
BSc Engineering Sciences – A. Y. 2017/18
Written exam of the course Mathematical Analysis 2

January 29, 2018

Last name: ................................................. First name: ........................................................
Matriculation: .................................................

Solve the following problems, motivating in detail the answers.

1. (6 points) Determine the values of α ∈ R for which the following improper integral is
convergent, and compute it for α = 1

2
:∫ π/4

0

cosx

(cos2 x− sin2 x)α
dx.

Solution.
The integrand can be rewriten as

cosx

(1− 2 sin2 x)α

By substituting sinx = t, hence dt
dx

= cosx, the integral can be transformed into∫ 1√
2

0

1

(1− 2t2)α
dt.

As t→ 0, the integrand remains bounded. As for t→ 1√
2
, we have

1

(1− 2t2)α
=

1

(−2( 1√
2
− t)2 + 2

√
2( 1√

2
− t))α

.

Now clearly −2( 1√
2
− t)2 + 2

√
2( 1√

2
− t) ≤ 2

√
2( 1√

2
− t), and for t ≥ 1/

√
2 − 1/2, −2( 1√

2
−

t)2 + 2
√

2( 1√
2
− t) ≥ (2

√
2− 1)( 1√

2
− t), and then

1

(2
√

2( 1√
2
− t))α

≤ 1

(−2( 1√
2
− t)2 + 2

√
2( 1√

2
− t))α

≤ 1

((2
√

2− 1)( 1√
2
− t))α

,

so that the integral around 1√
2

is finite if and only if α < 1, by comparing with the function
1

( 1√
2
−t)α . An alternative way leading to the same conclusion is to observe that, for t→ 1√

2
,

1

(1− 2t2)α
=

1

2α( 1√
2
− t)α( 1√

2
+ t)α

∼ 1

(2
√

2)α
· 1

( 1√
2
− t)α

,

and to apply the asymptotic comparison test.
As for α = 1

2
, substitute further t = 1√

2
sin θ, dt

dθ
= 1√

2
cos θ and the integral becomes∫ π

2

0

cos θ
√

2 ·
√

1− sin2 θ
dθ =

1√
2

∫ π
2

0

dθ =
π

2
√

2
.



2.

(1) (4 points) Find all the stationary points of the following scalar field, defined on R2,

f(x, y) = ex+y(x2 + xy)

and classify them into relative minima, maxima and saddle points.

(2) (2 points) Compute the derivative of the following function on R:

f(t) = (1 + cosh t)1+cosh t.

Solution.
(1) For the f given above, it holds that

∇f(x, y) = (ex+y(x2 + xy + 2x+ y), ex+y(x2 + xy + x)).

At stationary points, ∇f(x, y) = holds. Namely,

ex+y(x2 + xy + 2x+ y) = 0, ex+y(x2 + xy + x) = 0.

As ex+y takes never 0, this is equivalent to

x2 + xy + 2x+ y = 0, x2 + xy + x = 0,

and by subtracting the both sides, one obtains x + y = 0. Substituting y = −x in one of
these equations, one obtains x2 − x2 + x = x = 0. Therefore, the only stationary point is
(0, 0).

To classify this point, let us compute the Hessian matrix:(
ex+y(x2 + xy + 2x+ y + 2x+ 2) ex+y(x2 + xy + 2x+ y + x+ 1)
ex+y(x2 + xy + 2x+ y + x+ y + 1) ex+y(x2 + xy + x+ x)

)
and at the point (x, y) = (0, 0), this becomes(

2 1
1 0

)
.

Its determinant is 2 · 0− 1 · 1 = −1, therefore, it has both negative and positive eigenvalues,
and the point (0, 0) is a saddle point.
(2) Take the function g(x, y) = xy (for x, y > 1) and define ααα(t) = (α1(t), α2(t)) =
(1 + cosh t, 1 + cosh t). Note that f(t) = g(ααα(t)), therefore, by the chain rule, f ′(t) =
∂g
∂x

(ααα(t))dα1

dt
(t) + ∂g

∂y
(ααα(t))dα2

dt
(t).

We have ∂g
∂x

= yxy−1, ∂g
∂y

= log x · xy and dα1

dt
(t) = dα2

dt
(t) = sinh t, hence,

f ′(t) = (1 + cosh t) · (1 + cosh t)cosh t · sinh t+ log(1 + cosh t) · (1 + cosh t)(1+cosh t) · sinh t

= sinh t(1 + log(1 + cosh t))(1 + cosh t)(1+cosh t).

Note: any other method is of course OK if correct, e.g. writing f(t) = e(1+cosh t) log(1+cosh t).



3. (6 points) Determine whether the following vector field on R2

f(x, y) = (ey cos(xey), xey cos(xey))

is a gradient of some scalar field. If so, find one of these scalar fields ϕ such that f(x, y) =
∇ϕ(x, y).
Solution.
Let us call f(x, y) = (f1(x, y), f2(x, y)), where f1(x, y) = ey cos(xey), f2(x, y) = xey cos(xey).
We compute:

∂f1
∂y

(x, y) = ey cos(xey)− xe2y sin(xey),

∂f2
∂x

(x, y) = ey cos(xey)− xe2y sin(xey),

and we see that they coincide. As R2 is convex, this implies that f is a gradient.
To find a concrete potential ϕ, we can take

ϕ(x, y) =

∫ y

0

f2(0, t)dt+

∫ x

0

f1(t, y)dt

= 0 + [sin(tey)]x0
= sin(xey).



4. (6 points) Compute ∫∫∫
S

(x2 + y2 − arctan z) dxdydz,

where
S = {(x, y, z) ∈ R3 : x2 + y2 ≤ 1, 0 ≤ z ≤ 1}.

Solution.
By additivity of integral, we can split it into the following∫∫∫

S

(x2 + y2) dxdydz −
∫∫∫

S

(arctan z) dxdydz.

The region S is xy-projectable: S = {(x, y, z) ∈ R3 : (x, y) ∈ S0, 0 ≤ z ≤ 1}, where
S0 = {(x, y) ∈ R2 : x2 + y2 ≤ 1}, so we can compute the integral by first integrating with
respect to z and then xy.

The first integrand does not depend on z, therefore,∫∫∫
S

(x2 + y2) dxdydz =

∫
S0

∫ ∫ 1

0

(x2 + y2) dz dxdy

=

∫
S0

∫
(x2 + y2) dxdy

=

∫ 2π

0

∫ 1

0

r2rdrdθ

=
π

2
.

As for the second integral, note that arctan z = (z arctan z − 1
2

log(1 + z2))′. Therefore,∫∫∫
S

arctan z dz dxdy =

∫
S0

∫ ∫ 1

0

arctan z dz dxdy

=

∫
S0

∫
[z arctan z − 1

2
log(1 + z2))]10 dxdy

=

∫
S0

∫
(
π

4
− 1

2
log 2) dxdy

= π

(
π

4
− 1

2
log 2

)
.

Altogether, ∫∫∫
S

(x2 + y2 − arctan z) dxdydz = π

(
1

2
− π

4
+

1

2
log 2

)
.



5. (6 points) Let F(x, y, z) = (x3, y3, z3) be a vector field on R3, S be the sphere {(x, y, z) :
x2 + y2 + z2 = a2}, where a > 0 and n the outgoing normal unit vector on S at each point
of S.

Compute the surface integral ∫
S

∫
F · n dS.

Solution.
Thanks to Gauss’ theorem (divergence theorem), this integral is equal to the following

volume integral ∫
V

∫∫
divF dxdydz

where V = {(x, y, z) : x2 + y2 + z2 ≤ a2}.
Let us compute:

divF = 3x2 + 3y2 + 3z2 = 3(x2 + y2 + z2).

To perform the volume integral, we use the spherical coordinate x = r cos θ sinϕ, y =
r sin θ sinϕ, z = r cosϕ. The region Q correponding to V in this change of coordinate is
Q = {(r, θ, ϕ) : 0 ≤ r ≤ a, 0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ π}. Recall that the Jacobian determinant is
J(r, θ, ϕ) = −r2 sinϕ, and note that x2 + y2 + z2 = r2. Theorefore,∫

S

∫
F · n dS =

∫
V

∫∫
divF dxdydz

= 3

∫
Q

∫∫
r2 · r2 sinϕdrdθdϕ

= 3

∫ π

0

∫ 2π

0

∫ a

0

r4 sinϕdrdθdϕ

= 3 · 2 · 2π · a
5

5
·

=
12πa5

5
.

Note: some people tried to do this without using Gauss’ theorem. At best they transformed
the surface integral into a correct double integral, in which case, they obtain 3 points.


