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1. (6 points) Find a power series expression for the solution y(x) of the differential equation

xy′′ + (1 + x)y′ + 2y = 0

such that y(0) = 1, y′(0) = −2, and determine its radius of convergence.

Solution.
Let us put y(x) =

∑∞
n=0 anx

n. If this is convergent, we have y′(x) =
∑∞

n=1 nanx
n−1 and

y′′(x) =
∑∞

n=2 n(n− 1)anx
n−2. If y(x) satisfies the differential equation above, it must hold

x

(
∞∑
n=2

n(n− 1)anx
n−2

)
+ (1 + x)

(
∞∑
n=1

nanx
n−1

)
+ 2

(
∞∑
n=0

anx
n

)
= 0.

By putting all the terms in the form of power series, we get

∞∑
n=2

n(n− 1)anx
n−1 +

∞∑
n=1

nanx
n−1 +

∞∑
n=1

nanx
n +

∞∑
n=0

2anx
n = 0.

By changing the label n in the summations (n 7→ n+ 1 in the first and second summations),
it is equivalent to

∞∑
n=1

(n+ 1)nan+1x
n +

∞∑
n=0

(n+ 1)an+1x
n +

∞∑
n=1

nanx
n +

∞∑
n=0

2anx
n = 0.

In the first and third summations, if we put n = 0, there is a factor n, hence the summation
does not change even if it starts with n = 0. Namely,

∞∑
n=0

(n+ 1)nan+1x
n +

∞∑
n=0

(n+ 1)an+1x
n +

∞∑
n=0

nanx
n +

∞∑
n=0

2anx
n

=
∞∑
n=0

((n+ 1)nan+1 + (n+ 1)an+1 + nan + 2an)xn = 0.

Therefore, if the power series is convergent, for each n it must hold

(n+ 1)nan+1 + (n+ 1)an+1 + nan + 2an = 0,

or equivalently, an+1 = − n+2
(n+1)2

an and it follows that an = (−1)n n+1
n!
a0. From the conditions

y(0) = 1, y′(0) = −2, it follows that a0 = 1 and a1 = −2, hence in general an = (−1)n n+1
n!

.



By ratio test, an+1x
n+1/anx

n = − n+2
(n+1)2

x→ 0 for any x ∈ R, or the radius of convergence is
∞. Finally,

y(x) =
∞∑
n=0

(−1)n
n+ 1

n!
xn =

∞∑
n=0

(−1)n
(

1

(n− 1)!
+

1

n!

)
xn

= −x ·
∞∑
n=1

(−1)n−1
xn−1

(n− 1)!
+
∞∑
n=0

(−1)n
xn

n!

= (1− x)e−x.

Note: one can obtain 6 points if an and the radius of convergence are correctly done.



2. (6 points) Let C be the curve in R2 defined by

C = {(x, y) : 2(x+ y − 1)2 + (x− y)2 = 8}.

Find the points on C which are the nearest and the farthest from the origin (0, 0).

Solution.
We need to find all the stationary points of the function f(x, y) = x2 + y2 (one could take√
x2 + y2, but they share the same points of minima and maxima) under the condition that

g(x, y) = 2(x+ y − 1)2 + (x− y)2 − 8 = 0.
By Lagrange’s multiplier method, there is λ ∈ R such that λ∇f(x, y) = ∇g(x, y) at

stationary points (x, y). Let us compute these gradients:

∇f(x, y) = (2x, 2y),

∇g(x, y) = (4(x+ y − 1) + 2(x− y), 4(x+ y − 1)− (x− y)) .

From the equation of the multiplier method, for a stationary point (x, y), we have{
2λx = 4(x+ y − 1) + 2(x− y),
2λy = 4(x+ y − 1)− 2(x− y),

By summing and subtracting the sides of these equations, we obtain{
2λ(x+ y) = 8(x+ y − 1),
2λ(x− y) = 4(x− y),

or equivalently, {
(4− λ)(x+ y) = 4,
(λ− 2)(x− y) = 0.

Let us take the second equation. There are two cases where it can be fulfilled:

(1) x − y = 0. Now, (x, y) must also be on C, hence 2(2x − 1)2 = 8. From this, it follows
that (x, y) = (3

2
, 3
2
), (−1

2
,−1

2
). Correspondingly, f(3

2
, 3
2
) = 9

2
, f(−1

2
,−1

2
) = 1

2
.

(2) λ− 2 = 0. In this case, by combining it with the first equation, we get x+ y = 2. Again,
from the fact that (x, y) is on C, it follows that 2 + (x− y)2 = 8, or equivalently, x− y =

±
√

6. Combined with x+y = 2, it yields (x, y) =
(

1 +
√

3
2
, 1−

√
3
2

)
,
(

1−
√

3
2
, 1 +

√
3
2

)
and correspondingly, f

(
1±

√
3
2
, 1∓

√
3
2

)
= 5.

As 1
2
< 9

2
< 5, the nearest point from the origin is (−1

2
,−1

2
) (with the distance 1√

2
) and

the farthest points are
(

1±
√

3
2
, 1∓

√
3
2

)
(with the distance

√
5).



3.

(1) (3 points) Let c > 0. Find the solution f(x, t) of the partial differential equation

∂2f

∂t2
= c2

∂2f

∂x2

with the initial condition f(x, 0) = e−x
2
, ∂f
∂t

(x, 0) = x
(x2+1)2

.

(2) (3 points) Let h(s) be a twice continuously differentiable function of s ∈ R, ααα =
(αx, αy, αz) ∈ R3 such that ‖ααα‖2 = 1. Let us define a function g of (x, y, z, t) ∈ R4

by
g(x, y, z, t) = h(xαx + yαy + zαz − ct).

Prove that g satisfies the following partial differential equation (3d wave equation):

∂2g

∂t2
= c2

(
∂2g

∂x2
+
∂2g

∂y2
+
∂2g

∂z2

)
Solution.

(1) As we learned during the lecture, a general solution of this equation (1d wave equation)
is given by f(x, t) = 1

2
(F (x− ct) + F (x+ ct)) + 1

2c

∫ x+ct
x−ct G(s)ds, where F (s) is a twice

continuously differentiable function, G(s) is a once continuously differentiable function.
Furthermore, it holds that f(x, 0) = F (x) and ∂f

∂t
(x, 0) = G(x).

We are given the initial conditions f(x, 0) = e−x
2
, ∂f
∂t

(x, 0) = x
(x2+1)2

, hence we can take

F (s) = e−s
2
, G(s) = s

(s2+1)2
. Note that

∫
G(s)ds = − 1

2(s2+1)
+Const. Altogether, we have

f(x, t) =
1

2

(
e−(x−ct)

2

+ e−(x+ct)
2
)

+
1

4c

(
1

(x− ct)2 + 1
− 1

(x+ ct)2 + 1

)
.

(2) By chain rule, we have

∂g

∂t
= −ch′(xαx + yαy + zαz − ct),

∂g

∂x
= αxh

′(xαx + yαy + zαz − ct),

∂g

∂y
= αyh

′(xαx + yαy + zαz − ct),
∂g

∂z
= αzh

′(xαx + yαy + zαz − ct).

Continuing to the second derivative,

∂2g

∂t2
= c2h′′(xαx + yαy + zαz − ct),

∂2g

∂x2
= α2

xh
′′(xαx + yαy + zαz − ct),

∂2g

∂y2
= α2

yh
′′(xαx + yαy + zαz − ct),

∂2g

∂z2
= α2

zh
′′(xαx + yαy + zαz − ct).

As α2
x+α2

y+α2
z = ‖ααα‖2 = 1, we have c2

(
∂2g
∂x2

+ ∂2g
∂y2

+ ∂2g
∂z2

)
= c2h′′(xαx+yαy+zαz−ct) =

∂2g
∂t2

.



4. (6 points) Compute the integral∫∫∫
T

dxdydz z
√
x2 + y2

where T is the region bounded by the cylinder x2 − 2x+ y2 = 0, the sphere x2 + y2 + z2 = 4
and the plane z = 0.

Solution.
Note that x2−2x+y2 = (x−1)2 +y2−1, hence x2−2x+y2 = 0 defines a cylinder based

on the circle centered at (1, 0, 0) with radius 1. If we project the sphere x2 + y2 + z2 = 4
to the xy-plane, its image is the disk {(x, y) ∈ R2 : x2 + y2 ≤ 2}, which includes the disk
{(x, y) ∈ R2 : (x− 1)2 + y2 ≤ 1}.

Let us put T0 := {(x, y) ∈ R2 : (x− 1)2 + y2 < 1}. Then we can write

T =
{

(x, y, z) ∈ R3 : (x, y) ∈ T0, 0 ≤ z ≤
√

4− x2 − y2
}
.

Now we can make the given integral into the following iterated integral, and the integration
with respect to z can be performed immediately:∫∫

T0

dxdy

∫ √4−x2−y2

0

z
√
x2 + y2 dz =

∫∫
T0

[
z2

2

]√4−x2−y2

0

√
x2 + y2 dxdy

=
1

2

∫∫
T0

(4− x2 − y2)
√
x2 + y2 dxdy.

In polar coordinates, T0 corresponds to
{

(r, θ) : 0 ≤ r ≤ 2 cos θ,−π
2
≤ θ ≤ π

2

}
, hence

1

2

∫∫
T0

(4− x2 − y2)
√
x2 + y2 dxdy =

1

2

∫ π
2

−π
2

∫ 2 cos θ

0

(4− r2)r · r drdθ

=
1

2

∫ π
2

−π
2

[
4

3
r3 − 1

5
r5
]2 cos θ
0

dθ

= 16

∫ π
2

−π
2

(
cos3 θ

3
− cos5 θ

5

)
dθ.

With t = sin θ, dt
dθ

= cos θ, the last expression becomes

16

∫ π
2

−π
2

(
1− sin2 θ

3
− (1− sin2 θ)2

5

)
cos θdθ = 16

∫ 1

−1

(
1− t2

3
− (1− t2)2

5

)
dt

= 16

[
t

3
− t3

9
− t

5
+

2t3

15
− t5

25

]1
−1

=
832

225
.



5. (6 points) Let F(x, y, z) = (−y3ez + y2exy
2
, x3 cos z + 2xyexy

2
, xyz) be a vector field on

R3, C be the circle
C = {(x, y, z) : x2 + y2 = a2, z = 0},

where a > 0.
Compute the line integral ∫

C

F · dααα,

where ααα is a parametrization of C going counterclockwise.

Solution.
Let S be a surface which has C as the boundary, and r(u, v) = (X(u, v), Y (u, v), Z(u, v))

be its parametrization such that the inverse-image of ααα is also going counterclockwise in the
uv-plane. Stokes’ theorem says, if we let n = N

‖N‖ where N = ∂r
∂u
× ∂r

∂v
, then it holds that∫

C
F · dααα =

∫
S

curlF · n dS.
For the C above, we can take S = {(x, y, z) : x2 + y2 < a2, z = 0}, and a parametrization

X(u, v) = u, Y (u, v) = v, Z(u, v) = 0. The corresponding region in the uv-plane is T =
{(u, v) : u2+v2 < a2}. It follows that ∂r

∂u
= (1, 0, 0), ∂r

∂v
= (0, 1, 0) and hence ∂r

∂u
× ∂r
∂v

= (0, 0, 1).
This last vector is already a unit vector.

After some straightforward computations, we obtain

curlF = (xz + x3 sin z, −y3ez − yz, 3x2 cos z + 3y2ez).

Therefore, on the uv-plane,

curlF(r(u, v)) · n(u, v) = (−2uuv
2 − 4u2v2euv

2

,−v4euv2 , 3(u2 + v2)) · (0, 0, 1) = 3(u2 + v2).

Altogether, through Stokes’ theorem, the given line integral becomes∫
C

F · dααα =

∫
S

curlF · n dS

=

∫∫
T

3(u2 + v2) dudv

=

∫ 2π

0

∫ a

0

3r2 · r drdθ

= 2π · 3a4

4
=

3πa4

2
,

where we transformed the uv-integral to the polar coordinate.


