
BSc Engineering Sciences – A. Y. 2017/18
Written exam of the course Mathematical Analysis 2

July 9, 2018

1. (6 points) Find the Taylor series expansion, with initial point x0 = 0, of the function

f(x) :=
2x

2x2 − 3x+ 1
,

determine its radius of convergence r, and study the convergence for x = ±r.
Solution.

We can rewrite f(x) as follows:

f(x) =
2x

2x2 − 3x+ 1

=
2x

(2x− 1)(x− 1)

=
−2

2x− 1
+

2

x− 1
.

We also know the geometric series expansion 1
1−t =

∑∞
n=0 t

n. By applying this to the last
expression, we obtain

f(x) =
−2

2x− 1
+

2

x− 1

= 2 · 1

1− 2x
− 2 · 1

1− x

= 2

(
∞∑
n=0

(2x)n −
∞∑
n=0

xn

)

= 2

(
∞∑
n=0

(2n − 1)xn

)

=
∞∑
n=0

2(2n − 1)xn.

By the ratio test with an = 2(2n − 1), we need to check an+1xn+1

anxn
= 2(2n+1−1)

2(2n−1) x→ 2x, and the

radius of convergence is 1
2
.

As for the convergence at x = 1
2
, the series becomes

∞∑
n=0

2(2n − 1)(1
2
)n = 2

∑∞
n=0(1− (1

2
)n),

where each term 1− (1
2
)n is positive, and again by the ratio test it is divergent. At x = −1

2
,

the series is
∑∞

n=0 2(2n − 1)(−1
2
)n = 2

∑∞
n=0(−1)n(1 − (1

2
)n) and this is oscillating (neither

convergent nor divergent).



Matriculation: .................................................

2. (6 points) Find the extremal values of the function f(x, y) = ex
2+y on the circle x2+y2 = 1.

Solution.
We need to find all the stationary points of the function f(x, y) = ex

2+y (one could also
take x2 + y, since they share the same points of minima and maxima, and in this case the
computations become simpler) under the condition that g(x, y) = x2 + y2 − 1 = 0.

By Lagrange’s multiplier method, there is λ ∈ R such that λ∇f(x, y) = ∇g(x, y) at
stationary points (x, y). Let us compute these gradients:

∇f(x, y) = (2xex
2+y, ex

2+y),

∇g(x, y) = (2x, 2y) .

From the equation of the multiplier method, for a stationary point (x, y), we have

λ2xex
2+y = 2x,

λex
2+y = 2y.

Let us look at the first equation. If x = 0, this is satisfied and by x2 + y2 = 1, we obtain
y = ±1, and λ = ±1

e±1 , and f(0, 1) = e1, f(0,−1) = e−1.

On the other hand, if x 6= 0, we see from the first equation that λex
2+y = 1, or equivalently

λ = e−x
2−y. By substituting this to the second equation, we get 1 = 2y, and hence y = 1

2
.

Correspondingly, from x2 + y2 = 1 it follows that x = ±
√
3
2

. In these cases, f(
√
3
2
, 1
2
) = e

5
4

and f(−
√
3
2
, 1
2
) = e

5
4 .

Altogether, the maxima are (
√
3
2
, 1
2
), (−

√
3
2
, 1
2
) with the value e

5
4 and the minimun is (0, 1)

with the value e−1.



Matriculation: .................................................

3. (6 points) Determine whether the following vector field on R2

f(x, y) = (−y sinx · cos(y cosx), cosx · cos(y cosx))

is a gradient of some scalar field. If so, find one of these scalar fields ϕ such that f(x, y) =
∇ϕ(x, y).
Solution.

Let us call f(x, y) = (f1(x, y), f2(x, y)), where f1(x, y) = −y sinx · cos(y cosx), f2(x, y) =
cosx · cos(y cosx)). We compute:

∂f1
∂y

(x, y) = − sinx · cos(y cosx) + y sinx · cosx · sin(y cosx),

∂f2
∂x

(x, y) = − sinx · cos(y cosx) + y sinx · cosx · sin(y cosx),

and we see that they coincide. As R2 is convex, this implies that f is a gradient.
To find a concrete potential ϕ, we can take

ϕ(x, y) =

∫ x

0

f1(t, 0)dt+

∫ y

0

f2(x, t)dt

= 0 + [sin(t cosx)]y0
= sin(y cosx).



Matriculation: .................................................

4. (6 points) Compute the following double integral∫∫
T

y

(x2 + y2)2
dxdy,

where T is the quadrilateral with vertices (1, 0), (1,
√

3), (3, 3
√

3), (3, 0).
Solution.

The region T can be written as T = {(x, y) : 1 ≤ x ≤ 3, 0 ≤ y ≤
√

3x}.
Note: it is also possible to compute the double integral directly in the xy-coordinates.

In the polar coordinates it corresponds to

T̃ = {(r, θ) : 0 ≤ θ ≤ π

3
, 1 ≤ r cos θ ≤ 3} =

{
(r, θ) : 0 ≤ θ ≤ π

3
,

1

cos θ
≤ r ≤ 3

cos θ

}
.

Going into the polar coordinates, the integral becomes

x

y

(1, 0)

(3, 3
√

3)

(3, 0)

(1,
√

3)

∫∫
T

y

(x2 + y2)2
dxdy =

∫∫
T̃

r sin θ

r4
rdrdθ =

∫ π
3

0

∫ 3
cos θ

1
cos θ

sin θ

r2
drdθ

=

∫ π
3

0

sin θ

[
−1

r

] 3
cos θ

1
cos θ

dθ

=

∫ π
3

0

(
−1

3
sin θ cos θ + sin θ cos θ

)
dθ

=
1

3

∫ π
3

0

2 sin θ cos θ dθ

=
1

3

∫ π
3

0

sin(2θ) dθ

= −1

6
[cos(2θ)]

π
3
0

=
1

6

(
1 +

1

2

)
=

1

4
.



Matriculation: .................................................

5. (6 points) Let F(x, y, z) = ((x−y+z)ex
2+y2+z2 , (x+y+z)ex

2+y2+z2 , (−x+y−z)ex
2+y2+z2)

be a vector field on R3, C be the circle

C = {(x, y, z) : x2 + y2 = 1, z = 0}.
Compute the line integral ∫

C

F · dααα,

where ααα is a parametrization of C going counterclockwise.
Solution.
Note: it is not difficult in this case to compute the line integral directly without Stokes’
theorem.

Let S be a surface which has C as the boundary, and r(u, v) = (X(u, v), Y (u, v), Z(u, v))
be its parametrization such that the inverse-image of ααα is also going counterclockwise in the
uv-plane. Stokes’ theorem says, if we let n = N

‖N‖ where N = ∂r
∂u
× ∂r

∂v
, then it holds that∫

C
F · dααα =

∫
S

curlF · n dS.
For the C above, we can take S = {(x, y, z) : x2 + y2 ≤ 1, z = 0}, and a parametrization

X(u, v) = u, Y (u, v) = v, Z(u, v) = 0. The corresponding region in the uv-plane is T =
{(u, v) : u2+v2 ≤ 1}. It follows that ∂r

∂u
= (1, 0, 0), ∂r

∂v
= (0, 1, 0) and hence ∂r

∂u
× ∂r

∂v
= (0, 0, 1).

This last vector is already a unit vector.
After some straightforward computations, we obtain

curlF =

 (1 + 2y(−x+ y − z)− 1− 2z(x+ y + z))ex
2+y2+z2 ,

(1 + 2z(x− y + z)− (−1)− 2x(−x+ y − z)ex
2+y2+z2 ,

(1 + 2x(x+ y + z)− (−1)− 2y(x− y + z)ex
2+y2+z2


Therefore, on the uv-plane, namely x = u, y = v, z = 0,

curlF(r(u, v)) · n(u, v)

= (2v(−u+ v)eu
2+v2 , (2− 2u(−u+ v))eu

2+v2 , (2 + 2(u2 + v2))eu
2+v2) · (0, 0, 1)

= 2(1 + (u2 + v2))eu
2+v2 .

Altogether, through Stokes’ theorem, the given line integral becomes∫
C

F · dααα =

∫
S

curlF · n dS

=

∫∫
T

2(1 + (u2 + v2))eu
2+v2 dudv

=

∫ 2π

0

∫ 1

0

2(1 + r2)er
2 · r drdθ

=

∫ 2π

0

∫ 1

0

(1 + t)et · dtdθ

= 2π
[
et + (tet − et)

]1
0

= 2π
[
tet
]1
0

= 2πe.

where we transformed the uv-integral to the polar coordinate, then made substitution t = r2.


