BSc Engineering Sciences – A. Y. 2017/18 Written exam of the course Mathematical Analysis 2 July 9, 2018

1. (6 points) Find the Taylor series expansion, with initial point $x_0 = 0$, of the function

$$f(x) := \frac{2x}{2x^2 - 3x + 1},$$

determine its radius of convergence r, and study the convergence for $x = \pm r$. Solution.

We can rewrite f(x) as follows:

$$f(x) = \frac{2x}{2x^2 - 3x + 1}$$

= $\frac{2x}{(2x - 1)(x - 1)}$
= $\frac{-2}{2x - 1} + \frac{2}{x - 1}$.

We also know the geometric series expansion $\frac{1}{1-t} = \sum_{n=0}^{\infty} t^n$. By applying this to the last expression, we obtain

$$f(x) = \frac{-2}{2x - 1} + \frac{2}{x - 1}$$

= $2 \cdot \frac{1}{1 - 2x} - 2 \cdot \frac{1}{1 - x}$
= $2 \left(\sum_{n=0}^{\infty} (2x)^n - \sum_{n=0}^{\infty} x^n \right)$
= $2 \left(\sum_{n=0}^{\infty} (2^n - 1)x^n \right)$
= $\sum_{n=0}^{\infty} 2(2^n - 1)x^n.$

By the ratio test with $a_n = 2(2^n - 1)$, we need to check $\frac{a_{n+1}x^{n+1}}{a_nx^n} = \frac{2(2^{n+1}-1)}{2(2^n-1)}x \to 2x$, and the radius of convergence is $\frac{1}{2}$.

As for the convergence at $x = \frac{1}{2}$, the series becomes

$$\sum_{n=0}^{\infty} 2(2^n - 1)(\frac{1}{2})^n = 2\sum_{n=0}^{\infty} (1 - (\frac{1}{2})^n),$$

where each term $1 - (\frac{1}{2})^n$ is positive, and again by the ratio test it is divergent. At $x = -\frac{1}{2}$, the series is $\sum_{n=0}^{\infty} 2(2^n - 1)(-\frac{1}{2})^n = 2\sum_{n=0}^{\infty} (-1)^n (1 - (\frac{1}{2})^n)$ and this is oscillating (neither convergent nor divergent).

2. (6 points) Find the extremal values of the function $f(x, y) = e^{x^2+y}$ on the circle $x^2+y^2 = 1$. Solution.

We need to find all the stationary points of the function $f(x, y) = e^{x^2+y}$ (one could also take $x^2 + y$, since they share the same points of minima and maxima, and in this case the computations become simpler) under the condition that $g(x, y) = x^2 + y^2 - 1 = 0$.

By Lagrange's multiplier method, there is $\lambda \in \mathbb{R}$ such that $\lambda \nabla f(x, y) = \nabla g(x, y)$ at stationary points (x, y). Let us compute these gradients:

$$\nabla f(x, y) = (2xe^{x^2+y}, e^{x^2+y}),
\nabla g(x, y) = (2x, 2y).$$

From the equation of the multiplier method, for a stationary point (x, y), we have

$$\lambda 2xe^{x^2+y} = 2x,$$
$$\lambda e^{x^2+y} = 2y.$$

Let us look at the first equation. If x = 0, this is satisfied and by $x^2 + y^2 = 1$, we obtain $y = \pm 1$, and $\lambda = \frac{\pm 1}{e^{\pm 1}}$, and $f(0, 1) = e^1$, $f(0, -1) = e^{-1}$.

On the other hand, if $x \neq 0$, we see from the first equation that $\lambda e^{x^2+y} = 1$, or equivalently $\lambda = e^{-x^2-y}$. By substituting this to the second equation, we get 1 = 2y, and hence $y = \frac{1}{2}$. Correspondingly, from $x^2 + y^2 = 1$ it follows that $x = \pm \frac{\sqrt{3}}{2}$. In these cases, $f(\frac{\sqrt{3}}{2}, \frac{1}{2}) = e^{\frac{5}{4}}$ and $f(-\frac{\sqrt{3}}{2}, \frac{1}{2}) = e^{\frac{5}{4}}$.

Altogether, the maxima are $(\frac{\sqrt{3}}{2}, \frac{1}{2}), (-\frac{\sqrt{3}}{2}, \frac{1}{2})$ with the value $e^{\frac{5}{4}}$ and the minimum is (0, 1) with the value e^{-1} .

3. (6 points) Determine whether the following vector field on \mathbb{R}^2

$$\mathbb{f}(x,y) = (-y\sin x \cdot \cos(y\cos x), \ \cos x \cdot \cos(y\cos x))$$

is a gradient of some scalar field. If so, find one of these scalar fields φ such that $\mathbb{f}(x, y) = \nabla \varphi(x, y)$.

Solution.

Let us call $f(x,y) = (f_1(x,y), f_2(x,y))$, where $f_1(x,y) = -y \sin x \cdot \cos(y \cos x), f_2(x,y) = \cos x \cdot \cos(y \cos x))$. We compute:

$$\frac{\partial f_1}{\partial y}(x,y) = -\sin x \cdot \cos(y\cos x) + y\sin x \cdot \cos x \cdot \sin(y\cos x),$$

$$\frac{\partial f_2}{\partial x}(x,y) = -\sin x \cdot \cos(y\cos x) + y\sin x \cdot \cos x \cdot \sin(y\cos x),$$

and we see that they coincide. As \mathbb{R}^2 is convex, this implies that f is a gradient.

To find a concrete potential φ , we can take

$$\varphi(x,y) = \int_0^x f_1(t,0)dt + \int_0^y f_2(x,t)dt$$

= 0 + [sin(t cos x)]_0^y
= sin(y cos x).

4. (6 points) Compute the following double integral

$$\iint_T \frac{y}{(x^2 + y^2)^2} dx dy,$$

where T is the quadrilateral with vertices (1,0), $(1,\sqrt{3})$, $(3,3\sqrt{3})$, (3,0). Solution.

The region T can be written as $T = \{(x, y) : 1 \le x \le 3, 0 \le y \le \sqrt{3}x\}.$

Note: it is also possible to compute the double integral directly in the xy-coordinates.

In the polar coordinates it corresponds to

$$\tilde{T} = \{(r,\theta) : 0 \le \theta \le \frac{\pi}{3}, 1 \le r \cos \theta \le 3\} = \left\{(r,\theta) : 0 \le \theta \le \frac{\pi}{3}, \frac{1}{\cos \theta} \le r \le \frac{3}{\cos \theta}\right\}.$$

Going into the polar coordinates, the integral becomes

5. (6 points) Let $\mathbb{F}(x, y, z) = ((x - y + z)e^{x^2 + y^2 + z^2}, (x + y + z)e^{x^2 + y^2 + z^2}, (-x + y - z)e^{x^2 + y^2 + z^2})$ be a vector field on \mathbb{R}^3 , C be the circle

$$C = \{(x, y, z) : x^2 + y^2 = 1, z = 0\}.$$

Compute the line integral

$$\int_C \mathbb{F} \cdot d\boldsymbol{\alpha},$$

where $\boldsymbol{\alpha}$ is a parametrization of *C* going counterclockwise. Solution.

Note: it is not difficult in this case to compute the line integral directly without Stokes' theorem.

Let S be a surface which has C as the boundary, and $\mathbf{r}(u, v) = (X(u, v), Y(u, v), Z(u, v))$ be its parametrization such that the inverse-image of $\boldsymbol{\alpha}$ is also going counterclockwise in the uv-plane. Stokes' theorem says, if we let $\mathbf{m} = \frac{\mathbb{N}}{\|\mathbb{N}\|}$ where $\mathbb{N} = \frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}$, then it holds that $\int_{C} \mathbb{F} \cdot d\boldsymbol{\alpha} = \int_{S} \operatorname{curl} \mathbb{F} \cdot \mathbf{m} \, dS$.

For the C above, we can take $S = \{(x, y, z) : x^2 + y^2 \le 1, z = 0\}$, and a parametrization X(u, v) = u, Y(u, v) = v, Z(u, v) = 0. The corresponding region in the *uv*-plane is $T = \{(u, v) : u^2 + v^2 \le 1\}$. It follows that $\frac{\partial r}{\partial u} = (1, 0, 0), \frac{\partial r}{\partial v} = (0, 1, 0)$ and hence $\frac{\partial r}{\partial u} \times \frac{\partial r}{\partial v} = (0, 0, 1)$. This last vector is already a unit vector.

After some straightforward computations, we obtain

$$\operatorname{curl} \mathbb{F} = \left(\begin{array}{c} (1+2y(-x+y-z)-1-2z(x+y+z))e^{x^2+y^2+z^2}, \\ (1+2z(x-y+z)-(-1)-2x(-x+y-z)e^{x^2+y^2+z^2}, \\ (1+2x(x+y+z)-(-1)-2y(x-y+z)e^{x^2+y^2+z^2}, \end{array} \right)$$

Therefore, on the *uv*-plane, namely x = u, y = v, z = 0,

$$\operatorname{curl} \mathbb{F}(\mathbb{r}(u,v)) \cdot \mathbb{n}(u,v) = (2v(-u+v)e^{u^2+v^2}, (2-2u(-u+v))e^{u^2+v^2}, (2+2(u^2+v^2))e^{u^2+v^2}) \cdot (0,0,1) = 2(1+(u^2+v^2))e^{u^2+v^2}.$$

Altogether, through Stokes' theorem, the given line integral becomes

$$\begin{split} \int_{C} \mathbb{F} \cdot d\mathbf{\alpha} &= \int_{S} \operatorname{curl} \mathbb{F} \cdot \operatorname{m} dS \\ &= \iint_{T} 2(1 + (u^{2} + v^{2}))e^{u^{2} + v^{2}} \, du dv \\ &= \int_{0}^{2\pi} \int_{0}^{1} 2(1 + r^{2})e^{r^{2}} \cdot r \, dr d\theta \\ &= \int_{0}^{2\pi} \int_{0}^{1} (1 + t)e^{t} \cdot dt d\theta \\ &= 2\pi \left[e^{t} + (te^{t} - e^{t}) \right]_{0}^{1} = 2\pi \left[te^{t} \right]_{0}^{1} = 2\pi e. \end{split}$$

where we transformed the uv-integral to the polar coordinate, then made substitution $t = r^2$.