BSc Engineering Sciences – A. Y. 2017/18 Written exam of the course Mathematical Analysis 2 July 9, 2018

Last name:	 First name:	
Matriculation:	 	

Solve the following problems, motivating in detail the answers.

1. Find the Taylor series expansion, with initial point $x_0 = 0$, of the function

$$f(x) := \frac{2x}{2x^2 - 3x + 1},$$

determine its radius of convergence r, and study the convergence for $x=\pm r$. Solution.

Matriculation:

2. Find the extremal values of the function $f(x,y) = e^{x^2+y}$ on the circle $x^2 + y^2 = 1$. Solution.

Matriculation	
Matriculation.	

3. Determine whether the following vector field on \mathbb{R}^2

$$f(x,y) = (-y\sin x \cdot \cos(y\cos x), \cos x \cdot \cos(y\cos x))$$

is a gradient of some scalar field. If so, find one of these scalar fields φ such that $\mathbb{f}(x,y) = \nabla \varphi(x,y)$. Solution.

Matriculation:

4. Compute the following double integral

$$\iint_T \frac{y}{(x^2 + y^2)^2} dx dy,$$

where T is the quadrilateral with vertices $(1,0),\,(1,\sqrt{3}),\,(3,3\sqrt{3}),\,(3,0).$ Solution.

Matriculation:

5. Let $\mathbb{F}(x,y,z) = ((x-y+z)e^{x^2+y^2+z^2}, \ (x+y+z)e^{x^2+y^2+z^2}, \ (-x+y-z)e^{x^2+y^2+z^2})$ be a vector field on \mathbb{R}^3 , C be the circle

$$C = \{(x, y, z) : x^2 + y^2 = 1, z = 0\}.$$

Compute the line integral

$$\int_C \mathbb{F} \cdot d\boldsymbol{\alpha},$$

where $\pmb{\alpha}$ is a parametrization of C going counterclockwise. Solution.