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1. Given the power series
+∞∑
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determine its radius of convergence r, and study the convergence for x = ±r.
Solution.

By the root test with an = 1
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2
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xn, we have
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n → 1. Therefore, r = 1
e
.

For x = 1
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, we have to study the series whose generic term is
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and therefore it is divergent.
Finally, for x = −1

e
, we have the alternating series
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and since clearly 1
t(t+1)

− 2
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< 0 for t > 0 (as this is equivalent to t2/2 + t > 0), we see

that the sequence 1
n
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n
)n

2
e−n is decreasing for n sufficiently large, and it is infinitesimal

(from its asymptotic behavior computed above). Therefore, by Leibniz’s rule, the given series
converges for x = −1

e
.



Matriculation: .................................................

2.

(1) Find all the stationary points of the following scalar field, defined on R2,

f(x, y) = x2 − 2xy − y + y3

and classify them into relative minima, maxima and saddle points.

(2) Compute the gradient of the following function of (x, y):

g(x, y) = xexe
y

.

Solution. (1) We have

∂f

∂x
(x, y) = 2x− 2y,

∂f

∂y
(x, y) = −2x− 1 + 3y2.

At any stationary point (x, y), one has ∇f(x, y) = (0, 0). This happenes exactly when
2x − 2y = 0 and −2x − 1 + 3y2 = 0. This is equivalent to y = x and 3y2 − 2y − 1 = 0. By
solving these equations, the stationary points are (x, y) = (1, 1), (−1

3
,−1

3
).

To classify these points, we compute the Hessian matrix

(
∂2f
∂2x

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂2y

)
:

H(x, y) =

(
2 −2
−2 6y

)
.

At the point (x, y) = (1, 1), we have H(x, y) =

(
2 −2
−2 6

)
and its determinant is 8 and

the trace is 8, therefore, it has positive eigenvalues and (1, 1) is a relative minumum.

At the point (x, y) = (−1
3
,−1

3
), we have H(x, y) =

(
2 −2
−2 −2

)
and its determinant is

−8, therefore, it has both positive and negative eigenvalues and (−1
3
,−1

3
) is a suddle.

(2) By chain rule and Leibniz rule, ∂g
∂x

= exe
y

+ xeyexe
y
, ∂g
∂y

= x2eyexe
y
.



Matriculation: .................................................

3. Let f(x, y) = (ex, ey). Compute the line integral
∫
C
f · dααα, where C is the segment of the

parabola y = x2 from (0, 0) to (1, 1).

Solution.
By definition of line integral, we need to take a parametrization of the parabola. One

such parametrization is ααα(t) = (t, t2), t ∈ [0, 1]. With this ααα(t), we have ααα′(t) = (1, 2t) and
f(ααα(t)) = (et, et

2
).

Now the line integral can be computed:∫
C

f · dααα =

∫ 1

0

(et, et
2

) · (1, 2t)dt

=

∫ 1

0

(et + 2tet
2

)dt

= [et + et
2

]10
= (e+ e)− (1 + 1)

= 2(e− 1)
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4. Compute the integral ∫∫
T

dxdy x log(1 +
√
x2 + y2) ,

where T = {(x, y) ∈ R2 : 1 ≤ x2 + y2 ≤ 4, x ≥ 0}.
Solution. Goint to polar coordinates, the region T corresponds to

T̃ =
{

(r, θ) : 1 ≤ r ≤ 2,−π
2
≤ θ ≤ π

2

}
.

With the Jacobian J(r, θ) = r, the integral becomes∫∫
T

dxdy x log(1 +
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∫∫
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r cos θ log(1 + r) rdrdθ
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where in the last step we integrated by parts. Note that
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and hence ∫
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Althogether,∫∫
T
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Matriculation: .................................................

5. Let F(x, y, z) = (ezy
2
, eyx

2
, exz

2
) be a vector field on R3, C be the boundary of the square

with vertices (0, 0, 0), (1, 0, 0), (1, 1, 0), (0, 1, 0).
Compute the line integral ∫

C

F · dααα,

where ααα is a parametrization of C going counterclockwise.

Solution.
Let S be a surface which has C as the boundary, and r(u, v) = (X(u, v), Y (u, v), Z(u, v))

be its parametrization such that the inverse-image of ααα is also going counterclockwise in the
uv-plane. Stokes’ theorem says, if we let n = N

‖N‖ where N = ∂r
∂u
× ∂r

∂v
, then it holds that∫

C
F · dααα =

∫
S

curlF · n dS.
For the C above, we can take S = {(x, y, z) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, z = 0}, and a

parametrization X(u, v) = u, Y (u, v) = v, Z(u, v) = 0. The corresponding region in the
uv-plane is T = {(u, v) : 0 ≤ u ≤ 1, 0 ≤ v ≤ 1}. It follows that ∂r

∂u
= (1, 0, 0), ∂r

∂v
= (0, 1, 0)

and hence ∂r
∂u
× ∂r

∂v
= (0, 0, 1). This last vector is already a unit vector.

After some straightforward computations (actually, we only need the z-component), we
obtain

curlF =

 0,

y2ezy
2 − z2exz2 ,

2xyeyx
2 − 2yzezy

2


Therefore, on the uv-plane, namely x = u, y = v, z = 0,

curlF(r(u, v)) · n(u, v)

= (0, 0, 2uvevu
2

) · (0, 0, 1)

= 2uvevu
2

.

Altogether, through Stokes’ theorem, the given line integral becomes∫
C

F · dααα =

∫
S

curlF · n dS

=

∫∫
T

2uvevu
2

dudv

=

∫ 1

0

∫ 1

0

2uvevu
2

dudv

=

∫ 1

0

[evu
2

]10 dv

=

∫ 1

0

(ev − 1) dv

= [ev − v]10 = (e− 1)− (1− 0) = e− 2.


