BSc Engineering Sciences — A. Y. 2017/18
Written exam of the course Mathematical Analysis 2
July 9, 2018

1. (6 points) Find the Taylor series expansion, with initial point xzy = 0, of the function

2x

M) = st

determine its radius of convergence r, and study the convergence for x = +r.
Solution.
We can rewrite f(x) as follows:
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We also know the geometric series expansion 1; = > > ,t". By applying this to the last
expression, we obtain
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By the ratio test with a,, = 2(2" — 1), we need to check a"a*izzﬂ = 2(22(;::)1)m — 22, and the

radius of convergence is %

As for the convergence at x = 3, the series becomes

1
29

> 22" = 1)(E)" =230, ()",

n=0

where each term 1 — (%)” is positive, and again by the ratio test it is divergent. At x = —%,
the series is > o 1 2(2" — 1)(—3)" = 2> 77 (—1)"(1 — (3)") and this is oscillating (neither

2
convergent nor divergent).
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2. (6 points) Find the extremal values of the function f(x,y) = ¢ ¥ on the circle 22442 = 1.
Solution.

We need to find all the stationary points of the function f(z,y) = ety (one could also
take x? + y, since they share the same points of minima and maxima, and in this case the
computations become simpler) under the condition that g(z,y) = 2? + y?> — 1 = 0.

By Lagrange’s multiplier method, there is A € R such that A\Vf(z,y) = Vg(z,y) at
stationary points (x,y). Let us compute these gradients:

Vi(z,y) = (2we”HY, oY),
Vy(z,y) = (2z, 2y).

From the equation of the multiplier method, for a stationary point (z,y), we have

A2xe” TV = 2z,

e Y = 2y.

Let us look at the first equation. If z = 0, this is satisfied and by 2? + y? = 1, we obtain
y==+1,and A= &, and f(0,1) = €', f(0,-1) = e
On the other hand, if z # 0, we see from the first equation that Ae® T =1, or equivalently

A =e ™Y, By substituting this to the second equation, we get 1 = 2y, and hence y = %
Correspondingly, from 22 + y? = 1 it follows that = j:*/Tg. In these cases, f (*/75, 3) = et
and f(—\/Tg, 1) = et

Altogether, the maxima are (‘/73, ), (—‘/73, 1) with the value e1 and the minimun is (0, 1)

with the value e .
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3. (6 points) Determine whether the following vector field on R?
f(z,y) = (—ysinz - cos(y cosz), cosx - cos(y cos))

is a gradient of some scalar field. If so, find one of these scalar fields ¢ such that f(z,y) =
Ve(z,y).

Solution.

Let us call f(z,y) = (fi(z,y), fa(z,y)), where fi(z,y) = —ysinz - cos(y cos ), fa(z,y) =
cosx - cos(y cosx)). We compute:

0

a—fl(:v, y) = —sinz - cos(y cosz) + ysinx - cosx - sin(y cos x),
Y

Afs : : .

a—(m, y) = —sinz - cos(y cosx) + ysinx - cosx - sin(y cos ),
x

and we see that they coincide. As R? is convex, this implies that f is a gradient.
To find a concrete potential , we can take

o(z,y) /flt()dt—i-/fgxt

= 0+ [sin(t cos z)];

= sin(y cos ).
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4. (6 points) Compute the following double integral

y
[} it

where T is the quadrilateral with vertices (1,0), (1,v/3), (3,3v/3), (3,0).

Solution.

The region T can be written as T = {(z,) : 1 <2 < 3,0 < y < +/3z}.
Note: it 1s also possible to compute the double integral directly in the xy-coordinates.
In the polar coordinates it corresponds to

Going into the polar coordinates, the integral becomes

[}

Y

(3,3V3)

(1,V3)

X

. us _3
// TSI?QrdeG—/g/CM
T r 0 colsG

(1,0) (3,0)

T:{(T,9>:0§9§%,1§TC080§3}:{(T,Q);Ogegg’

1

si

80 e
;




Matriculation: ...ooveeevenie e

5. (6 points) Let ]F(q;’y7 z) = ((x_y+z>€x2+y2+z27 (I+y+Z)6x2+y2+22, (_x+y_z>€z2+y2+z2)
be a vector field on R?, C' be the circle

C={(z,y,z2): 2> +y*=1,2=0}.
Compute the line integral
/IF - da,
c

where a is a parametrization of C' going counterclockwise.
Solution.
Note: it is not difficult in this case to compute the line integral directly without Stokes
theorem.

Let S be a surface which has C' as the boundary, and r(u,v) = (X (u,v), Y (u,v), Z(u,v))
be its parametrization such that the inverse-image of ¢ is also going counterclockwise in the
uv-plane. Stokes’ theorem says, if we let m = % where N = % X %, then it holds that

fC]F cda = fscurllF -mdS.

For the C' above, we can take S = {(z,y,2) : 2* + y* < 1,2 = 0}, and a parametrization
X(u,v) = u,Y(u,v) = v,Z(u,v) = 0. The corresponding region in the wv-plane is T =
{(u,v) : v +v? < 1}. It follows that & = (1,0,0), 2 = (0,1,0) and hence 2 x £ = (0,0, 1).
This last vector is already a unit vector.

After some straightforward computations, we obtain

(1+2y(—zx+y—2)—1—2z(z+y+ 2))er T+,
cwlF = [ (1+2z2(z —y+2) — (—1) = 2z(—x +y — 2)e” '+,
(1 + QI‘(ZE +vy+ Z) — (_]_) — Qy(x —y+ Z)€x2+y2+z2
Therefore, on the uv-plane, namely r = u,y = v,z = 0,
curl F(r(u,v)) - m(u, v)
= (2u(—u+0)e" T, (2= 2u(—u+ )T (24 2(u” + o)) ) - (0,0, 1)
=2(1+ (u® + v2))e“2+”2.

Altogether, through Stokes’ theorem, the given line integral becomes

/]F-da:/curl]F-mdS
c s
= /2(1 + (u® +v%)e” " dudv
T
2w 1 )
= / / 2(1+7%)e” - rdrdf
o Jo

21 1
:/ / (1+t)e - dtdd
0 0

=2m [e" + (te' — et)}(l) =27 [tet}é = 27e.

)

where we transformed the uv-integral to the polar coordinate, then made substitution t = 72,



