rsiné.
2. Computer the integrals in the new coordinages.
a) [[geW /W dady, S = {(x,y) : 0 < 2,0 S y,2+y < 2},x = 5(v—u),y = 5(v-+u).
b) [[s(a® +y*)dady, S ={(z,y): (x —a)® +y* < a*},x =rcosb,y = rsinb.

3. Compute the volume of the sphere V = {(z,y, 2) : 22 + % + 22 < a?}.

Dec. 14. Surface

1. Find a parametrization of the cylinder {(x,v,2) : 2% + y> = a?,0 < z < 1}.

or . or
2. Compute g x 3-.

(a) r(u,v) = (u+v,u —v,40?).
(b) r(u,v) = (asinucoshwv, bcosucoshv, csinhv).

3. Compute the area.

(a) the intersection of x +y + 2z = a, 22 + y? < a®.

Dec. 14. Surface integrals

1. Let S: 2?24+ y?>+22=1,2>0and F(z,y,2) = (z,y,0). Compute ffSF -ndS with the
parametrization z = m .

2. Let S be a triangle with vertices (1,0,0), (0,1,0),(0,0,1) and F(z,y,2) = (x,y, 2). Com-
pute [[F -ndS, where n has positive z-component.

3. Compute curl and div.

(a) F(:‘Cayv Z) = (22 - 3y) 3r — 2 Y — 21’)
(b) F(x,y,2) = (e, cosxy, cos rz°)



Dec. 21. Stokes’ theorem

1. Let C be the curve of the intersection 22 + y? 4+ 22 = a®, . + y + 2z = 0. Compute [ F-da,
where F(z,y,z) = (y, 2, x).

2. Let F(x,y,z2) = (ezyz, ey$2, emz), C be the boundary of the square which has the vertices
(0,0,0),(1,0,0),(1,1,0),(0,1,0). Compute ch - da, where « is a parametrization of C
going counterclockwise.

Dec. 21. Gauss’ theorem

1. Let S be the surface of the unit cube V = {(z,y,2) : 0 < z,y,z < 1}, n be the outgoing
unit vector on S, F(z,y, z) = (22,92, 2%). Compute ffSF -ndS and fffv div Fdxdydz.

2. Let F(z,y,2) = (23,93,2%), S : {(z,y,2) : 2% + y?® + 22 = @®}, and n the outgoing normal
unit vector on S at each point of S. Compute the surface integral [ F -ndS.
S



