BSc Engineering Sciences — A. Y. 2017/18
Written exam (call IT) of the course Mathematical Analysis 2
February 21, 2018

1. (6 points) Find a power series expression for the solution y(x) of the differential equation

zy" +(1+2)y +2y=0

such that y(0) = 1, ¢/(0) = —2, and determine its radius of convergence.
Solution.
Let us put y(z) = Y o2, a,z™. If this is convergent, we have y'(z) = Y o na,z™ ! and

y'(x) = > n(n — 1)a,z™ 2 If y(z) satisfies the differential equation above, it must hold

x(in(n—l)anx> (14 ) (Znan >+2<§anx">20.

n=2

By putting all the terms in the form of power series, we get

inn—lan " 1+Znan e 1+Znanx +22an =
n=2

By changing the label n in the summations (n — n + 1 in the first and second summations),
it is equivalent to

Z(n + Dnay2"™ + Z(n + Day2™ + Z na,x" + Z 2a,2" = 0.
n=1 n=0 n=1 n=0

In the first and third summations, if we put n = 0, there is a factor n, hence the summation
does not change even if it starts with n = 0. Namely,

= Z ((n+ )naps1 + (n+ Va1 + na, + 2a,) 2" = 0.
n=0

Therefore, if the power series is convergent, for each n it must hold
(n+ Dnaye1 + (n+ 1)apy1 + nay, + 2a, =0,

or equivalently, a, 1 = —%an and it follows that a, = (— 1)””+,1a0 From the conditions

nn+1l
n! °

y(0) =1, '(0) = —2, it follows that ap = 1 and a; = —2, hence in general a,, = (—1)



n+2

By ratio test, a,; 12" /a,a™ = x — 0 for any x € R, or the radius of convergence is

~ (nt+1)?
oo. Finally,
V() = S = 3 (ot o)
o xn—l 0 "
— . -1 n—-1_<= —1)
. ;( ) (n—l)!+;( )n!
=(1—-xz)e "

Note: one can obtain 6 points if a,, and the radius of convergence are correctly done.



2. (6 points) Let C' be the curve in R? defined by
C={(z,y):2(x+y—1)"+ (z—y)* =8}
Find the points on C' which are the nearest and the farthest from the origin (0, 0).

Solution.

We need to find all the stationary points of the function f(z,y) = 2® +4? (one could take
V22 + y?, but they share the same points of minima and maxima) under the condition that
g(z,y) =2z +y -1+ (x—y)*-8=0.

By Lagrange’s multiplier method, there is A € R such that AV f(z,y) = Vg(z,y) at
stationary points (x,y). Let us compute these gradients:

Vf(z,y) = (2z, 2y),
Vyg(z,y) =4z +y—-1)+2x —y), drz+y—1)— (v —y)).

From the equation of the multiplier method, for a stationary point (z,y), we have

{w: = dz4+y—1)+2(x—vy),
22y = dz+y—1)—2@x—y),

By summing and subtracting the sides of these equations, we obtain

{2/\(x—|—y) = 8x+y-—1),
2Mz —y) = 4(z—vy),

or equivalently,
{ A=N(x+y) = 4
A=2)(z—y) = 0.

Let us take the second equation. There are two cases where it can be fulfilled:
(1) z —y = 0. Now, (z,y) must also be on C, hence 2(2x — 1)?> = 8. From this, it follows
that (%,y) = (%7 %)7 <_%7 _%) Correspondingly, f(%a %) = %7 <_%7 _%) = %

(2) A—2 =0. In this case, by combining it with the first equation, we get z +y = 2. Again,
from the fact that (z,y) is on C, it follows that 2+ (z —y)? = 8, or equivalently, * —y =

+1/6. Combined with z+y = 2, it yields (z,y) = (1 + \/g, 1— \/g) , (1 — \/g, 1+ \/§>

and correspondingly, f (1 +4/3,1F \/g) =5.

As 1 < 9 <5, the nearest point from the origin is (=%, —3) (with the distance \%) and

the farthest points are (1 + \/g, 1F \/§> (with the distance v/5).



3.
(1) (3 points) Let ¢ > 0. Find the solution f(z,t) of the partial differential equation

I _ 20
o2~ Oz2

. e ey oy _$2
with the initial condition f(z,0) = e™*", & (z,0) =

x
@7

(2) (3 points) Let h(s) be a twice continuously differentiable function of s € R, a =
(Qz, ay, ;) € R? such that ||e||* = 1. Let us define a function g of (z,y,z,t) € R*
by

9(z,y, 2, t) = h(ra, + ya, + za, — ct).

Prove that ¢ satisfies the following partial differential equation (3d wave equation):

9’9 ,(0%g %9 %
w—C(@w—yﬁ@)

Solution.

(1) As we learned during the lecture, a general solution of this equation (1d wave equation)
is given by f(z,t) = 3 (F(x — ct) + F(x +ct)) + 5 fz+€t s)ds, where F(s) is a twice
continuously dlfferentlable function, G(s) is a once contmuously differentiable function.
Furthermore, it holds that f(z,0) = F(x) and g—{(m 0) = G(z).

We are given the initial conditions f(z,0) = e *" ﬁ(m 0) = Gy hence we can take

»
F(s)=e*,G(s) = . Note that [ G(s)ds = 2(S2+1) + Const. Altogether, we have

S

1 2 2 1 1 1
,t —— < —(z—ct) —(z+ct) > - _ ]
f@,1) 2 \° e * de \(z—ct)’+1 (x+ct)?+1

(2) By chain rule, we have

0 0

99 _ —ch/(zvay, + yay, + za, — ct), 99 _ agh (zay + yoy, + za, — ct),
ot ox

0 0

8_5 = a,h (va, + yoy, + za, — ct), (9_Z = a,h (za, + yay, + za, — ct).

Continuing to the second derivative,

&y P9

= 20 (ra, + ya, + za, — ct), = a2h" (za, + yay, + za, — ct),

or? da?
0? 0?
a—g = ajh(wog + yay + zo, — ct), 8—2 = a2k (va, + yoy, + za, — ct).
Yy z
As a2 +a?+a? = ||a||? = 1, we have ¢? (@ + 294 &> = 0 (va, +yo, +za, —ct) =
x Yy z - Ox2 Oy? 022 - zTY Yy z -

g
oi2 -



4. (6 points) Compute the integral

/// drdydz z/x2% + 12
T

where T is the region bounded by the cylinder 2? — 2z + y* = 0, the sphere 2% + y? + 22 = 4
and the plane z = 0.

Solution.
Note that 22 — 2z +y? = (z — 1)+ y?> — 1, hence 2? — 22+ y* = 0 defines a cylinder based
on the circle centered at (1,0,0) with radius 1. If we project the sphere ? + y? + 2% = 4
to the xy-plane, its image is the disk {(z,y) € R? : 22 + y? < 2}, which includes the disk
{(z,y) eR?: (z — 1) +¢y* < 1}.
Let us put Ty := {(z,y) € R? : (x — 1)> + *> < 1}. Then we can write
T:{(x,y, 2) ER?: (my) €Ty, 0 <2< /4 — xQ—yQ}.

Now we can make the given integral into the following iterated integral, and the integration
with respect to z can be performed immediately:

//d:cdy/ Vi \/Wdz—//{ } Vi \/Wda:dy
// —2? — y?)\/2? + 32 dady.

In polar coordinates, Ty corresponds to {(r, 0):0<r<2cos0, -5 <0< g}, hence

1 1 z 2cos 6
5//(4—x2—y2)\/x2—|—y2dxdy:5/2/ (4 —r®)r-r drdd
_~Jo
To 2

1 g 4 2cosf
= —/ —r — 17‘5 do
2/ (3 5 |,

2
Z (cos3h  cosd O
=16 — do.
/— < 3 b )

With ¢ = sin 6, jg = cos 6, the last expression becomes

Z (1 —sin%6 (1— sin? 6)? L — (1—t2)?
1 — =1 —
6/_ ( 3 3 )cos@dﬁ 6/_1( 3 = )dt

INE]

Wl



5. (6 points) Let F(z,y,2) = (—y?e* + y2e™’, 2 cos z + 2xye™’, xyz) be a vector field on
R3, C be the circle
C={(z,y,2): 2> +y*=a*2=0},

/]F~da,
c

where a is a parametrization of C' going counterclockwise.

where a > 0.
Compute the line integral

Solution.

Let S be a surface which has C' as the boundary, and r(u,v) = (X (u,v), Y (u,v), Z(u,v))
be its parametrization such that the inverse—image of a is also going counterclockwise in the
uv-plane. Stokes’ theorem says, if we let m = where N = Ir %, then it holds that
fC]F ~da = fscurllF-mdS.

For the C' above, we can take S = {(x,y, 2) : 2* + y? < @,z = 0}, and a parametrization
X(u,v) = u,Y(u,v) = v,Z(u,v) = 0. The corresponding region in the uv plane is T =
{(u,v) : u?+v? < a?}. It follows that & = (1,0,0), 2 = (0,1,0) and hence £ x 2£ = (0,0, 1).
This last vector is already a unit vector.

After some straightforward computations, we obtain

INII

o =

curl F = (zz + 2°sin z, —y®e” — yz, 32% cos z + 3y’e).
Therefore, on the uv-plane,
curl F(z(u, v)) - m(u, v) = (=2u™" — 400%™’ —v*e™” 3(u® + 7)) - (0,0,1) = 3(u® + v?).

Altogether, through Stokes’ theorem, the given line integral becomes

/]F-da:/curl]F-mdS
c s
_//3(u2+v2)dudv
T

2 a
/ 3r? - rdrdb
o Jo

3a*  3mat
=21 — = ,
4 2

where we transformed the uv-integral to the polar coordinate.



