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Abstract: We show that any solitonic representation of a conformal (diffeomorphism
covariant) net on S1 has positive energy and construct an uncountable family of mu-
tually inequivalent solitonic representations of any conformal net, using nonsmooth
diffeomorphisms. On the loop group nets, we show that these representations induce
representations of the subgroup of loops compactly supported in S1\{−1} that do not
extend to the whole loop group. In the case of the U(1)-current net, we extend the dif-
feomorphism covariance to the Sobolev diffeomorphismsDs(S1), s > 2, and show that
the positive-energy vacuum representations of Diff+(S1) with integer central charges
extend to Ds(S1). The solitonic representations constructed above for the U(1)-current
net and for Virasoro nets with integral central charge are continuously covariant with
respect to the stabilizer subgroup of Diff+(S1) of −1 of the circle.

1. Introduction

In two-dimensional quantum field theory, solitons appear in the presence of inequivalent
vacuum sectors. In [Fro76], Frölich proposed an operator-algebraic formulation of soli-
tons as superselection sectors localized in a half-space. Existence of such solitons has
been obtained for a wide class of models [Sch96,Sch98,Mug99], and general structural
results have been obtained [Fre93,Reh98]. In two-dimensional conformal field theory,
the vacuum is unique due to dilation invariance [Rob74] and translation-invariant states
are not always localized in half-space [Tan18], yet solitons appear through α-induction
[LR95,BE98,BE99a], and the interrelationship between solitons has led to the operator-
algebraic formulation of modular invariant [BE99b]. In this way, solitons play a crucial
role in the study of conformal field theories.

S. Del Vecchio: Supported by ERC advanced Grant 669240 QUEST “Quantum Algebraic Structures and
Models” and GNAMPA-INDAM.

Y. Tanimoto: Supported by Programma per giovani ricercatori, anno 2014 “Rita Levi Montalcini” of the
Italian Ministry of Education, University and Research.
© 2019 by the authors. This paper may be reproduced in its entirety for non-commercial purposes.

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s00220-019-03419-2&domain=pdf
http://orcid.org/0000-0002-4892-5438


392 S. Del Vecchio, S. Iovieno, Y. Tanimoto

In the operator-algebraic framework, a conformal field theory is realized as a family of
von Neumann algebras satisfying certain axioms (conformal net), and the superselection
sectors, including solitons, are the equivalence classes of its representations. When a
conformal net has a subnet, α-induction yields solitons for the larger net from a sector of
the smaller net. Note that the Virasoro nets, the conformal nets generated by the stress–
energy tensor alone, do not have any Möbius covariant subnet [Car98]. Therefore, it
is a natural question whether the Virasoro nets admit any nontrivial soliton. Recently
Henriques in [Hen17a] proved that the category of solitons Sol(A) of a completely
rational conformal netA is a bicommutant category whose Drinfel’d center corresponds
to the category ofDHR sectors ofA. This fact implies the existence of non-trivial solitons
for all the conformal nets with central charge c < 1 and μ-index > 1 (hence including
the Virasoro nets with c < 1), yet the existence of such solitons is only implicit. In this
paper, we construct for any conformal net a family of concrete, proper, automorphic
solitons (with index 1) parametrized by R+ using nonsmooth diffeomorphisms.

The (smooth) diffeomorphism covariance is the defining property of conformal nets.
The representations of this large spacetime symmetry group can be further extended to
certain nonsmooth diffeomorphisms depending on their regularity [CW05,Wei06].Here,
we show that these representations cannot be extended to some less-smooth diffeomor-
phisms, and exploit this to construct proper irreducible solitons (a similar construction
has been implicitly given in [LX04,KLX05] which yielded reducible, type III solitons).
We also show that any soliton has positive energy, this time by exploiting unitarily
representable nonsmooth diffeomorphisms.1

This distinction between implementable and non-implementable diffeomorphisms is
central in thiswork.We say that a nonsmooth diffeomorphism γ is unitarily implemented
in a conformal net if there is a unitary operator whose adjoint action realizes γ on the
quantum observables. When a diffeomorphism is not implementable, its action may give
rise to a new sector. In any conformal net, the Sobolev-class diffeomorphisms Ds(S1)

with s > 3 are implementable [CDIT]. Here we show, using the Tomita–Takesaki
modular theory, that nonsmooth diffeomorphisms that have discontinuous derivatives are
not implementable, although they are implementable when restricted to local algebras.
In this way, we obtain an uncountable family of inequivalent solitons for any conformal
net. On the other hand, the implementability of many nonsmooth diffeomorphisms is
inherited by sectors, and indeed positivity of energy in any soliton is proved in this way.

As an application, we construct irreducible unitary projective positive-energy repre-
sentations of the subgroup�G of the loop group LG, consisting of loopswith support not
containing the point−1 that do not extend to LG. The existence of such representations
was marked as an open problem in [PS86, P.174, Remark]. Similar representations are
constructed for the group B0 of diffeomorphisms of S1 preserving the point −1. These
results can be seen as an application of the modular theory of von Neumann algebras to
the representation theory of infinite-dimensional groups.

Wealsopursue thequestionofwhichnonsmoothdiffeomorphisms are implementable.
We take the U(1)-current net (the derivative of the massless free field, or the Heisenberg
algebra) which has the central charge c = 1, and show that it is covariant with respect to
Sobolev-class diffeomorphisms Ds(S1), s > 2. This is done by the Shale(-Stinespring)
criterion of unitary implementation [Sha62], and improves the implementation with
s > 3 for general conformal nets [CDIT]. This implies that some unitary represen-

1 Positivity of energy has been proved for finite index representations without using conformal covariance
[BCL98]. Our proof depends on conformal covariance and normality on half lines, but makes no assumption
on the index.
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tations of Diff+(S1) with integer c can be extended to Ds(S1)-diffeomorphisms with
s > 2. This is to our knowledge the largest group that is implementable for some c, and
no other implementable diffeomorphism is known. As a consequence, the solitons we
construct in Sect. 3.2 are continuously B0-covariant in this case.

This paper is organized as follows: in Sect. 2 we recall the notions of conformal
net and its representation theory together with some facts about the diffeomorphisms
groups and loop groups. In Sect. 3.1 we prove that every soliton is translation covariant
with positive energy. The covariance can be further extended, but we do not know the
continuity. In Sect. 3.2 we construct a family of proper solitons arising from nonsmooth
diffeomorphisms. It is shown in Sect. 3.3 that a soliton that is locally Möb-covariant
(not just covariant with respect to the universal covering M̃öb) extends to a DHR rep-
resentation. Sect. 4 is dedicated to concrete examples: we use the results in Sect. 3 to
prove that there exist irreducible positive energy representations of B0 and �G that do
not extend to Diff+(S1) and LG, respectively. Furthermore, in Sect. 5 we show that the
U (1)-current net and the Virasoro nets with positive integer central charge are Ds(S1)-
covariant, s > 2. In Sect. 6 we summarize open problems. In “Appendix”, we prove that
any conformal net is covariant with respect to piecewise smooth C1-diffeomorphisms.

2. Preliminaries

2.1. Conformal nets. Let I be the set of nonempty, non-dense, connected open intervals
of the unit circle S1. For I ∈ I, I c denotes the interior of the complement of the interval
I ∈ I, namely I c = (S1\I )◦. TheMöbius groupMöb = PSL(2, R) acts on S1 by linear
fractional transformations (see Sect. 2.3.1).

A Möbius covariant net on S1 (A, U,�) consists of a family {A(I ), I ∈ I} of von
Neumann algebras acting on a separable complex Hilbert spaceH, a strongly continuous
unitary representation U of Möb and a “vacuum” vector� ∈ H satisfying the following
properties:

(CN1) Isotony: if I1 ⊂ I2, I1, I2 ∈ I, then A(I1) ⊂ A(I2).
(CN2) Locality: if I1 ∩ I2 = ∅, I1, I2 ∈ I, then A(I1) ⊂ A(I2)′.
(CN3) Möbius covariance: for g ∈ Möb, I ∈ I, AdU (g)(A(I )) = A(gI ).
(CN4) Positivity of energy: the representationU has positive energy, i.e.the conformal

Hamiltonian L0 (the generator of rotations) has non-negative spectrum.
(CN5) Vacuum: � is the unique (up to a scalar) vector such that U (g)� = � for

g ∈ Möb, and � is cyclic for
∨

I∈I A(I ).

Positivity of energy is actually equivalent to positivity of the generator of translations
[Kos02, Proposition 1], see Sect. 2.3.1. With these assumptions, the following automati-
cally hold, see [GF93, Lemma 2.9, Theorem2.19(ii)][FJ96, Section 3] and the arguments
of [Bau95, Theorem 1.2.6]:

(CN6) Haag duality: for every I ∈ I, A(I ′) = A(I )′ where A(I )′ is the commutant
of A(I ).

(CN7) Additivity: if I, Iα ∈ I and I ⊂⋃
α Iα , then A(I ) ⊂∨

α A(Iα).
(CN8) Bisognano–Wichmann property: if I(0,π) = {z ∈ S1 : Im(z) > 0} ∈ I and

�I(0,π)
is the modular operator associated to A(I(0,π)) and � then

�i t
I(0,π)

= U (δ(−2π t)),

where δ is the one parameter group of dilations (as a subgroup of Möb through
the Cayley transform, see Section 2.3.1).
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(CN9) Irreducibility: eachA(I ) is a type III1 factor and
∨

I∈IR
A(I ) = B(H), where

IR is the set of intervals not containing the point −1, see Sect. 2.2.
By a conformal net (or diffeomorphism covariant net) we shall mean a Möbius

covariant net that satisfies the following:

(CN10) U extends to a projective unitary representation of Diff+(S1) on H such that
for all I ∈ I we have

AdU (γ )(A(I )) = A(γ I ), γ ∈ Diff+(S1),

and

AdU (γ )(x) = x, x ∈ A(I ), supp γ ∈ I ′, (2.1)

where supp γ is the closure of the complement of the set of z ∈ S1 such that
γ (z) = z.

In a conformal net, the following is automatic [MTW18]:

(CN11) The split property: if I ⊂ Ĩ where I is the closure of I , then there is a type I
factor RI, Ĩ such that A(I ) ⊂ RI, Ĩ ⊂ A( Ĩ ).

2.2. Representations of conformal nets. DHR representations. A DHR (Doplicher–
Haag–Roberts) representation ρ of a conformal net A is a family of maps {ρI }I∈I
where ρI is a normal (σ -weakly continuous) representation of the von Neumann algebra
A(I ) on a fixed Hilbert spaceHρ with the compatibility property ρI2 |A(I1) = ρI1 , I1 ⊂
I2.

We say that two representations ρ1, ρ2 are unitarily equivalent if there exists an
intertwining unitary operator U fromHρ1 andHρ2 , i.e. Uρ1,I (x) = ρ2,I (x)U for every
x ∈ A(I ) and I ∈ I. A representation ρ is said to be irreducible if

∨
I∈I ρI (A(I )) =

B(Hρ). The collection of identity maps ρ0 = {ρ0,I } where ρ0,I (x) = x, x ∈ A(I ) is
called the vacuum representation.

A group G may act on S1. In this paper, G will be either Möb,Diff+(S1) or some
groups that contain Diff+(S1) such thatU can be extended to them (see Sections 3.2 and
5). A DHR representation ρ is said to be G-covariant if there exists a unitary projective
representation Uρ of G such that

AdUρ(γ )(ρI (x)) = ργ I (AdU (γ )(x)),

for all γ ∈ G. If G is a topological group and acts on S1 continuously, we often require
that U is continuous in the strong operator topology.

Solitons. Let IR be the set of open, non-empty, connected subsets of the real line R,
identified with S1\{−1} ⊂ C via Cayley transform (see Sect. 2.3.1). Namely, IR is the
family of bounded open intervals and open half-lines of R.

A soliton (or solitonic representation to be precise) σ of a conformal netA is a family
of maps {σI }I∈IR

where σI is a normal representation of the von Neumann algebraA(I )
on a fixed Hilbert space Hσ with the compatibility property σI2 |A(I1) = σI1 , I1 ⊂ I2.
We say that the soliton σ is proper if there is no DHR representation of the conformal
net A that agrees with σ when restricted to the family of intervals IR.
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Let G again be a group acting on S1, and G0 ⊂ G be a subgroup whose elements
preserve the point −1 ∈ S1. A soliton σ of A is G0-covariant if there is a unitary
projective representation Uσ of G0 such that AdUσ (γ )(σI (x)) = σγ I (AdU (γ )(x))

with x ∈ A(I ). Similarly, a soliton σ is locally G-covariant2 if there is a unitary
projective representation Uσ of G such that for a neighborhood U of the unit element
of G and I ∈ IR such that γ I ⊂ R for γ ∈ U , it holds that AdUσ (γ )(σI (x)) =
σγ I (AdU (γ )(x)), x ∈ A(I ), γ ∈ U .

Consider the case where G0 includes the translation group of R. We say that a soliton
σ has positive energy if the unitary representation Uσ above can be chosen in such a
way that the restriction to the one-parameter subgroup of translations is continuous in the
strong operator topology and has a positive generator. Note that, if σ is not irreducible,
Uσ that implements covariance is not unique, and other implementations may fail to
have positive generator.

With R± considered as intervals in IR, we define the index of σ as the Jones index
of the inclusion σ(A(R+)) ⊂ σ(A(R−))′. This is a natural generalization of the index
of DHR representations.

2.3. The spacetime symmetry groups.

2.3.1. The Möbius group The group SL(2, R) of 2 × 2 real matrices with determinant
one acts on the compactified real line R ∪ {∞} by linear fractional transformations:

g : t → gt := at + b

ct + d
for g =

(
a b
c d

)

∈ SL(2, R).

The kernel of this action is {±1}. By identifying the compactified real line R∪{∞}with
the circle S1 via Cayley transform

C : S1\{−1} → R, z �→ i
1− z

1 + z
, (2.2)

with inverse

C−1 : R → S1\{−1}, t �→ 1 + i t

1− i t
, (2.3)

the group PSL(2, R) := SL(2, R)/ {±1} can be identified with a subgroup of diffeo-
morphisms of the circle S1, the Möbius group Möb.

The following are important subgroups of PSL(2, R):

R(θ) =
(

cos(θ/2) sin(θ/2)
− sin(θ/2) cos(θ/2)

)

, δ(t) =
(

et/2 0
0 e−t/2

)

, τ (t) =
(
1 t
0 1

)

,

and they are called the rotation, dilation and translation subgroup, respectively, and act
in the following way:

R(θ)z = eiθ z on S1,

δ(t)s = et s on R,

τ (t)s = s + t on R.

The expressions of δ(t) and τ(t) in the circle picture are available in [Wei05, (A.6)].

2 In [CHK+15, Definition 2.2], the notion “G-covariance” is defined through a unitary projective rep-
resentation of the universal covering group G̃. Differently from this, we distinguish explicitly projective
representations of G and of G̃ and add “locally”.
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2.3.2. The (smooth) diffeomorphism groups. The Lie group.Let us denote byDiff+(S1)

the group of orientation preserving, smooth diffeomorphisms of the circle S1 := {z ∈
C : |z| = 1} and Vect(S1) denote the set of smooth vector fields on S1. The group
Diff+(S1) is an infinite-dimensional Lie group whose Lie algebra is identified with the
real topological vector space Vect(S1) of smooth vector fields on S1 with C∞-topology
[Mil84]. The exponential map Exp : Vect(S1) → Diff+(S1) maps t f ∈ Vect(S1) to
the one-parameter group Exp(t f ) ∈ Diff+(S1) of diffeomorphisms of S1 satisfying the
ordinary differential equation

dExp(t f )(z)

dt
= f (Exp(t f )(z)), Exp(0)(z) = z.

We identify Vect(S1) with C∞(S1, R) and for f ∈ C∞(S1, R) we denote by f ′ the
derivative of f with respect to the angle θ :

f ′(z) = d

dθ
f (eiθ )

∣
∣
∣
∣
eiθ=z

.

We consider a diffeomorphism γ ∈ Diff+(S1) as a map from S1 ⊂ C in S1. With this
convention, its action on f ∈ Vect(S1) is

(γ∗ f )(eiθ ) = −ie−iθ d

dϕ
γ (eiϕ)

∣
∣
∣
∣
eiϕ=γ−1(eiθ )

f (γ−1(eiθ )).

The Lie algebra. The linear space Vect(S1) is endowed with the Lie bracket given by

[ f, g] = f ′g − f g′.

As a Lie algebra, Vect(S1) admits the Gelfand–Fuchs 2-cocycle

ω( f, g) = 1

48π

∫

S1
( f (eiθ )g′′′(eiθ )− f ′′′(eiθ )g(eiθ ))dθ.

The Virasoro algebra Vir is the central extension of the complexification of the algebra
generated by the trigonometric polynomials in Vect(S1) defined by the 2-cocycle ω. It
can be explicitly described as the complex Lie algebra generated by Ln , n ∈ Z, and the
central element κ , with brackets

[Ln, Lm] = (n − m)Ln+m + δn+m,0
n3 − n

12
κ.

Positive-energy representations. Consider a representation πV : Vir→ End(V ) of Vir
on a complex vector space V endowed with a non-degenerate, positive-definite scalar
product 〈·, ·〉. We call πV a unitary positive energy representation if the following
hold:

• Unitarity: 〈v, πV (Ln)w〉 = 〈πV (L−n)v,w〉 for every v,w ∈ V and n ∈ Z;
• Positivity of the energy: V = ⊕

λ∈R+∪{0} Vλ, where Vλ := ker(πV (L0) − λ1V ).
The lowest eigenvalue of πV (L0) is called lowest weight;

• Central charge: πV (κ) = c1V ;
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There exists an irreducible unitary positive energy representationπc,h with central charge
c and lowest weight h if and only if c ≥ 1 and h ≥ 0 (continuous series representation)

or (c, h) = (c(m), h p,q(m)), where c(m) = 1− 6
(m+2)(m+3) , h p,q(m) = (p(m+1)−qm)2−1

4m(m+1) ,
m = 3, 4, . . ., p = 1, 2, . . . , m − 1, q = 1, 2, . . . , p, (discrete series representation)
[KR87,DMS97]. In this case the representation space V is denoted by Hfin(c, h). We
denote byH(c, h) the Hilbert space completion of the vector spaceHfin(c, h) associated
with the unique irreducible unitary positive energy representation of Vir with central
charge c and lowest weight h.

The stress–energy tensor. In a (possibly infinite) direct sum representation πH of πc,h j

with the same central charge c, the conformal Hamiltonian L0 is diagonalized, and on
the linear span of its eigenvectorsHfin (the space of finite energy vectors), the Virasoro
algebra acts algebraically as unbounded operators. With a slight abuse of notation, we
denote by Ln the elements of Vir represented inH.

For a smooth complex-valued function f on S1 with finitely many non-zero Fourier
coefficients, the (chiral) stress–energy tensor associated with f is the operator

T ( f ) =
∑

n∈Z
Ln f̂n

acting on H, where

f̂n =
∫ 2π

0

dθ

2π
e−inθ f (eiθ ).

The stress–energy tensor T can be extended to certain nonsmooth real functions f ∈
S 3

2
(S1, R) by the linear energy bounds, yielding a self-adjoint unbounded operator T ( f ).

We will review these results in detail in Sect. 2.3.3.
Such a representation integrates to a projective unitary representation of the universal

covering group ˜Diff+(S1) of Diff+(S1), namely, there is a projective unitary representa-

tion U of ˜Diff+(S1) such that U (Exp( f )) = eiT ( f ) up to a scalar.3 If the h j ’s appearing
in the direct summand differ from each other by an integer, thenU reduces to a projective
representation of Diff+(S1) (2π -rotation is a scalar).

The stress–energy tensor T satisfies the following covariance [FH05, Proposition 5.1,
Proposition 3.1]:

Proposition 2.1. The stress–energy tensor T onH and its integration U as above satisfy

AdU (γ )(T ( f )) = T (γ̊∗( f )) + β(γ̊ , f )

β(γ̊ , f ) := c

24π

∫ 2π

0
{γ̊ , z}|z=eiθ f (eiθ )ei2θ dθ

on vectors in Hfin, for f ∈ Vect(S1) and γ ∈ ˜Diff+(S1), where γ̊ ∈ Diff+(S1) is the
image of γ under the covering map. Furthermore, the commutation relations

i[T (g), T ( f )] = T (g′ f − f ′g) + cω(g, f ),

3 This scalar cannot be made trivial [FH05, (5.11)].
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hold for arbitrary f, g ∈ C∞(S1), on vectors ψ ∈ Hfin, where

{γ̊ , z} =
d3

dz3
γ̊ (z)

d
dz γ̊ (z)

− 3

2

⎛

⎝
d2

dz2
γ̊ (z)

d
dz γ̊ (z)

⎞

⎠

2

is the Schwarzian derivative of γ̊ and d
dz γ̊ (z) = −i z̄ d

dθ
γ̊ (eiθ )

∣
∣
∣
∣
eiθ=z

.

If we consider the Cayley transform (2.2), (2.3), a vector field f ∈ Vect(S1) in real
line coordinates is given by

C∗( f )(t) = (1 + t2)

2
f (C−1(t)).

With the Schwartz class functionsS (R), the stress energy tensor satisfies the following
quantum-energy inequalities [FH05, Theorem 4.1].

Theorem 2.2. Let f ∈ Vect(S1) with C∗( f ) ∈ S (R) and C∗( f )(t) ≥ 0 ∀t ∈ R. For
ψ ∈ D(L0), it holds that

(ψ, T ( f )ψ) ≥ − c

12π

∫

R

(
d

dt

√
C∗( f )(t)

)2

dt,

where the derivative is given by

d

dt

√
C∗( f )(t) =

{
( d

dt C∗( f )(t))/(2
√

C∗( f )(t)) if C∗( f )(t) �= 0
0 if C∗( f )(t) = 0.

Translations The generator of translations is by definition t(t) := ∂
∂s (τ (t)s)

∣
∣
∣
∣
s=0

= 1.

The corresponding field on S1 is

t(eiθ ) = 1 + cos θ.

Subgroups Bn The stabilizer subgroup B0 ⊂ Diff+(S1) of −1 is a Lie subgroup with
Lie algebra given by those vector fields f ∈ Vect(S1) such that f (−1) = 0. The dilation
and translation subgroups of Diff+(S1) are in B0. Similarly, Bn is the subgroup of B0
whose elements have vanishing 1st, 2nd, . . ., n-th derivatives at −1. The group B1 still
contains translations, but not dilations. These groups have the natural C∞ topology, but
we often treat them without topology.

2.3.3. Piecewise smooth diffeomorphisms. Let Diff1,ps+ (S1) be the group of piecewise
smooth C1-diffeomorphisms of S1, namely, γ ∈ Diff1,ps+ (S1) is a C1-diffeomorphism
and S1 can be decomposed into finitely many closed intervals (with a possibly common
end point) on each of which γ is smooth and has finite derivatives in all orders at the
end points. It has been known that some elements of Diff1,ps+ (S1) can be implemented
in a conformal net [CW05,Wei06]. Let us recall these elements.
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For a real-valued continuous function f of the circle, set

‖ f ‖ 3
2
:=

∑

n∈Z
| f̂n|(1 + |n| 32 ),

where f̂n := 1
2π

∫ 2π
0 e−inθ f (eiθ )dθ is the n-th Fourier coefficient4 of f . We denote

with S 3
2
(S1, R) the class of functions f ∈ L1(S1, R) such that ‖ f ‖ 3

2
is finite, endowed

with the topology induced by the norm ‖ · ‖ 3
2
. By [Wei06, Lemma 2.2], if f is piecewise

smooth and and C1 on the whole S1, then f ∈ S 3
2
(S1, R).

Let T be the stress–energy tensor on H = ⊕
j H(c, h j ). In [CW05, Proposition

4.2, Theorem 4.4, Proposition 4.5] it has been shown that, if f ∈ S 3
2
(S1, R), then the

operator T ( f ) = ∑
n∈Z Ln fn on the domain Hfin is convergent and essentially self-

adjoint on any core of L0. In addition, if ‖ f − fn‖ 3
2
→ 0 for f, fn ∈ S 3

2
(S1, R), then

T ( fn) → T ( f ) in the strong resolvent sense.
From these results, it follows that certain piecewise smooth C1-diffeomorphisms of

the form Exp( f ) are implemented in a conformal net. Actually, we prove in “Appendix
A” that any conformal net is Diff1,ps+ (S1)-covariant. We do not consider topology on
Diff1,ps+ (S1). It follows that any soliton is Diff1,ps+,1 (S1)-covariant, where Diff1,ps+,1 (S1) :=
{γ ∈ Diff1,ps+ (S1) : γ (−1) = −1, γ ′(−1) = 1} (Theorem 3.4). The solitons we con-
struct in Sect. 3.2 are Diff1,ps+,0 (S1)-covariant where Diff1,ps+,0 (S1) := {γ ∈ Diff1,ps+ (S1) :
γ (−1) = −1}.
2.3.4. The Groups of Sobolev-class diffeomorphisms. For s real, the Sobolev spaces
Hs(S1) are defined by

Hs(S1) := { f ∈ L2(S1) : ‖ f ‖Hs <∞}, where ‖ f ‖Hs :=
(
∑

k∈Z
(1 + k2)s | f̂k |2

) 1
2

.

If s > 3
2 , then the set Ds(S1) of Sobolev-class diffeomorphisms

Ds(S1) := {γ ∈ Diff1+(S1) : γ̃ − ι ∈ Hs(S1)},
where γ̃ is a lift of γ toR, is a topological group [IKT13, TheoremB.2] (see also [CDIT,
Lemma 2.5]). We also have the following continuity of the action on Hs(S1) [IKT13,
Theorem B.2].

Lemma 2.3. For s > 3/2, the map ( f, γ ) �→ f ◦γ from Hs(S1)×Ds(S1) into Hs(S1)

is continuous.

3. General Results on Solitons

Throughout this Section, (A, U,�) is a conformal net in the sense of Section 2.
It has been observed [Hen17b, Section 3.3.1] that, by [Wei06], any soliton can be

made translation covariant. In the next Sectionwe show further that it has always positive
energy, proving [Hen17b, Conjecture 32]. We suspect that the converse implication
[Hen17b, Conjecture 34] could be negative, cf. [Tan18,Tan11]. In addition, we present
a general scheme to construct solitons for any conformal net.

4 This should be distinguished from a sequence of functions fn .
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3.1. Positivity of energy. Let us first observe that Exp(tg) makes sense if g is C1, be-
cause then the existence and uniqueness of solution of the ordinary differential equation
are assured [CL55, Chapter 1, Theorem 2.3]. We need some preparatory results on
representations of these elements.

Lemma 3.1. Let g ∈ C∞(S1, R) and f be a real piecewise smooth and C1-function on
S1. Then it holds that

AdeiT (g)(T ( f )) = T (Exp(g)∗( f )) + β(Exp(g), f ).

Proof. Let us fix s such that 2 < s < 5
2 . Note that f ∈ Hs(S1). Indeed, f ′′ is defined

except a finite number of points and of bounded variation, and by the proof of [Wei06,

Lemma 2.2], we have |k2 f̂k | ≤
∣
∣
∣
Var( f ′′)

k

∣
∣
∣, where Var( f ′′) is the variation of f ′′, see

[Kat04, Theorem 4.5]. From this it is immediate that |k|2s | f̂k |2 ≤
∣
∣
∣
Var( f ′′)2

k6−2s

∣
∣
∣ and the

right-hand side is summable in k as 6− 2s > 1, hence f ∈ Hs(S1).
Next, let us observe that Hs(S1) ⊂ S 3

2
(S1). Indeed,

∑

k

(1 + |k|) 3
2 | f̂k | ≤

∑

k

(1 + |k|)s | f̂k | · (1 + |k|) 3
2−s≤2

∑

k

(1 + |k|2) s
2 | f̂k | · (1 + |k|) 3

2−s

and the right-hand side can be seen as a scalar product of two �2(Z) sequences (because
s > 2), hence it holds that ‖ f ‖ 3

2
≤ Const.‖ f ‖Hs , where the constant depends on s but

not on f .
We know that there is a sequence { fn} ⊂ C∞(S1, R), ‖ f − fn‖Hs → 0. For fn ∈

C∞(S1, R), we have by Proposition 2.1

AdeiT (g)(eiT ( fn)) = ei(T (Exp(g)∗( fn))+β(Exp(g), fn)). (3.1)

By the above observations, we have fn → f in S 3
2
(S1, R). By [CDIT, Lemma 2.5(a)]

(see also [IKT13, Lemma B.2]), f �→ Exp(g)∗( f ) is continuous in Hs(S1), hence
Exp(g)∗( fn) → Exp(g)∗( f ) inS 3

2
(S1). By [CW05,Proposition4.5],T (Exp(g)∗( fn)) →

T (Exp(g)∗( f )) in the strong resolvent sense, and it is also clear that β(Exp(g), fn) →
β(Exp(g), f ). Therefore, by taking the limit of (3.1), we obtain the claim. ��
Remark 3.2. If f ∈ C1 and not C2, then f /∈ Hs(S1) for s > 5

2 since with such s it
holds that Hs(S1) ⊂ C2(S1) by the Sobolev–Morrey embedding.

In [Wei06, Proposition 2.3], it is claimed that the same conclusion holds for f ∈
S 3

2
(S1), but a proof of the convergence γ̊∗( fn) → γ̊∗( f ) in ‖ · ‖ 3

2
is missing. Yet,

the main results of the paper remain valid because one needs only the conclusion for
f that is piecewise smooth and C1. It is also possible to prove [Wei06, Proposition
2.3] (this is due to Sebastiano Carpi, we thank him for agreeing that we include it in the
present article): if f is smooth, then AdeiT (g)(T ( f )) = T (Exp(g)∗( f ))+β(Exp(g), f )

holds on Hfin. For a fixed ξ ∈ Hfin, T ( f )ξ is continuous in f ∈ H
3
2 (S1) from the

estimates in [CW05]. If we take a sequence fn of smooth functions convergent to

f ∈ S 3
2
(S1) as above, then it is convergent in H

3
2 (S1), and Exp(g)∗( fn) is conver-

gent to Exp(g)∗( f ) in H
3
2 (S1) to Exp(g)∗( f ). This implies that T (Exp(g)∗( fn))ξ =

(AdeiT (g)(T ( fn))−β(Exp(g), fn))ξ is convergent to T (Exp(g)∗( f ))ξ . Therefore, the

Author's personal copy



Solitons and Nonsmooth Diffeomorphisms in Conformal Nets 401

−1

I−

I+

Fig. 1. Intervals I±

equality AdeiT (g)(T ( f )) = T (Exp(g)∗( f )) + β(Exp(g), f ) holds on Hfin, but it is
a core of the right-hand side, hence so is it for the left-hand side and the equality as
operators follows.

Lemma 3.3. Let g, f ∈ C∞(S1, R) and g(−1) = g′(−1) = f (−1) = f ′(−1) = 0
and compactly supported. Let I± be disjoint intervals in S1 one of whose boundary
points is−1 (see Fig. 1. Let f = f− + f+, f± ∈ S 3

2
(S1) be the decomposition of f into

two pieces cut at the point−1 (which is possible by [Wei06, Lemma 2.2]), and similarly
introduce g = g− + g+, g± ∈ S 3

2
(S1), and assume that supp f±, supp g± ⊂ I±.

Then it holds that

AdeiT (g−)(T ( f−)) = T (Exp(g−)∗( f−)) + β(Exp(g−), f−),

where β(Exp(g−), f−) is defined by a similar formula as before:

β(Exp(g−), f ) := c

24π

∫

supp g−
{Exp(g−), z}

∣
∣
∣
∣
z=eiθ

f (eiθ )ei2θ dθ, (3.2)

where the integral is restricted to supp g− on which the Schwarzian derivative is defined.

Proof. Let t ∈ R. Since f− is piecewise smooth and C1 and g is smooth, by Lemma
3.1 we have

AdeiT (g)(eiT (t f−)) = eiT (Exp(g)∗(t f−))eiβ(Exp(g),t f−).

Furthermore, note that

β(Exp(g), t f−) = c

24π

∫ 2π

0
{Exp(g), z}

∣
∣
∣
∣
z=eiθ

t f−(eiθ )ei2θ dθ

= c

24π

∫

supp g−
{Exp(g−), z}

∣
∣
∣
∣
z=eiθ

t f−(eiθ )ei2θ dθ

= β(Exp(g−), t f−),

because Exp(g−) and f− has support contained in a common interval and Exp(g−) is
smooth there.
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Note that g± ∈ S 3
2
(S1, R), hence eiT (t f±) and eiT (g±) are affiliated with A(I±) by

[Wei06, Proposition 2.3], and it follows that eiT (g) = eiT (g−)eiT (g+). By the assumed
support property, we have

AdeiT (g)(eiT (t f−)) = Ad (eiT (g−) · eiT (g+))(eiT (t f−))

= eiT (Exp(g−)∗(t f−)) · eiβ(Exp(g−),t f−).

By taking the derivative with respect to t , we obtain

AdeiT (g)(T ( f−)) = AdeiT (g−)(T ( f−)) = T (Exp(g−)∗( f−)) + β(Exp(g−), f−),

on the full domain. ��
Theorem 3.4. A soliton σ of a conformal net A is Diff1,ps+,1 (S1)-covariant, the transla-
tions act continuously and have positive energy.

Proof. Our strategy is to write the translation as a product of three elements localized
in half-lines or an interval, in each of which σ is normal. For this purpose, let I(θ1,θ2) =
{eiθ : θ1 < θ < θ2} be an interval on S1 and we take a C∞-function h+ : S1\{−1} → R

that is equal to 0 on I(−π,0) and equal to 1 on I( π
2 ,π). Similarly, let h−(x) be a C∞-

function that is equal to 1 on I(−π,− π
2 ) and equal to 0 on I(0,π). They have disjoint

supports.
Let us first prove the following relation:

AdeitT (h−t)(T (t)) = T (Exp(th−t)∗(t)) + β(Exp(th−t), t), (3.3)

where t(eiθ ) = 1+cos θ is the generator of translations (see Sect. 2.3.2) Note that h−t is
supported in a certain interval I−, one of whose boundary is−1, hence so is Exp(th−t).
We decompose t into two pieces t+, t− ∈ S 3

2
(S1, R) such that t−(θ) = t(θ) on I−

and t+ = t− t−. Note that β(Exp(th−t), t−) = β(Exp(th−t), t), since the supports of
Exp(th−t) and of t+ are disjoint, see (3.2). As h−t coincides with t on an interval, one
of whose boundary point is −1, we can apply Lemma 3.3 to obtain

AdeitT (h−t)(T (t−)) = T (Exp(th−t)∗(t−)) + β(Exp(th−t), t−)

= T (Exp(th−t)∗(t−)) + β(Exp(th−t), t). (3.4)

One the other hand, since h−t and t+ have disjoint support (see Fig. 2), we have

AdeitT (h−t)(T (t+)) = T (t+). (3.5)

Note that Exp(th−t)∗t = Exp(th−t)∗t+ + Exp(th−t)∗t− = t+ + Exp(th−t)∗t−. By
adding the sides of (3.4) and (3.5), we obtain on the intersection of the domains

AdeitT (h−t)(T (t)) = T (Exp(th−t)∗(t)) + β(Exp(th−t), t).

t

h−t t− h+t

Fig. 2. Vector fields h−t, t−, h+t in the real line picture
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The intersection of the operators in (3.4), (3.5) includes C∞(L0) = ⋂
n D(Ln

0), hence
so does the sum. The right-hand side of the last expression is essentially self-adjoint by
[CW05, Theorem 4.4] (cited in Sect. 2.3.3). Hence the left-hand side is a self-adjoint
extension of the right-hand side, and therefore, they must coincide on the full domain.

Next, we write eitT (t) as

eitT (t) = eitT (h−t) · e−i tT (h−t)eitT (t)e−i tT (h+t) · eitT (h+t).

We claim that e−i tT (h−t)eitT (t)e−i tT (h+t) is localized on an interval whose closure
does not contain −1 (such an interval depends on t). This follows from (3.3). Indeed,
Exp(th−t)∗(t) agrees with t in a neighborhood of −1 (depending on t) and

e−i tT (h−t)eitT (t)e−i tT (h+t) = eitT (Exp(h−t)∗(t))eiβ(Exp(th−t),t) · e−i tT (h−t)e−i tT (h+t)

= eitT (Exp(h−t)∗(t))eiβ(Exp(th−t),t)e−i tT (h−t+h+t),

where we used the linearity of T on functions of class S 3
2
(S1, R), and the last expression

is localized in a bounded interval: as h−t + h+t equals t in a neighborhood of −1 ∈ S1,
Ade−i tT (h−t+h+t) implements the same action on A(It,ε) for some neighborhood It,ε

for small t as the action of AdeitT (Exp(h−t)∗(t)). In other words, AdeitT (Exp(h−t)∗(t))

e−i tT (h−t+h+t) is trivial on A(It,ε), which implies that eitT (Exp(h−t)∗(t))e−i tT (h−t+h+t) is
localized in I ′t,ε .

We introduce a representation of the translation group by

Uσ (t) := σ(eitT (h−t))σ (e−i tT (h−t)eitT (t)e−i tT (h+t))σ (eitT (h+t)).

Note first the relation β(γ1 ◦ γ2, f ) = β(γ1, γ2∗( f )) + β(γ2, f ) for smooth γ , which
is equivalent to 0 = β(id, f ) = β(γ−1, γ∗ f ) + β(γ, f ). This continues to hold for
nonsmooth γ = Exp(th±t) and f = t. Indeed, Exp(th±t) can be continued to a
smooth diffeomorphisms with compact support, say I , and let I± be the intervals ob-
tained by removing−1 from I . The function β(Exp(th±t), f ) is defined by the integral
(3.2), which can be extended to f = t±, the restriction of t to I±. Hence the relation
β(Exp(−th±t),Exp(th±t)∗(t±)) + β(Exp(th−t), t±) = 0 holds. Again by linearity in
the second variable, we have for t1, t2 ∈ R

0 = β(id, t) = β(Exp(t2h−t),Exp(−t2h−t)∗(t)) + β(Exp(−t2h−t), t),
0 = β(id, t) = β(Exp(−t1h+t),Exp(t1h+t)∗(t)) + β(Exp(t1h+t), t).

(3.6)

By recalling that h− and h+ have disjoint supports,with the help of (3.3) and an analogous
relation for h+, this yields a one-parameter group in t :

Uσ (t1)Uσ (t2)

= σ(eit1T (h−t))σ (e−i t1T (h−t)eit1T (t)e−i t1T (h+t))σ (eit1T (h+t))

· σ(eit2T (h−t))σ (e−i t2T (h−t)eit2T (t)e−i t2T (h+t))σ (eit2T (h+t))

= σ(eit1T (h−t))σ (eit2T (h−t))σ (e−i t1T (h−t)eit1T (Exp(−t2h−t)∗(t))eiβ(Exp(−t2h−t),t)e−i t1T (h+t))

· σ(eit1T (h+t))σ (e−i t2T (h−t)eit2T (t)e−i t2T (h+t))σ (eit2T (h+t))

= σ(ei(t1+t2)T (h−t))σ (e−i t1T (h−t)eit1T (Exp(−t2h−t)∗(t))eiβ(Exp(−t2h−t),t)e−i t1T (h+t))

· σ(e−i t2T (h−t)eit2T (Exp(t1h+)∗t)eiβ(Exp(t1h+t),t)e−i t2T (h+t))σ (eit1T (h+t))σ (eit2T (h+t))

= σ(ei(t1+t2)T (h−t))
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· σ(e−i t1T (h−t)eit1T (Exp(−t2h−t)∗(t))e−i t1T (h+t)e−i t2T (h−t)eit2T (Exp(t1h+)∗t)e−i t2T (h+t))

· σ(eit1T (h+t))σ (eit2T (h+t)) · eiβ(Exp(−t2h−t),t)eiβ(Exp(t1h+t),t)

= σ(ei(t1+t2)T (h−t))

· σ(e−i(t1+t2)T (h−t)eit1T (t)eiβ(Exp(t2h−t),Exp(−t2h−t)∗(t))e−i t1T (h+t)eit2T (Exp(t1h+)∗t)e−i t2T (h+t))

· σ(eit1T (h+t))σ (eit2T (h+t)) · eiβ(Exp(−t2h−t),t)eiβ(Exp(t1h+t),t)

= σ(ei(t1+t2)T (h−t))

· σ(e−i(t1+t2)T (h−t)eit1T (t)eit2T (t)eiβ(Exp(−t1h+t),Exp(t1h+t)∗(t))e−i(t1+t2)T (h+t))

· σ(eit1T (h+t))σ (eit2T (h+t)) · eiβ(Exp(−t2h−t),t)eiβ(Exp(t2h−t),Exp(−t2h−t)∗(t))eiβ(Exp(t1h+t),t)

= σ(ei(t1+t2)T (h−t))σ (e−(t1+t2)T (h−t)ei(t1+t2)T (t)e−i(t1+t2)T (h+t))

· σ(ei(t1+t2)T (h+t)) · eiβ(Exp(−t2h−t),t)eiβ(Exp(t2h−t),Exp(−t2h−t)∗(t))

· eiβ(Exp(t1h+t),t)eiβ(Exp(−t1h+t),Exp(t1h+t)∗(t))

= Uσ (t1 + t2),

where the scalars cancel by (3.6). To show continuity of Uσ (t), it is enough to see that
Uσ (t)→ 1 as t → 0 in the strong operator topology. All the factors in the product

Uσ (t) = σ(eitT (h−t))σ (e−i tT (h−t)eitT (t)e−i tT (h+t))σ (eitT (h+t))

are unitary, and hence uniformly bounded. The first and the third factors tend to 1 by
normality of σ , as they are supported in a fixed half-line. As for the second factor, the
product e−i tT (h−t)eitT (t)e−i tT (h+t) tends to 1 in the vacuum representation, and this is
localized in a fixed interval for small t , hence by normality of σ the second factor tends
to 1 as well.

It remains to prove the positivity of energy. We do this by showing that Uσ (t) can be
obtained as a limit in the strong resolvent sense of a sequence of one-parameter unitary
groups with positive generator. Let t1 be a C∞-vector field on S1 such that C∗(t1) is
equal to 1 on (−∞, 1) and equal to 0 on (2,+∞). From t1 we construct a sequence of
vector fields (see Fig. 3)

C∗(tn)(t) := C∗(t1)
(

t

n

)

, t ∈ R, n ∈ N.

We fix 2 < s < 5
2 (cf. the proof of Lemma 3.1). Let us show that tn → t in the

Hs(S1)-topology. For this it is sufficient to show that
{

d3

dθ3
tn

}

n∈N is a sequence of

functions in L1(S1) uniformly bounded in n and that tn → τ in L1(S1): this implies
that |k3t̂n(k)| < Const., where t̂n(k) is the k-th Fourier coefficient of tn , or equivalently,
|k2s t̂n(k)2| < Const.

k6−2s , and the right-hand side is summable in k since 6− 2s > 1. From

t

t1 t2

Fig. 3. Vector fields tn in the real line picture
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the convergence tn → t in L1 we obtain the convergence of each t̂n(k), Therefore, by
the Lebesgue dominated convergence theorem (applied to the measurable set Z with the
counting measure), we obtain the convergence tn → t in Hs(S1). Let us make these
necessary estimates separately.

Explicitly, as dC
dθ

(eiθ ) = 1
1+cos θ

, we have

tn(eiθ ) = (1 + cos θ) · C∗(t1)
(

C(eiθ )

n

)

and C∗(t1) is bounded. The third derivative of tn is

d3

dθ3
tn(eiθ ) = sin θ · C∗(t1)

(
C(eiθ )

n

)

− 2 cos θ

n(1 + cos θ)

d

dt
(C∗(t1))

(
C(eiθ )

n

)

− sin2 θ

n(1 + cos θ)2

d

dt
(C∗(t1))

(
C(eiθ )

n

)

+
1

n3(1 + cos θ)2

d3

dt3
(C∗(t1))

(
C(eiθ )

n

)

. (3.7)

Recall that C∗(t1) is constant on (−∞, 1)∪ (2,∞). The first term of the right-hand side
of (3.7) is clearly uniformly bounded in n on S1. For the second term of the right-hand
side of (3.7), by the change of variable t = C(eiθ ), we have:

∫ π

−π

∣
∣
∣
∣

2 cos θ

n(1 + cos θ)

d

dt
(C∗(t1))

(
C(eiθ )

n

)∣
∣
∣
∣ dθ

= 1

n

∫ 2n

n

∣
∣
∣
∣2 cos(−i logC−1(t)) d

dt
(C∗(t1))

(
t

n

)∣
∣
∣
∣ dt

which is uniformly bounded in n. Next, by calculating directly one has 1 + cos(−i log
C−1(t)) = 2

1+t2
and sin(−i logC−1(t)) = 2t

1+t2
, hence the third term is

∫ π

−π

∣
∣
∣
∣

2 sin2 θ

n(1 + cos θ)2

d

dt
(C∗(t1))

(
C(eiθ )

n

)∣
∣
∣
∣ dθ

=
∫ 2n

n

∣
∣
∣
∣

2 sin2 θ

n(1 + cos θ)

d

dt
(C∗(t1))

(
t

n

)∣
∣
∣
∣ dt

= 1

n

∫ 2n

n

∣
∣
∣
∣
4t2

1 + t2
d

dt
(C∗(t1))

(
t

n

)∣
∣
∣
∣ dt

which is uniformly bounded in n, since the integrand is bounded. The fourth term is also
uniformly bounded in n since

∫ π

−π

∣
∣
∣
∣

1

n3(1 + cos θ)2

d3

dt3
(C∗(t1))

(
C(eiθ )

n

)∣
∣
∣
∣ dθ

=
∫ 2n

n

∣
∣
∣
∣
1 + t2

2n3

d3

dt3
(C∗(t1))

(
t

n

)∣
∣
∣
∣ dt

≤ 1

n

∫ 2n

n

∣
∣
∣
∣
1 + 4n2

2n2

d3

dt3
(C∗(t1))

(
t

n

)∣
∣
∣
∣ dt.
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Finally, we show that tn → t in L1(S1) using the boundedness of C∗(t1):
∫ π

−π

∣
∣
∣t(eiθ )− tn(eiθ )

∣
∣
∣ dθ =

∫ π

−π

∣
∣
∣
∣(1 + cos θ)

(

1− C∗(t1)
(

C(eiθ )

n

))∣
∣
∣
∣ dθ

=
∫ +∞

n

∣
∣
∣
∣(1 + cos(−i logC−1(t)))2

(

1− C∗(t1)
(

t

n

))∣
∣
∣
∣ dt

=
∫ +∞

n

∣
∣
∣
∣

4

(1 + t2)2

(

1− C∗(t1)
(

t

n

))∣
∣
∣
∣ dt −→ 0 (as n →∞).

This completes the proof that tn → t in Hs(S1), 2 < s < 5
2 .

For each fixed t , the representation Uσ (t) can be obtained as the limit of σ(eitT (tn))

in the strong topology. Indeed,

σ(eitT (tn)) = σ(eitT (h−tn))σ (e−i tT (h−tn)eitT (tn)e−i tT (h+tn))σ (eitT (h+tn)).

Note that h−, h+, tn belong to Hs(S1), and the product is (jointly) continuous [CDIT,
Lemma 2.4][IKT13, Lemma B.4] as 3

2 < 2 < s, hence both h−tn and h+tn are conver-
gent in Hs(S1), and by the argument of Lemma 3.1, they are convergent in S 3

2
(S1, R),

hence the corresponding operators are convergent in the strong resolvent sense. Further-
more, each of these sequences are localized in a fixed interval or a half line, hence by
the normality of σ on half lines, the convergence follows. In other words, if we write
Uσ (t) =: eitT σ

, then σ(T (tn)) (the generator of σ(eitT (tn)), which is defined by local
normality) is convergent to T σ in the strong resolvent sense.

We have by Theorem 2.2 that T (t1) ≥ α for some α ∈ R. By the fact that the
Schwarzian derivative of a Möbius transformation is 0, it follows that the quantum
energy inequalities of Theorem 2.2 are invariant under dilations, and therefore,

T (δn∗(t1)) = T (ntn) ≥ α,

which implies

T (tn) ≥ α

n
.

Since T (tn) is localized on a half-line, by local normality of σ , we have σ(T (tn)) ≥ α
n .

By [RS75, Theorem VIII.23] and the convergence in the strong resolvent sense, T σ is
positive as well.

By Proposition A.4, the net (A, U,�) is locally Diff1,ps+ (S1)-covariant. Any element
γ ∈ Diff1,ps+,1 (S1) can be decomposed into a product γ = γ− ◦ (γ−1− ◦ γ ◦ γ−1+ ) ◦ γ+,

where γ± ∈ Diff1,ps+,1 (S1) have supports as in the proof for Uσ (t). It is straightforward
to see that the definition

Uσ (γ ) = σ(U (γ−))σ (U (γ−1− ◦ γ ◦ γ−1+ ))σ (U (γ+))

does not depend on the decomposition of γ . If I is a left half-line, we can choose
γ−, γ+ such that I ∩ supp γ+ = ∅ and γ−|I = γ . Now for x ∈ A(I ) the covariance
σ(AdU (γ )(x)) = AdUσ (γ )(σ (x)) follows because the both sides are localized in I−,
and by the definition Uσ (γ ◦ γ−1+ ) = σ(U (γ ◦ γ−1+ )). The proof of covariance for a
right half-line I is similar. ��
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3.2. Solitons from nonsmooth diffeomorphisms. Here we construct families of continu-
ously many proper solitons for any conformal net A, using the diffeomorphism covari-
ance.

Nonsmooth extendable diffeomorphisms.Let Diff+(S1,−1) ⊂ Diff0+(S1) be the class
of orientation-preserving homeomorphisms ν of S1 that have the following properties

• ν(−1) = −1,
• ν is a smooth map from S1\{−1} onto S1 \ {−1}, and the left and right derivatives

at all orders exist at the point −1, and the first order left and right derivatives are
nonzero.

By Borel’s theorem [Hor90, Theorem 1.2.6], for any sequence of real numbers {λn}n≥1,
there is a smooth function f such that f (−1) = −1 and dn f

dθn (−1) = λn . Let us take
λn as the left derivatives of ν at θ = −1. Then we can find a smooth function f such
that f (−1) = −1 dn f

dθn (−1) = λn . Let I be an interval containing −1 and call I−, I+
the subintervals resulting from I by removing −1. There is a function f̃ that agrees
with ν on I− and with f on I+. This is smooth even at θ = −1, because all the left
and right derivatives coincide. Now, since the first derivative at θ = −1 is nonzero, it
defines a diffeomorphism of a small interval containing I−, hence the restriction to this
small interval can be continued to a diffeomorphism of S1 (see [CDIT, Lemma 3.9]).
Let us call it νI− , then νI− ∈ Diff+(S1) and agrees with ν on I−. Similarly, we can find
νI+ ∈ Diff+(S1) that agrees with ν on I+.

Irreducible solitons. Let A be a conformal net on S1 on the Hilbert spaceH and U its
associated projective representation of Diff+(S1). For ν ∈ Diff+(S1,−1) and for every
I ∈ IR we choose νI ∈ Diff+(S1) that agrees with ν on I (there is such νI even if one
of the endpoint of I is−1 (half-lines in the R picture) by the remark above). We denote
by σν the family of maps σν := {σ I

ν } where
σ I

ν : A(I ) −→ B(H)

x �−→ σ I
ν (x) := AdU (νI )(x)

and I ∈ IR, ν ∈ Diff+(S1,−1).
Proposition 3.5. Let ν ∈ Diff+(S1,−1). Then σν = {σ I

ν } is an irreducible soliton of
the conformal net A with index 1.

Proof. Normality on each I follows because each map σ I
ν is given by the adjoint action

AdU (νI ). We show that the family of maps σν is compatible, namely that, if I ⊂ Î for

I, Î ∈ IR, then σ Î
ν �A(I )= σ I

ν . By definition, νI , ν Î ∈ Diff+(S1) agree with ν on I and

Î , respectively, hence they agree on I . Then on A(I ) we have

AdU (νI ) = AdU (ν Î ) ◦ AdU (ν−1
Î
◦ νI ) = AdU (ν Î ),

because ν−1
Î
◦ νI is a diffeomorphism of the circle localized in I ′ and in this case

AdU (ν−1
Î
◦ νI ) acts trivially on I by (2.1).

Irreducibility follows because
∨

I∈IR
σ(A(I )) =∨

I∈IR
σ(A(ν I )) =∨

I∈IR
A(I )

and theweak closure of the right-hand side isB(H)by (CN9).The indexofσν is 1 because

σν(A(R+)) = A(νR+) = A((νR+)
′)′ = A(νR−)′ = σν(A(R−))′.

��
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Now we show that if ν has different left and right derivatives, then σν is a proper
soliton. Modular theory is used as a tool to show non-triviality of the constructed soliton.
Let us introduce the notation for left and right derivatives (they are in R+ because ν is
orientation-preserving):

∂±ν(−1) = −i lim
θ→0±

ν(−eiθ )− ν(−1)
θ

.

Wealsodenote their ratio by r(ν) := ∂+ν(−1)/∂−ν(−1) ∈ R+. For this purpose,weneed
the results from Appendix A. Actually, in order to show that there are proper solitons,
we can take ν that coincides with dilations with different parameter in a neighborhood
of −1. In this way, νπ is a product of ψt below for some t and an element in Diff+(S1),
and one does not have to invoke Proposition A.4.

Theorem 3.6. Let ν ∈ Diff+(S1,−1) and assume that r(ν) �= 1. Then σν is a proper, ir-
reducible, Diff1,ps+,0 (S1)-covariant soliton ofA. Furthermore, let ν1, ν2 ∈ Diff+(S1,−1).
The solitons σν1 and σν2 are unitarily equivalent if and only if r(ν1) = r(ν2).

Proof. Let us first consider the function

ψt (e
iθ ) :=

{
eiθ if θ ∈ [−π, 0)
δ(t)(eiθ ) if θ ∈ [0, π)

which is smooth except−1, 1. It is constructed just by gluing the identitymap on [−π, 0)
and the dilation on [0, π) in the circle picture (they correspond to R− and R+ in the R

picture, respectively). By passing to the R picture (which does not affect r(ν)), it is
immediate that r(ψt ) = e−t .

We may assume that ν(1) = 1, because if ν(1) �= 1, then there is a smooth dif-
feomorphism ν such that supp ν does not contain −1 and ν(1) = ν(1). We then have
ν−1 ◦ ν(1) = 1. As such ν−1 is represented by U (ν−1), the questions of properness,
irreducibility and covariance of σν are equivalent to that of σν−1◦ν = AdU (ν−1) ◦ σν .

From ν ∈ Diff+(S1,−1) with ν(1) = 1, we construct a homeomorphism νπ of S1

that is smooth except two points, the points −1 and 1:

νπ := ν ◦ Rπ ◦ ν−1 ◦ Rπ ,

where Rπ the rotation by π . If t = − log r(ν), then ψt ◦ ν−1π ∈ Diff1,ps+ (S1) because the
discrepancy of the derivatives at 1 and −1 cancel exactly.

We show that σν is a proper soliton, i.e. it does not extend to a DHR representation.
Let us suppose the contrary, namely that it were a restriction of a DHR representation.
We denote the extension by σν . Then σν is rotation covariant [DFK04, Theorem 6],
namely there is a unitary representation of the universal covering of S1, θ → U ν(Rθ ),
such that

AdU ν(Rθ ) ◦ σν = σν ◦ AdU (Rθ ).

Furthermore, σν is invertible, because σν has index 1.
Consider the following composition as a DHR representation:

ρ := AdU (ψt ◦ ν−1π ) ◦ σν ◦ AdU (Rπ ) ◦ σν−1 ◦ AdU (Rπ ).
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It follows that this is implemented by a unitary Uρ := U (ψt ◦ν−1π )U ν(Rπ )U (Rπ ) since

ρ = AdU (ψt ◦ ν−1π ) ◦ σν ◦ AdU (Rπ ) ◦ σν−1 ◦ AdU (Rπ )

= AdU (ψt ◦ ν−1π ) ◦ AdU ν(Rπ ) ◦ σν ◦ σν−1 ◦ AdU (Rπ )

= AdU (ψt ◦ ν−1π ) ◦ AdU ν(Rπ ) ◦ AdU (Rπ ).

On the other hand, by construction we have ρ(x) = x for x ∈ A(I(−π,0)) where
I(−π,0) = I ′(0,π) and ρ(x) = AdU (δ(t)) for x ∈ A(I(0,π)). Therefore, the uni-
tary Uρ must belong to A(I(0,π)) by Haag duality (CN6). At the same time, by the
Bisognano-Wichmann property (CN8), the dilation AdU (δ(t)) is the modular automor-
phism σ

t/2π
A(I(0,π))

ofA(I(0,π))with respect to the vacuum vector�. This is a contradiction
because the modular automorphisms for t �= 0 cannot be inner for A(I(0,π)) which is a
ype III1 factor [Str81, Section 28.11]. Therefore, we conclude that σν does not extend
to a DHR representation.

Next, let ν1, ν2 ∈ Diff+(S1,−1). It holds that r(ν1) = r(ν2), if and only if r(ν−11 ◦
ν2) = 1, and by Proposition A.4 and the argument of the previous paragraphs, if and
only if ν−11 ◦ ν2 is implemented by a unitary, or in other words, if and only if σν1 and
σν2 are unitarily equivalent.

Finally, let us prove Diff1,ps+,0 (S1)-covariance. We already know from Theorem 3.4

that any soliton is Diff1,ps+,1 (S1)-covariant, hence it is enough to show that σν is dilation
covariant. This follows because r(δ(t) ◦ ν ◦ δ(−t)) = r(ν), hence σν and σδ(t)◦ν◦δ(−t)
are unitarily equivalent. This unitary implements the dilation δ(t). ��
Type III solitons. Instead of considering functions ν ∈ Diff+(S1,−1), we can do a
similar construction using a function ν with the following properties:

• ν is smooth on S1\{−1} and the left and right derivatives at all orders exist at the
point −1 and the first order left and right derivatives are nonzero.

• ν is injective and orientation preserving.
• ν(S1\{−1}) is a proper interval Iν of S1.

If we take such a ν, σν still yields a soliton of the conformal net A, since the argu-
ments of Proposition 3.5 remain valid except for irreducibility and index. This type of
construction was implicitly presented in [LX04] and [KLX05], namely, by taking the
construction of solitons of the netA⊗A in [LX04] and restrict it toA⊗C1. In this case,

one obtains solitons σν which are of type III (namely
(⋃

I⊂IR
σν(A(I ))

)′′
is a type III

factor). For completeness we show that this type of construction also yields a proper soli-

ton. We further prove that such a soliton is locally D̃s(S1)-covariant with s > 3, namely,

there is a unitary representation Uσ of D̃s(S1) such that AdUσ (γ )(A(I )) = A(γ I )

as long as γ is contained in a neighborhood U of the unit element of D̃s(S1) such that
γ I ⊂ R for γ ∈ U .

Theorem 3.7. For ν as above, σν is a proper soliton of type III, locally D̃s(S1)-covariant
with s > 3. For any pair ν1, ν2, two solitons σν1 and σν2 are unitarily equivalent.

Proof. We must show that the representation σν does not extend to a representation of
the net A of the circle. Let I− and I+ two disjoint intervals that are made by removing
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the point −1 from an interval I � −1. As ν(I−) and ν(I+) are separated by nonzero
distance, by the split property (CN11),

σν(A(I−) ∨A(I+)) = σ
I−
ν (A(I−)) ∨ σ I+

ν (A(I+))

= A(ν(I−)) ∨A(ν(I+))

� A(ν(I−))⊗A(ν(I+))

= σ
I−
ν (A(I−))⊗ σ I+

ν (A(I+))

� A(I−)⊗A(I+),

where�means unitary equivalence mapping the algebra on the left (respectively right)
to the algebra on the left (respectively right). Let us assume that σ extended to a DHR
representation. Then it would be normal on A(I ), and hence σν(A(I−) ∨ A(I+)) �
A(I−)∨A(I+). But we know from [Buc74, page 292, Example b)] thatA(I−)∨A(I+)
is not isomorphic toA(I−)⊗A(I+), so this is a contradiction, and we conclude that σν

does not extend to a DHR representation.
Let us next show the unitary equivalence between σν1 and σν2 . This follows because

ν2 ◦ ν−11 is a diffeomorphism from Iν1 to Iν2 that can be extended to ν1,2 ∈ Diff+(S1).
Now U (ν1,2) intertwines σν1 and σν2 because by definition, on A(I ) with I ∈ IR,

σν2 = AdU (ν I
2 ) = AdU (ν1,2)U (ν I

1 ) = AdU (ν1,2) ◦ σν1,

where we used the fact that ν1,2 ◦ ν I
1 = ν I

2 when restricted to I .

With the result of the previous paragraph, in order to show local D̃s(S1)-covariance,
we can take a specific ν. We take ν as the square root map, namely, ν(eiθ ) = eiθ/2, where
θ ∈ [−π, π). Note that Ds(S1) contains a copy of the 2-cover Ds(S1)(2) of Ds(S1),
and the square root map ν locally intertwines the action of Ds(S1)(2) on the half-circle
[−π

2 , π
2 ) and the action of Ds(S1) on S1 (see [LX04, Section 2], [Wei05, Section 3.1

§3]). Therefore, for γ ∈ D̃s(S1) and I ∈ IR as in the definition of local covariance and

with the quotient map q(2) : D̃s(S1)→ Ds(S1)(2), AdU (q(2)(γ ))◦σν = σν ◦AdU (γ ).

Namely, σν is locally D̃s(S1)-covariant. ��
As σν is not irreducible, the implementation of D̃s(S1) is not unique. It is also

possible to use the n-th root map in such a way that the covariance is implemented by
the restriction of U to Ds(S1)(n). The representation γ �→ U (q(2)(γ )) used here has
positive energy by [Wei06, Corollary 3.6] (applied to the vacuum representation).

3.3. Möbius covariance implies DHR. In Theorem 3.7 we saw that there is a proper,

locally D̃s(S1)-covariant soliton on any conformal net A. In particular, it is locally
M̃öb-covariant. In contrast, here we show that there is no locally Möb-covariant proper
soliton. The key is that AdUσ (R2π ) is trivial in this case. This is essentially contained
in [CHK+15, Lemma 2.6] and [CKL08, Proposition 19], but we give a direct proof in
our present setting.

Proposition 3.8. Let σ be a locally Möb-covariant soliton of a conformal net A with a
representation Uσ of Möb. Then σ extends to a DHR representation of A.
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Proof. To extend σ to A(I ) where I contains −1, we choose a rotation Rθ such that
Rθ I does not contain −1. We define σ I := AdUσ (R−θ ) ◦ σ ◦ AdU (Rθ ), and show
that this is well-defined. Indeed, assume that there are two such 0 < θ1, θ2 < 2π . Then,
either the rotation from 0 to θ1− θ2 or the rotation 0 to θ1− θ2 + 2π brings Rθ2 I to Rθ1 I
inside S1\{−1}. As R2π is a scalar, without the loss of generality, we may consider the
case of θ1 − θ2. By the assumption of locally Möb-covariance,

AdUσ (R−θ1) ◦ σ ◦ AdU (Rθ1)

= AdUσ (R−θ2)U
σ (R−θ1+θ2) ◦ σ ◦ AdU (Rθ1−θ2)U (Rθ2)

= AdUσ (R−θ2) ◦ σ ◦ AdU (Rθ2),

hence the definition does not depend on θ under the condition above. The compatibility
condition follows from this, because if θ can be used for a larger interval, it works also
for a smaller interval. ��

There are alsomany irreducible locally M̃öb-covariant solitons: consider an inclusion
of conformal netsA ⊂ B, take a certain DHR representation ρ ofA and its α-induction
to B. For a generic ρ, the α-induction is not a DHR representation but just a soliton,
and often such soliton can be decomposed into irreducible ones. For concrete examples,
see e.g.[CHK+15, Section 5] and here one considers ρ’s with index 1 (automorphisms),
hence their α-induction to B are already irreducible (this is due to Sebastiano Carpi, we
thank him for his comments).

4. Applications to Infinite-Dimensional Groups

Some conformal nets arise from a particular representation (often called the “vacuum
representation”) of infinite-dimensional groups. Our construction in Sect. 3.2 gives rise
to a new class of representation of certain subgroups of them.

4.1. The Virasoro net and representations of B0. TheVirasoro netwith central charge c is
the conformal net induced by the stress–energy tensor Tc,0 in the vacuum representation
H(c, 0) of the Virasoro algebra Vir:

Virc(I ) = {eiTc,0( f ) : f ∈ C∞(S1), real-valued, supp f ⊂ I }′′.
With the lowest weight vector �c and the unitary projective representation of Uc of
Diff+(S1), (Virc, Uc,�c) is a conformal net, see [Car04, Section 2.4].

The solitons in Sect. 3.2 give rise to positive energy representations of B0 that do not
extend to positive-energy representations of Diff+(S1). Let ν ∈ Diff+(S1,−1). For any
γ ∈ B0, ν ◦ γ ◦ ν−1 is C1, as the discontinuity of the first derivative of ν at the point of
infinity gets cancelled. We set

αν : B0 → Diff1,ps+ (S1)

γ �→ ν ◦ γ ◦ ν−1.

Clearly αν is a homomorphism of B0 into Diff1,ps+ (S1), and Uc extends to Diff1,ps+ (S1)

by Proposition A.4 (although we do not know continuity). We construct a projective
unitary representation U ν

c of B0 by

U ν
c (g) := (Uc ◦ αν)(g). (4.1)
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Proposition 4.1. Let ν ∈ Diff+(S1,−1) and assume that r(ν) �= 1. The representation
U ν

c defined in (4.1) is not a restriction of any positive-energy representation ofDiff+(S1).
In addition, U ν1

c � U ν2
c if and only if r(ν1) = r(ν2).

Proof. The representation U ν
c is irreducible, since

∨
I∈IR

A(I ) = B(H) by (CN9) and
the left-hand side is generated by {Uc(γ ) : supp γ � R} = {U ν

c (γ ) : supp γ � R}.
Suppose that U ν

c were a restriction of a positive-energy representation of Diff+(S1). By
irreducibility, it would have to be a (c′, h′)-representation of Sect. 2.3.2.

Any (c′, h′)-representation Uc′,h′ is a projective representation of Diff+(S1), in par-
ticular, the 2π -rotation is a scalar. Furthermore, it holds5 that AdUc′,h′(Rθ )(U ν

c (γ )) =
U ν

c (Rθ ◦ γ ◦ R−θ ) as long as θ is small enough so that Rθ supp γ ⊂ S1\{−1}, because
Uc′,h′ is an extension of the projective representation U ν

c . Therefore, the restriction of it
toMöbmakes the soliton σν ofVirc locallyMöb-covariant. By Proposition 3.8, σν would
extend to a DHR representation, but this contradicts with Theorem 3.6. This shows that
U ν

c does not extend to any (c′, h′)-representation.
The claim about unitary equivalence also follows from Theorem 3.6, by passing to

σν1 and σν2 . ��
In Sect. 5, we show that the representations Un , where n is a positive integer, extend

to Ds(S1), s > 2 by continuity. As Ds(S1) includes Diff1,ps+ (S1) if 2 < s < 5/2,
the representations U ν

n are strongly continuous when n ∈ Z+ and the solitons σν are
continuously covariant with respect to B0, see Proposition 5.8.

4.2. Loop group nets and representations of �G. We review the loop group nets, fol-
lowing [Kos03, Section III.2]. These results are based on [GW84,Kac90,GF93,TL99].

Let G be a simple, compact, connected and simply connected Lie group. The group
of smooth maps from S1 to G is denoted by LG. With �G we denote the group of
smooth maps R → G with compact support. This group �G is identified through
Cayley transform with the subgroup of LG of elements whose support does not contain
−1.

The Lie algebra Lg consisting of smooth maps from S1 to g with the pointwise
operation is called the loop algebra, and it is the Lie algebra of the loop group LG
in the infinite-dimensional sense (see [PS86]). A 2-cocycle of Lg is a bilinear form
ω : Lg× Lg→ R such that

ω([x, y], z) + ω([y, z], x) + ω([z, x], y) = 0.

With such an ω it is possible to construct a central extension of L̃g of Lg by a one-
dimensional centre: as a vector space, L̃g = Lg⊕ R with bracket

[(x, a), (y, b)] := ([x, y], ω(x, y))

with x, y ∈ Lg and a, b ∈ R. If g is simple, every continuous G-invariant 2-cocycle ω

has the form

ω(x, y) = 1

2π

∫ 2π

0
〈x(θ), y′(θ)〉dθ

5 This equation holds including phase: AdUc′,h′ (Rθ ) does not give phase by Proposition 2.1, where the
phase β(Rθ , f ) vanishes since Rθ is a Möbius transformation, and exponentials Exp( f ) generate the whole
group Diff+(S1), since Diff+(S1) is algebraically simple [Mat74].
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where 〈·, ·〉 is a symmetric invariant form on g, which is unique up to a scalar.
The constant functions in Lg can be identified with g. Let us fix a basis { ja

0 } in ig.
The complexification L̃gC of L̃g contains functions einθ multiplied with an element ja

0
of the basis in ig. Let us denote these elements by ja

n . They satisfy the commutation
relation

[ ja
m, jb

n ] = i f ab
c j c

m+n + ω( ja
0 , jb

0 )mδm,−n .

One can construct the “vacuum” representations πG
�,0, namely, a representation that

contains a vector � such that πG
�,0( ja

n )� = 0 for n ≥ 0. The central element (0, a) is
represented by a scalar �, which is called the level. One can introduce a scalar product on
this representation space in such a way that πG

�,0( ja
n )† = πG

�,0( ja−n) and ‖�‖ = 1. Such a
scalar product is positive definite if and only if the level � is positive integer. Furthermore,
for a smooth element f with f (θ) ∈ ig, πG

�,0( f ) is an essentially self-adjoint operator

on the domain generated by � and {πG
�,0( ja−n)}.

A projective unitary representation V of a group on a Hilbert spaceH is a map from
the group into U(H) such that V (g)V (h) = c(g, h)V (gh) for some scalar c(g, h). The
vacuum representation of Lg at level � integrates to a projective unitary representations

of LG: for a smooth element f with f (θ) ∈ ig, it holds that V�,0(Exp f ) = eiπG
�,0( f )

up to a scalar. Furthermore, there is a projective unitary representation U of Diff+(S1)

such that U (γ )V�,0(g)U (γ )∗ = V�,0(g ◦ γ−1).
A projective unitary representation V of LG on H is said to have positive energy if

there exists a strongly continuous unitary representation U of the rotation group T on
the same Hilbert space with positive generator such that

U (Rθ )V (g)U (Rθ )
∗ = V (gθ ),

where gθ (eiϕ) := g(ei(ϕ−θ)). Correspondingly, we say that a projective unitary rep-
resentation V of �G has positive energy if there exists a strongly continuous unitary
representation U of the translation group R with positive generator such that

U (τt )V (g)U (τt )
∗ = V (gt )

where gt (s) = f (s − t). We have [PS86, Proposition 9.2.6]:

Proposition 4.2. The restriction to �G of a positive energy representation of LG is a
positive energy representation of �G.

Let V G
�,0 be the vacuum representation of level �, which has positive energy with

respect to U . With the family of von Neumann algebras

AG,�(I ) :=
{

V G
�,0(g) : supp g ⊂ I

}′′

(AG,�, U,�) is a conformal net. They are called the loop group nets with group G at
level �.

Proposition 4.3. There exist irreducible positive energy representations of �G that do
not extend to positive energy representations of LG.
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Proof. Fix a level � and consider the conformal net AG,�. Then we can construct a
representation V G,ν

�,0 of �G by

V G,ν
�,0 := σν ◦ V G

�,0,

where σν is a proper soliton of the conformal net AG,� with ν ∈ Diff+(S1,−1) as in
Sect. 3.2. By Theorem 3.4, V G,ν

�,0 it has positive energy.

Suppose that V G,ν
�,0 were the restriction V of a positive energy representation of

LG. Then V G,ν
�,0 would also be irreducible as a representation of LG as in Proposition

4.1. Such V must have positive energy by [GW84, Theorem 7.4], namely, there is a
projective unitary representation U ν of Diff+(S1) whose restriction to the rotations has
positive generator andU ν(γ )V (g)U ν(γ ) = V (g◦γ−1). As the restriction of V to�G is
V G,ν

�,0 ,U ν makes V G,ν
�,0 locallyDiff+(S1)-covariant, especially it is locallyMöb-covariant

(and not just locally M̃öb-covariant, namely the 2π -rotation is trivial). Accordingly, the
soliton σν is also locally Möb-covariant. By Proposition 3.8, it should extend to a DHR
representation of the net. This contradicts with Theorem 3.6. Therefore, V G,ν

�,0 does not
arise from the restriction of any positive energy representation of LG. ��

The existence of such representation has been marked as an open problem in [PS86,
P.174, Remark]. The type III soliton from Sect. 3.2 gives another such representation,
since it cannot be locally Möb-covariant as we saw in Theorem 3.7 and Proposition 3.8.

5. Sobolev Diffeomorphism Covariance of the U(1)-Current Net

Here we take the U(1)-current net where there is the criterion of Shale–Stinespring
to determine whether an automorphism of the algebra can be unitarily implemented.
Following the strategy of [Vro13], we show that Ds(S1)-diffeomorphisms are imple-
mented with s > 2, and this group includes Diff1,ps+ (S1) and Diff3+(S1) and also the
C1-piecewise Möbius group [Wei05].

Let K be a complex Hilbert space with the scalar product 〈·, ·〉. The C∗-algebra
generated by the operators W ( f ), f ∈ K, satisfying the relations W ( f )W (g) =
e−iIm 〈 f,g〉/2W ( f + g) and W (0) = 1, is called the CCR algebra. There is a repre-
sentation of the CCR algebra on the symmetric Fock space �+(K) =⊕

SymK⊗n with
the Fock vacuum � and W ( f )� = ∑

n
1
n! f ⊗n . We denote the Weyl operators in this

representationwith the sameW ( f ). If f ∈ K and A is a real linear, invertible operator on
K that preserves the symplectic bilinear form Im 〈·, ·〉, then the map W ( f ) �→ W (A f ) is
a *-automorphism of the CCR algebra. Such a *-automorphism is unitary implemented
in the Fock representation if and only if 1

2 J [A, J ] is a Hilbert-Schmidt operator, where
J is the multiplication by the imaginary unit [Sha62, Theorem 4.1]. We partly use the
conventions of [Ott95, Section 5.3]. For any f ∈ K the Weyl operators W ( f ) on �+(K)

satisfy strong continuity: if fn → f in K then ‖(W ( fn) − W ( f ))ξ‖ → 0 for every
ξ ∈ �+(K).

Let C∞(S1, R) be the space of real-valued smooth function on S1. We define a
seminorm on it by

‖ f ‖ :=
∑

k∈N
k| f̂k |2. (5.1)
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We introduce a complex structure on C∞(S1, R) by means of the operator J :

J

⎛

⎝
∑

k∈Z\{0}
fkek

⎞

⎠ :=
∑

k∈N
(i fk)ek +

∑

k∈N
(−i f−k)e−k,

where ek(eiθ ) := eikθ . The spaceC∞(S1, R) quotiented by the null space with respect to
the norm { f ∈ C∞(S1, R) : ‖ f ‖ = 0} is equipped with the complex structure J . With
J as the imaginary unit, the quotiented space becomes the complex Hilbert space H1.
This space admits the irreducible unitary representation U1 of Möb = PSL(2, R) with
lowest weight 1. The action of Möb on C∞(S1, R)

U1(γ )( f ) := f ◦ γ−1

extends toH1. For a function f ∈ C∞(S1, R) we denote with [ f ] its image inH1. The
seminorm is induced by the complex scalar product

〈 f, g〉 := 1

2

∑

k∈N
k( f̂k ĝk + f̂−k ĝ−k).

The Möbius group acts on �+(H1) via the second quantization, and we denote it by
U (γ ) := �+(U1(γ )). The adjoint action of U (γ ) on the Weyl operators is particularly
simple:

AdU (γ )W ([ f ]) = W (U1(γ )[ f ]).
The family of von Neumann algebras

AU (1)(I ) := {W ([ f ]) : f ∈ C∞(S1, R), supp ( f ) ⊂ I }′′

with the Fock vacuum vector � ∈ �+(H1) and the representation U is a Möbius covari-
ant net [GLW98]. The representation U of PSL(2, R) can be extended to a projective
representation U of Diff+(S1) in such a way that AU (1) is actually a conformal net, see
[PS86, Theorem 9.3.1]. We show that U can be extended to Ds(S1), s > 2.

In the following, elements in the universal covering D̃s(S1) are considered as maps
γ̃ from R → R such that γ̃ (θ + 2π) = γ̃ (θ) + 2π .

Lemma 5.1. Let γ ∈ Ds(S1), s > 3/2, the image of γ̃ ∈ D̃s(S1) through the covering
map and λm,n := 1

2π

∫ 2π
0 e−imθ einγ̃ (θ)dθ , where m, n are either m < 0, n > 0 or

m > 0, n < 0. Then there exists Cs,γ ≥ 0 such that

|λm,n| ≤ Cs,γ

(|m| + |n|)s−1 .

Proof. As in the proof of [Seg81, Proposition 5.3], consider the path γ̃t in D̃s(S1):

[0, 1] � t �→ γ̃t := t γ̃ + (1− t)id ∈ D̃s(S1).

This is indeed a path in D̃s(S1), because γ̃ ′t (θ) > 0.
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For 0 ≤ t ≤ 1, we have
(
γ̃−1t

)′ ∈ Hs−1(S1) by [IKT13, Theorem B.2(ii), Lemma

B.1]. From the definition of the norm ‖ f ‖s−1 =
(∑

k(1 + k2)s−1| f̂k |2
) 1

2
where f̂k is

the k-th Fourier component, it follows that

∣
∣
∣
∣
∣

(̂
γ̃−1t

)′
∓(|m|+|n|)

∣
∣
∣
∣
∣
≤

∥
∥
∥
∥

(
γ̃−1t

)′∥∥
∥
∥

s−1
(|m| + |n|)s−1 ≤

2πCs,γ

(|m| + |n|)s−1 ,

where supt

{∥
∥
∥
∥

(
γ̃−1t

)′∥∥
∥
∥

}

=: 2πCs,γ which is finite, because t �→ γ̃t is continuous in

Ds(S1) and whose first derivatives are uniformly separated from 0.
By setting t = |n|

|m|+|n| , with + corresponding to the case m < 0, n > 0 and −
corresponding to m > 0, n < 0, we have

λm,n = 1

2π

∫ 2π

0
e±i(|n|+|m|)γ̃t (θ)dθ = 1

2π

∫ 2π

0
e±i(|n|+|m|)ϕ (

γ̃−1t

)′
(ϕ)dϕ

= 1

2π

(̂
γ̃−1t

)′
∓(|m|+|n|),

therefore, |λm,n| ≤ Cs,γ

(|m|+|n|)s−1 as desired. ��

Note that the map V (γ )[ f ] := [ f ◦ γ−1] for γ ∈ Ds(S1) is well-defined, because
the kernel of [·] is the constant functions and they remain constant after composition by
γ−1.

In order to estimate the Hilbert-Schmidt norm of AV (γ ) := 1
2 J [V (γ ), J ], note that

AV (γ ) is anti-complex linear [Ott95, Section 5.3], namely, AV (γ ) J = −J AV (γ ). There-
fore, its Hilbert-Schmidt norm on the complex Hilbert space H1 is just the half of its
Hilbert-Schmidt norm onH1 as a real Hilbert space. If we put the norm defined by (5.1)
on C∞(S1, C), we obtain a complex Hilbert spaceHC

1 which is naturally isomorphic to
the direct sum of two copies of H1, where the complex structure is given by J above.

This space HC

1 has the basis
{

1√
k

ek

}

k∈Z,k �=0, where em(θ) = eimθ , and the operator

AV (γ ) can be extended diagonally and its Hilbert–Schmidt norm on H1 as a real linear
operator is the same as its Hilbert–Schmidt norm onHC

1 .

Proposition 5.2. Let γ ∈ Ds(S1), s > 2. Then there is a unitary operator U (γ ) that
implements the action on the CCR algebra corresponding to the map V (γ ), namely,
AdU (γ )(W ([ f ])) = W ([ f ◦ γ−1]), for f ∈ C∞(S1, R).

Proof. Let f, g ∈ C∞(S1, R). The (real) symplectic bilinear form σ([ f ], [g]) :=
Im 〈 f, g〉 can be written as follows:

σ([ f ], [g]) = 1

4π

∫ 2π

0
f ′(eiθ )g(eiθ )dθ.

As γ ∈ Ds(S1), s > 2, γ is in Diff1+(S1) and the map V (γ ) preserves the symplectic
form σ(·, ·).
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Following [Vro13, Theorem 24], we only need to show that the Hilbert–Schmidt
norm of the operator [V (γ ), J ] is finite. As remarked above, we can compute it onHC

1

with the basis
{

1√
k

ek

}

k∈Z,k �=0. The scalar product
〈

1√
m

em, 1
2 J [V (γ ), J ] 1√

n
en

〉
vanishes

when m > 0, n > 0 or m < 0, n < 0. The remaining cases are m < 0, n > 0 and
m > 0, n < 0 and

∣
∣
∣
∣

〈
1√
m

em,
1

2
J [V (γ ), J ] 1√

n
en

〉∣
∣
∣
∣

2

= |m|
|n|

∣
∣〈em, V (γ )en〉L2(S1)

∣
∣2

= |m|
|n| |λm,n|2.

With AV (γ ) = 1
2 J [V (γ ), J ], by Lemma 5.1 we have

‖AV (γ )‖2HS =
∑

m>0,n<0

|m|
|n| |λm,n|2 ≤

∑

m>0,n<0

|m|
|n|

C2
s,γ

(|m| + |n|)2(s−1) .

Let p := |m| + |n|, then
∑

m>0,n>0

m

n (m + n)2(s−1)
=

∑

p>1

1

p2(s−1)
p−1∑

n=1

p − n

n
≤

∑

p>1

p − 1

p2(s−1)
p−1∑

n=1

1

n

≤
∑

p>1

(p − 1) (2 + log(p))

p2(s−1)

which converges if s > 2, therefore, ‖AV (γ )‖2HS <∞. ��
Theorem 5.3. The map α : Ds(S1) → Aut(B(�+(H1))) such that γ �→ αγ :=
AdU (γ ) is pointwise strongly continuous if s > 2.

Proof. Let f ∈ C∞(S1, R) and {γn} ⊂ Ds(S1) a sequence converging to γ in Ds(S1).
Recall that C∞(S1, R) ⊂ Hs(S1) for every s and that if f ∈ Hs(S1), s ≥ 1/2, then
‖ f ‖ ≤ ‖ f ‖s , where ‖ f ‖ :=∑

k∈N k| f̂k |2. By Lemma 2.3, the map ( f, γ ) �→ f ◦ γ−1
is continuous for s > 3/2. Using Proposition 5.2 for s > 2 and the strong continuity of
the Weyl operators, it follows that αγn (W ([ f ]))→ αγ (W ([ f ])), f ∈ C∞(S1, R).

Let W be the linear span of Weyl operators W ([ f ]). By the previous paragraph, we
have limn→∞AdU (γn)(x) = AdU (γ )(x) in the strong topology for every x ∈W , and
W is dense in B(�+(H1)) in the strong operator topology. Now let {ξn} ⊂ �+(H1) be a
dense sequence. Let A ∈ B(�+(H1)). By Kaplanski’s density theorem we can choose a
sequence {Am} ⊂W such that Am → A strongly. Thus we have for every ξn

lim
m→∞AdU (γ )(Am)ξn = AdU (γ )(A)ξn,

i.e. fn(γ ) := AdU (γ )(A)ξn is the pointwise limit of fn,m(γ ) := AdU (γ )(Am)ξn .
Note that Ds(S1) is a Baire space, since it is an open set of a complete metric space
[IKT13, LemmaB.2, cf.Corollary 2.1(ii)]. ByBaire-Osgood’s theorem [Car00, Theorem
11.20][Pro] applied to the maps fn,m and fn from a Baire spaceDs(S1) into the Hilbert
space �+(H1), we get that the set

D( fn) := {γ ∈ Ds(S1) : fn is not continuous in γ }
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ismeager. Thus also
⋃

n D( fn) ismeager. It follows thatDs(S1)\⋃n D( fn) is nonempty
and hence there is γ0 ∈ Ds(S1) for which all fn are continuous. Since {ξn} is dense,

γ �→ AdU (γ )(A)ξ =: f A
ξ (γ )

is continuous at γ0 for every ξ ∈ �+(H1). Set γ1 := γ−10 γ , then

g A
ξ (γ1) := AdU (γ1)(A)ξ = Ad [U (γ0)

∗U (γ )](A)ξ = U (γ−10 ) f A
U (γ0)ξ

(γ )

converges to U (γ0)
∗ f A

U (γ0)ξ
(γ0) as γ → γ0 for every A ∈ B(�+(H1)) and for every

ξ ∈ �+(H1). In other words, the map γ1 �→ AdU (γ1) is pointwise continuous in the
strong operator topology at the identity id ∈ Ds(S1).

Since the map

γ �→ AdU (γ ) ∈ Aut(B(�+(H1)))

is a group homomorphism and is continuous at id, it is continuous for every γ ∈ Ds(S1).
��

As we saw in Lemma 3.1, Diff1,ps+ (S1) ⊂ Ds(S1) if s < 5/2.

Corollary 5.4. The U(1)-current net AU (1) is continuously Ds(S1)-covariant, s > 2,

and in particular is Diff1,ps+ (S1)-covariant.

Proof. The proof is the same as in [CDIT, Proposition 4.1]. ��
Note that this is stronger than the general result, Proposition A.4, as here we have the
continuity of Diff1,ps+ (S1)-action as a subgroup of Ds(S1).

Corollary 5.5. The projective unitary representation U of Diff+(S1) on �+(H1) extends
continuously to Ds(S1), s > 2.

Proof. The map γ �→ AdU (γ ) is continuous by Theorem 5.3, and this is equivalent to
the continuity of γ �→ U (γ ) in U(�+(H1))/T. ��
Corollary 5.6. The Virasoro net Vir1 with central charge c = 1 is continuously Ds(S1)-
covariant, s > 2, and in particular is Diff1,ps+ (S1)-covariant.

Proof. Let Vir1 the Virasoro net of central charge c = 1, where

Vir1(I ) = {U (γ ) : γ ∈ Diff+(S1), supp γ ⊂ I }′′,
which is a subnet of AU(1). The subspace HVir1 :=

⋃
I Vir1(I )� is invariant for

U (γ ), γ ∈ Ds(S1) by Corollary 5.5, hence the representation U restricts to HVir1 ,
and the covariance follows. ��

LetU1,0 the irreducible positive energy projective unitary representation ofDiff+(S1)

with central charge 1 and lowest weight 0. The finite tensor product Un := ⊗
n U1,0,

is a positive energy projective representation of Diff+(S1) which contains Un,0 as a
subrepresentation. By Corollary 5.6, all the representations Un,0 of Diff+(S1) extend to
Ds(S1), s > 2. This is a partial improvement of the results of [CDIT], where all Uc,h
were extended to Ds(S1), s > 3.

We now show that for these conformal nets the representations of B0 constructed in
Sect. 4.1 are strongly continuous.
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Lemma 5.7. Let γ̊ ∈ B0, ν̊ ∈ Diff+(S1,−1) and 2 < s < 5/2. The homomorphism
αν̊ : B0 −→ Ds(S1), γ̊ �→ αν̊(γ̊ ) := ν̊ ◦ γ̊ ◦ ν̊−1, where B0 is equipped with the
C∞-topology, is continuous.

Proof. Let {γ̊n} ⊂ B0 be a sequence converging to γ̊ ∈ B0 with respect to the C∞-

topology.We denote with ν the lift to ˜Diff0+(S1) of ν̊ and with γn and γ the lift to B̃0 of γ̊n
and γ̊ , respectively. We use the same strategy of Lemma 3.3. Namely, the convergence
ν ◦ γn ◦ ν−1 → ν ◦ γ ◦ ν−1 in the L1(S1)-topology (actually, even in the uniform
topology) is straightforward. Then, by

∣
∣
∣
(

̂ν ◦ γn ◦ ν−1
)

k

∣
∣
∣ ≤

Var
((

ν ◦ γn ◦ ν−1
)′′)

k3

it is sufficient to show that the right-hand side is uniformly bounded in n. The second
derivative of ν ◦ γn ◦ ν−1 is

d2

dθ2

(
ν ◦ γn ◦ ν−1

)
(θ) = ν′′(γn(ν

−1(θ)))γ ′n(ν−1(θ))2
1

ν′(ν−1(θ))2

+ ν′(γn(ν−1(θ)))γ ′′n (ν−1(θ))
1

ν′(ν−1(θ))2
(5.2)

− ν′(γn(ν−1(θ)))γ ′n(ν−1(θ))
ν′′(ν−1(θ))

ν′(ν−1(θ))3
.

To evaluate its total variation, we use the following facts: for every pair of functions
f1, f2 with bounded variation, it holds [Pau15, Theorem 3.7] that

Var( f1 · f2) ≤ ‖ f1‖∞Var( f2) + ‖ f2‖∞Var( f1) + 3Var( f1)Var( f2)

Var( f1 ◦ f2) ≤ L f1Var( f2),

where f1 is Lipschitz and L f1 is the Lipschitz constant of f1. Now, the total varia-
tions of the second and the third terms are uniformly bounded in n since L

γ
(k)
n

are

uniformly bounded in n. As for the first term, we have Var(ν′′ ◦ γn ◦ ν−1) ≤ 2π∥
∥
∥
(
ν′′ ◦ γn ◦ ν−1

)′∥∥
∥

L∞(0,2π)
+ |ν′′(2π) − ν′′(0)|, and this is again uniformly bounded

since ν′′ has a bounded derivative on the open interval (0, 2π) and L
γ

(k)
n

are uniformly
bounded in n. ��
Proposition 5.8. Let 2 < s < 5/2 and γ ∈ Diff+(S1,−1). The map Uγ := U ◦ αγ is a
strongly continuous unitary projective representation of B0 when U = Un,0, n ∈ Z+, or
U is as in Corollary 5.5.

Let A be the U(1)-current net or the Virasoro net Virc with c ∈ Z+ and γ ∈
Diff+(S1,−1). Every soliton σγ of A as in Sect. 3.2 is continuously B0-covariant with
respect to the representation Uγ .

Proof. This is clear from Corollary 5.5 and Lemma 5.7. ��
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6. Outlook

Let us collect some open problems.

• There appears to be no known soliton that is not dilation-covariant. Is dilation co-
variance automatic in solitons? This is not obvious, because we cannot implement
dilations by cutting the generators as we did for translations.

• Is it possible to classify all solitons for some specific conformal nets? For example,
for Virasoro nets any such soliton should give rise to a representation of the group
of the diffeomorphisms of R with compact support. Yet, the lack of any compact
subgroup makes it difficult to classify such representations.

• As the action γ∗( f ) of a diffeomorphism on vector fields involves the derivative
of γ , it may decrease the regularity, especially, it may have discontinuous deriva-
tive. On the other hand, if γ and Exp( f ) are implementable, so is Exp(γ∗( f )) by
U (γ )U (Exp( f ))U (γ )∗, hence implementability of Exp(g) is not directly related
with the regularity of g. What is the precise relationship? Is D(L0) a core for such
T (g)?

• Which is the smallest s > 0 for which conformal nets are Ds(S1)-covariant? Does
s depend on the net? For which s do (c, h)-representations of Diff+(S1) extend to
Ds(S1)?
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A Piecewise Smooth C1-Diffeomorphisms

Here we show that any γ ∈ Diff1,ps+ (S1) is implementable in any conformal net. The
strategy is due to André Henriques. We thank him for permitting us to include this in
the present paper.
An element γ ∈ Diff1,ps+ (S1) has only finitelymany nonsmooth points, hence if we show
that any γ with one nonsmooth point is implemented, the thesis follows by composing
such elements finitely many times. Furthermore, by composing with rotations and dila-
tions, we may assume that the nonsmooth point is −1 and γ (−1) = −1, γ ′(−1) = 1.

If γ ∈ Diff1,ps+ (S1), let γ̃ be a lift of γ to the universal covering ˜Diff1+(S1). As we
observed in Sect. 3.2, there exists an open interval I of S1 that contains−1 and γI− , γI+ ∈
Diff+(S1) such that γ agrees with γI− in I− and with γI+ in I+, where I− and I+ are the
connected components of I\{−1}. Denote the derivative of γ from the right and from
the left by

∂±γ (−1) := lim
θ→π±

γ̃I±(θ)− γ̃I±(π)

θ − π
.

For f ∈ C∞(S1, R) and γ ∈ Diff+(S1) we define

f (k)(eiθ ) := dk

dθk
f (eiθ )
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and

γ (k)(eiθ ) := dk

dθk
γ̃ (θ)

where γ̃ is the lift of γ in ˜Diff+(S1) and ˜Diff+(S1) is identified with the group of maps
γ̃ : R → R satisfying γ̃ (θ + 2π) = γ̃ (θ) + 2π .
Recall that Vect(S1) is a Lie algebra with the bracket [ f, g] := f ′g − g′ f . As in

[Tan10], for 0 ≤ n ≤ ∞, consider the following Lie subalgebras of Vect(S1)

bn =
{

f ∈ C∞(S1, R) : f (k)(−1) = 0, for 0 ≤ k ≤ n
}

,

b∞ =
{

f ∈ C∞(S1, R) : f (k)(−1) = 0, for all k ∈ N

}
.

To each algebra corresponds a Lie subgroup of Diff+(S1),

B0 :=
{
γ ∈ Diff+(S1) : γ (−1) = −1

}
,

B1 :=
{
γ ∈ Diff+(S1) : γ (−1) = −1, γ (1)(−1) = 1

}
,

Bn :=
{
γ ∈ Diff+(S1) : γ (−1)=− 1, γ (1)(−1)=1, γ (k)(−1)=0, for 2 ≤ k ≤ n

}
,

B∞ :=
{
γ ∈ Diff+(S1) : γ (−1) = −1, γ (1)(−1) = 1, γ (k)(−1) = 0, for all k ≥ 2

}
.

By explicit calculations, bn’s are normal Lie subalgebras of b0. Correspondingly, Bn is
a normal subgroup of B0 for every n ≥ 1: indeed, if γ ∈ Bn and γ0 ∈ B0, then γ−1γ0γ
has the same k-th derivatives at −1 as γ0 for k = 1, · · · , n, hence γ−1γ0γ γ−10 ∈ Bn

and γ0γ γ−10 ∈ Bn . From this, it is immediate that bn is a normal Lie subalgebra of b1
and Bn is a normal subgroup of B1.
The quotient Lie algebra b1/bn is finite dimensional and every element [g] can be

identified with the (n− 1)-tuple of the real numbers (g(2)(−1), . . . , g(n)(−1)). Further-
more, it follows from straightforward computations that b1/bn is nilpotent. Similarly,
the quotient B1/Bn is a finite-dimensional Lie group and an element [γ ] ∈ B1/Bn can
be identified with the (n − 1)-tuple of real numbers (γ (2)(−1), . . . , γ (n)(−1)). As we
see below, b1/bn is the Lie algebra of B1/Bn , and the latter is connected and simply
connected as it is diffeomorphic toR

n−1, hence the exponential map is surjective [CG90,
Theorem 1.2.1], which is the key of the following Lemma A.2.

Lemma A.1. The Lie algebra of the group B1/Bn is b1/bn. Let Expn be the exponential
map from b1/bn to B1/Bn. With the natural quotient maps [·], the following diagram
commutes.

b1 b1/bn

B1 B1/Bn

[·]

Exp Expn
[·]

Proof. We first prove that if [ f1] = [ f2] in b1/bn , then [Exp( f1)] = [Exp( f2)] in
B1/Bn . It is enough to show that Exp( f1)(k)(−1) = Exp( f2)(k)(−1) for 0 ≤ k ≤ n− 1.
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The case k = 0 is obvious by definition of Exp. We show this by induction in k. By
[CL55, Theorem 7.2] we have that

∂

∂t

(
∂k

∂θk
Exp(t f j )(e

iθ )

∣
∣
∣
∣
eiθ=−1

)

= ∂k

∂θk

(
∂

∂t
Exp(t f j )(e

iθ )

) ∣
∣
∣
∣
eiθ=−1

= ∂k

∂θk
f j (Exp(t f j )(e

iθ ))

∣
∣
∣
∣
eiθ=−1

(6.1)

for j = 1, 2. By the chain rule, we observe that the last expression can be writ-

ten in terms of ∂�

∂θ�Exp(t f j )(eiθ )

∣
∣
∣
∣
eiθ=−1

with 0 ≤ � ≤ k − 1 and f (�)
j (−1) with

0 ≤ � ≤ k, because f (1)
j (−1) = 0 and ∂k

∂θk Exp(t f )(eiθ )

∣
∣
∣
∣
eiθ=−1

does not appear.

Therefore, ∂k

∂θk Exp(t f j )(eiθ )

∣
∣
∣
∣
eiθ=−1

, j = 1, 2 satisfy the same differential equation with

respect to t (6.1) with the same initial data, and we conclude that Exp(t f1)(k)(−1) =
Exp(t f2)(k)(−1).
Let f ∈ b1. Then [Exp(t f )] is a one-parameter group in B1/Bn and it does not depend

on the representative in [ f ] by the previous paragraph. The Lie bracket [[ f ], [g]] can
be computed from [Exp(t f )], [Exp(sg)] and it gives [[ f, g]] = [ f ′g − f g′], namely,
b1/bn is the Lie algebra of B1/Bn . ��
Lemma A.2. Let {λn}n≥2 be a sequence of real numbers. There exists g ∈ C∞(S1, R)

such that Exp(g)(n)(−1) = λn for all n ≥ 2.

Proof. Note that b1/bn ← b1/bn+1 is a Lie algebra homomorphism, since bn ⊃ bn+1.
Recall the inverse limit of the sequence of Lie algebras

b1/b2 ←− · · · ←− b1/bn ←− b1/bn+1 ←− · · ·
is by definition the Lie algebra of sequences (g2, · · · , gn . . . ), gn ∈ b1/bn such that
gn/bn−1 = gn−1. This is isomorphic to b1/b∞, because any such sequence corresponds
to a sequence (λ′2, · · · , λ′n, · · · ) where g(k)

n (−1) = λ′k and by Borel’s theorem [Hor90,
Theorem 1.2.6] there is g ∈ Vect(S1) such that g(−1) = g′(−1) = 0 and g(k)(−1) =
λ′n .
Similarly, the inverse limit of the sequence of groups

B1/B2 ←− · · · ←− B1/Bn ←− B1/Bn+1 ←− · · ·
is isomorphic to B1/B∞, because to any sequence (λ2, . . . , λn, . . .) one can associate
γ ∈ Diff+(S1) such that γ (k)(−1) = λn by Borel’s theorem, as we did in Sect. 3.2.
Since b1/bn is a nilpotent Lie algebra, the exponential map Expn : b1/bn −→ B1/Bn

is surjective [CG90, Theorem 1.2.1]. It follows that the inverse limit Exp∞ of the
maps Expn is surjective, because any sequence (γ2, . . . , γn, . . .) has an inverse image
(Exp−12 (γ2), . . . ,Exp−1n (γn), . . .).
To a given sequence {λn}n≥2, we take the element (λ2, . . . , λn, . . .) ∈ B1/B∞. Its

inverse imagewith respect to Exp∞ is a sequence (λ′2, . . . , λ′n, . . .) ∈ b1/b∞. ByBorel’s
theorem, there is g ∈ Vect(S1) such that g(−1) = g′(−1) = 0, g(n)(−1) = λ′n . This g
has the desired property Exp(g)(k)(−1) = λk by Lemma A.1. ��
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The inverse limit of b1/b2 ← · · · ← b1/bn ← · · · is isomorphic to the Lie algebra
of formal power series x2C[[x]], where the Lie bracket is [ f, g] := f ′g − g′ f , f, g ∈
x2C[[x]]. Similarly, the inverse limit of B1/B2 ← · · · ← B1/Bn ← · · · is the group
x + x2C[[x]] with product given by the composition of formal power series.

Lemma A.3. Let γ ∈ Diff1,ps+ (S1), smooth on S1\{−1} and γ ′(−1) = 1. There exist g
that is piecewise smooth, C1 and possibly nonsmooth at {−1} and γ ∈ Diff+(S1) such
that γ = Exp(g) ◦ γ .

Proof. Let us first show that, for two sequences of real numbers {λ+n}n≥2, {λ−m}m≥2, there
exists g ∈ C1(S1, R), such that

• Exp(g)(−1) = −1,Exp(g)(1)(−1) = 1
• Exp(g) ∈ Diff1,ps+ (S1)

• Exp(g) is smooth on S1\{−1}
• ∂n

+Exp(g)(−1) = λ+n , ∂
m−Exp(g)(−1) = λ−m for all n, m ≥ 2.

By applying LemmaA.2 to {λ+n}n≥2, {λ−m}m≥2, there exist g+, g− ∈ C∞(S1, R) such that
Exp(g+)(n)(−1) = {λ+n} andExp(g−)(n)(−1) = {λ−n },m, n ≥ 2,Exp(g±)(n)(−1) = −1
and Exp(g±)(1)(−1) = 1.
We may assume that g± has compact support around−1. By gluing the restrictions of

g+ and g− to I+, I− respectively, we obtain g that is smooth on S1\{−1}, is in C1(S1, R)

and g|I+ = g+|I+ , g|I− = g−|I− . As the only nonsmooth point of g is −1, we have

Exp(g) ∈ Diff1,ps+ (S1) and Exp(g) is smooth on S1\{−1}.
For n ≥ 2, we set λ+n := ∂n

+γ (−1) and λ−m := ∂m−γ (−1). By the observation above,

there exists g ∈ C1(S1, R), smooth on S1\{−1} such that Exp(g) ∈ Diff1,ps+ (S1) and
∂n
+Exp(g)(−1) = λ+n , ∂m−Exp(g)(−1) = λ−m for all n, m ≥ 2, Exp(g) is smooth on

S1\{−1} and Exp(g)(−1) = −1,Exp(g)(1)(−1) = 1. It follows that γ := γ ◦Exp(−g)

has ∂k
+γ (−1) = ∂k−γ (−1) = 0 for all k ≥ 2, therefore, γ ∈ B∞ ⊂ Diff+(S1). ��

Proposition A.4. In any conformal net (A, U,�), U can be extended to Diff1,ps+ (S1)

(not necessarily continuously) in such a way that the net is covariant with respect to U.

Proof. We first show that γ ∈ Diff1,ps+ (S1) is implementable if γ (−1) = −1 and
γ ′(−1) = 1 and γ is smooth elsewhere.
By Lemma A.3, we have γ = Exp(g) ◦ γ , where g is piecewise smooth and C1, and

γ ∈ Diff+(S1). The smooth element γ is already implemented byU , therefore, to obtain
the desired extension, it is enough to prove that Exp(g) is implementable for g that is
piecewise smooth and C1.
Any such g can be approximated by smooth g(θ, μ) = g ∗ hμ(θ) with 0 < μ ≤ 1,

where h1 is a smooth function with support in [−1, 1] such that h1 ≥ 0,
∫

h1 = 1

and hμ(θ) = 1
μ

h1

(
θ
μ

)
. We set g(θ, 0) = g(θ). Then it is clear that g is a continuous

function of (θ, μ) and uniformly Lipschitz in θ , since ∂θ g(θ, μ) = g′ ∗ hμ(θ) and
∂θ g(θ, 0) = g′(θ). By [CL55, Chapter1, Theorem 7.4], Exp(tgμ)(θ) is continuous in
μ at each t, θ . Now, as gμ is smooth for μ > 0, we have AdU (Exp(tgμ))(A(I )) =
A(Exp(tgμ)I ). Note that U (Exp(tgμ)) = eitT (gμ) up to a scalar, where T is the stress–
energy tensor forU , and since gμ → g in the S 3

2
(S1, R)-topology [CW05, Lemma 4.6],
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eitT (gμ) → eitT (g) in the strong operator topology [CW05, Proposition 4.5]. Therefore,
it holds that AdeitT (g)(x) = limμ→0 AdU (Exp(tgμ))(x) for any x ∈ A(I ), and by the
continuity above, AdeitT (g)(x) ∈ A(Exp(tg)I ). If we set U (Exp(tg)) = eitT (g), this
acts covariantly on the net A.
It remains to show thatU gives awell-defined projective representation of Diff1,ps+ (S1).

Let us first define U and show the well-definedness.

• First considerγ that has onlyonenonsmoothpoint at−1andγ (−1) = −1, γ ′(−1) =
1.We take the decomposition γ = Exp(g)◦γ and defineU (γ ) = U (Exp(g))U (γ ).
This is well-defined as a projective representation. Indeed, its adjoint action on
A(I ),−1 /∈ I is determinedbyU as the representationofDiff+(S1), and suchA(I )’s
generate B(H), therefore, if we take another decomposition U (γ ) = U (Exp(g1))
U (γ1), the difference must be a scalar.

• Second, if γ has only one nonsmooth point, then γ = γL ◦ γ0 ◦ γR with γ0
such that γ0(−1) = −1, γ ′0(−1) = 1 and smooth elements γL, γR. By the well-
definedness above and the fact that U is already defined on smooth elements,
U (γ ) = U (γL)U (γ0)U (γR) is also well-defined.

• If γ has finitely many nonsmooth points, we decompose it into γ = γ0 · γ̌ , where γ0
fixes all these nonsmooth points, has derivative 1 and supp γ0 is a disjoint union of
intervals around these nonsmooth points. As the nonsmooth part has disjoint unions,
if we take the product of U defined above on each component, this does not depend
on the order of the product. If we consider two such decompositions, the nonsmooth
parts cancel each other up to a smooth element which is already defined, hence U
is well-defined.

That U is a projective representation is shown as follows.

• For two elements γ1, γ2 such that γ j (−1) = −1, AdU (γ1γ2) and AdU (γ1)U (γ2)

implement the same action ofA(I ) such that−1 /∈ I as before, hence the difference
between U (γ1γ2) and U (γ1)U (γ2) must be a scalar.

• By rotation, the homomorphism property U (γ1γ2) = U (γ1)U (γ2), up to a scalar,
follows also when γ1 and γ2 has only one and same nonsmooth point.

• For two elements γ1, γ2 with finitely many nonsmooth points, take the decomposi-
tions as above: γ j = γ j,0, γ̌ j . We may assume that the components of γ̌1γ2,0γ̌

−1
1

is either disjoint from the components of γ1,0, or have a common nonsmooth point.
If they are disjoint, their representation by U commute. If they have a common
nonsmooth point, we can merge them to a single element and we have shown the
homomorphism property above. In this way, we have the decomposition γ1γ2 =
(γ1,0γ̌1γ2,0γ̌

−1
1 ) · (γ̌1γ̌2), where γ1,0γ̌1γ2,0γ̌

−1
1 is supported around the nonsmooth

points and γ̌1γ̌2 is smooth andwehaveU (γ1)U (γ2) = U (γ1,0)U (γ̌1)U (γ2,0)U (γ̌2) =
U (γ1,0γ̌1γ2,0γ̌

−1
1 )U (γ̌1γ̌2) = U (γ1γ2) up to a scalar.

We have seen the covariance of the net with respect to γ0 such that γ0(−1) = −1 and
γ ′0(−1) = 1 and smooth elsewhere. Any element γ ∈ Diff1,ps+ (S1) can be decomposed
as a product of such elements and smooth elements, and for each of themwe have shown
the covariance, hence the covariance holds also for γ . ��
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