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September 17, 2018

Solve the following problems, motivating in detail the answers.

1. Study the conditional, absolute and uniform convergence of the series

+∞∑
n=0

1

3n
(
√
n+ 1−

√
n)(2x2 − 5)n .

Solution. Let us first note that
√
n+ 1−

√
n = 1√

n+1+
√
n
, hence the series is equal to

+∞∑
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1

3n(
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Let us fix x ∈ R. By the ratio test with an = (2x2−5)n
3n(
√
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√
n)

, we obtain∣∣∣∣an+1

an

∣∣∣∣ =
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3

(as n→∞).

If |x| < 1,
∣∣∣an+1

an

∣∣∣ > 1 and the series is not absolutely nor conditionally convergent.

If x = ±1, 2x2 − 5 = −3 and the series becomes

+∞∑
n=0

(−1)n√
n+ 1 +

√
n
.

This is conditionally convergent, as 1√
n+1+

√
n

is monotonically decreasing, 1√
n+1+

√
n
→ 0 as

n→∞, therefore, we can use Leibnitz’ criterion.

If 1 < |x| < 2,
∣∣∣an+1

an

∣∣∣ < 1 and the series is absolutely convergent. Moreover, for any

1 < r1 < r2 < 2, the series is uniformly convergent for r1 < |x| < r2.
If x = ±2, 2x2 − 5 = 3 and the series becomes

+∞∑
n=0

1√
n+ 1 +

√
n
.

This is divergent, as 1√
n+1+

√
n
> 1

2
√
n+1

and
∑∞

1
1√
n+1

is divergent.

If |x| > 2,
∣∣∣an+1

an

∣∣∣ > 1 and the series, being a positive terms one, is divergent.



2. Find the extremal values of the function f(x, y) = 3x − 4y on the curve C defined by
3x2 + 2y2 = 1.

Solution. We need to find all the stationary points of the function f(x, y) = 3x − 4y under
the condition that g(x, y) = 3x2 + 2y2 − 1 = 0.

By Lagrange’s multiplier method, there is λ ∈ R such that λ∇f(x, y) = ∇g(x, y) at
stationary points (x, y). Let us compute these gradients:

∇f(x, y) = (3, −4),

∇g(x, y) = (3x, 2y) .

From the equation of the multiplier method, for a stationary point (x, y), we have{
3xλ = 3,
2yλ = −4,

From these equations, we see that λ cannot be 0. By combining them, we obtain 2xλ = −yλ,
and hence 2x = −y (because λ 6= 0.

By inserting this reltion to g(x, y) = 0, it follows that 3x2 + 8x2 = 11x2 = 1, or equiva-
lently, x = ± 1√

11
. Accordingly, (x, y) = ( 1√

11
,− 2√

11
), (− 1√

11
, 2√

11
).

The corresponding values of f(x, y) are:

f(( 1√
11
,− 2√

11
)) = −

√
11,

f((− 1√
11
, 2√

11
)) =

√
11.

Therefore, ( 1√
11
,− 2√

11
) is the minumum and (− 1√

11
, 2√

11
) is the maximum.



3. Determine whether the following vector field on R2

f(x, y) =

(
ex

ex + y2
,

2y

ex + y2

)
is a gradient of some scalar field. If so, find one of these scalar fields ϕ such that f(x, y) =
∇ϕ(x, y).
Solution. Let us call f(x, y) = (f1(x, y), f2(x, y)), where f1(x, y) = ex

ex+y2
, f2(x, y) = 2y

ex+y2
.

We compute:

∂f1
∂y

(x, y) = − 2exy

(ex + y2)2
,

∂f2
∂x

(x, y) = − 2exy

(ex + y2)2
,

and we see that they coincide. As R2 is convex, this implies that f is a gradient.
To find a concrete potential ϕ, we can take

ϕ(x, y) =

∫ x

0

f1(t, 0)dt+

∫ y

0

f1(x, t)dt

= x+
[
log(ex + t2)

]x
0

= log(ex + y2).



4. Compute the double integral∫∫
T

y

[
x log(1 +

√
y) +

1

1 + x2

]
dxdy,

where T = {(x, y) ∈ R2 : x2 + y2 ≤ 1, y ≥ 0}.
Solution. The integral region T can be written as

T = {(x, y) ∈ R2 : −
√

1− y2 ≤ x ≤
√

1− y2, 0 ≤ y ≤ 1}.

Let us decompose the integrand into two parts. The first integral is∫∫
T

yx log(1 +
√
y)dxdy =

∫ 1

0

∫ √1−y2

−
√

1−y2
yx log(1 +

√
y)dxdy

=

∫ 1

0

log(1 +
√
y)

[
x2

2

]√1−y2

−
√

1−y2
dy

=

∫ 1

0

log(1 +
√
y) · 0 dy

= 0.

As for the second part, we take another representation

T = {(x, y) ∈ R2 : 0 ≤ y ≤
√

1− x2,−1 ≤ x ≤ 1}.

Now we can compute the second part of the integral:∫∫
T

y

1 + x2
dxdy =

∫ 1

−1

∫ √1−x2
0

y

1 + x2
dydx

=

∫ 1

−1

1

1 + x2

[
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2

]√1−x2
0

dx

=
1

2

∫ 1
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1− x2

1 + x2
dx

=
1

2

∫ 1

−1

(
2

1 + x2
− 1

)
dx

=
1

2
[2 arctanx− x]1−1

=
1

2
· 2
(

2 · π
4
− 1
)

=
π

2
− 1.



5. Let F(x, y, z) = (xy2, xz2, y2z) be a vector field on R3, S be the surface of the cylinder:

S := {(x, y, z) : 0 ≤ x2 + y2 ≤ 1, 0 ≤ z ≤ 2},

and n the outgoing normal unit vector on S at each point of S.
Compute the surface integral ∫

S

∫
F · n dS.

Solution. Thanks to Gauss’ theorem (divergence theorem), this integral is equal to the
following volume integral ∫

V

∫∫
divF dxdydz

where V = {(x, y, z) : 0 ≤ x2 + y2 ≤ 1, 0 ≤ z ≤ 2}.
Let us compute:

divF = y2 + 0 + y2 = 2y2.

To perform the volume integral, we use the cylindrical coordinate x = r cos θ, y = r sin θ, z =
z. The region Q correponding to V in this change of coordinate is Q = {(r, θ, z) : 0 ≤ r ≤
1, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ 2}. Recall that the Jacobian determinant is J(r, θ, z) = r, and note
that y2 = r2 sin2 θ = r2 1−cos 2θ

2
. Theorefore,∫

S

∫
F · n dS =

∫
V

∫∫
divF dxdydz

=

∫
Q

∫∫
2r2 sin2 θ · rdrdθdz

=

∫ 2

0

∫ 2π

0

∫ 1

0

r3(1− cos 2θ) drdθdz

= 2 · 2π · 1

4
= π.


