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Abstract.

Some recent results on KMS states on chiral components of two-
dimensional conformal quantum field theories are reviewed. A chiral
component is realized as a conformal net of von Neumann algebras on
a circle, and there are two natural choices of dynamics: rotations and
translations.

For rotations, the natural choice is the universal C∗-algebra. We
classify KMS states on a large class of conformal nets by their superse-
lection sectors. They can be decomposed into Gibbs states with respect
to the conformal Hamiltonian.

For translations, one can consider the quasilocal C∗-algebra and
we construct a distinguished geometric KMS state on it, which results
from diffeomorphism covariance. We prove that this geometric KMS
state is the only KMS state on a completely rational net. For some
non-rational nets, we present various different KMS states.

§1. Introduction

The theory of operator algebras has been developed in a particularly
close relationship with its application to physics. Among intersting con-
nections, let us focus on the KMS condition.

In statistical physics (see e.g. [17]), one considers a system of interest
in contact with a heat bath. The heat bath is a system much larger
than the system of interest and has a fixed temperature. They can only
exchange energy, and after some time, the whole system arrives at an
equilibrium state. As the system of interest is small compared with the
heat bath, we may assume that the temperature in the equilibrium is
that of the heat bath, say 1/β. If the system of interest is a quantum
mechanical system on a Hilbert space H with the Hamiltonian H (such
that e−βH is of trace class), the equilibrium state restricted to it can be
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represented by the density matrix

ρ =
e−βH

Tr(e−βH)
.

Let us write σt = Ad eitH . It is immediate that this state above satisfies
the following KMS condition: for x, y ∈ B(H), there is an analytic
function fx,y on R + i(0, β) such that

fx,y(t) =
Tr(ρyσt(x))

Tr(e−βH)
, fx,y(t+ iβ) =

Tr(ρσt(x)y)

Tr(e−βH)
for t ∈ R.

Now, if we are to consider a continuum system, the Hamiltonian is
not necessarily of trace class. Yet the KMS condition can be stated for
any C∗-algebra and a one-parameter automorphism group σt. Indeed,
the KMS condition can be thought as a characterization of thermal
equilibrium states in general [15].

We are interested in low-dimensional quantum field theory. In ad-
dition to that it is natural to consider thermal states on quantum field
theory, there is also a particular motivation to study two-dimensional
conformal field theory: when one considers a black hole in the AdS back-
ground in (2+1)-dimensions, the classical solutions can be parametrized
by two copies of the group Diff(S1). At quantum level, Diff(S1) should
be unitarily represented, hence also its Lie algebra, the Virasoro alge-
bra, and it should be in a thermal state with the Hawking temperature.
Therefore, it is natural to consider thermal states on the Virasoro alge-
bra, or in the operator-algebraic setting, the Virasoro net (see the next
section). See [14] and the references therein.

Furthermore, this KMS condition appears in a completely different
context (see, e.g. [23, 2]). Let M be a von Neumann algebra and Ω a
cyclic separating vector. The antilinear map

S0 : xΩ 7−→ x∗Ω

is well-defined and densely defined, and turns out to be closable. The
closure S has the polar decomposition S = J∆

1
2 . Then, for x ∈ M,

σt(x) := Ad ∆it(x) ∈ M, namely σt defines a one-parameter auto-
morphism group, called the modular automorphisms [23]. Then, for
x, y ∈M, there is an analytic function fx,y on R + i(−1, 0) such that

fx,y(t) = 〈Ω, yσt(x)Ω〉, fx,y(t− i) = 〈Ω, σt(x)yΩ〉 for t ∈ R.

In this sense, the state 〈Ω, ·Ω〉 is said to satisfy the KMS condition with
respect to the modular automorphism group at the inverse temperature
β = −1.
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§2. Conformal nets, the universal algebra and representations

Let us turn to low-dimensional conformal field theory in thermal
states. In the operator-algebraic approach, chiral components of a two-
dimensional conformal field theory are realized as a net {A(I)} of von
Neumann algebras on the circle S1 satisfying the analogue of Haag-
Kastler axioms [13, 12]. Especially, such a net should satisfy isotony,
namely A(I1) ⊂ A(I2) if I1 ⊂ I2, and Möbius covariance, that is, there
is a strongly continuous unitary representation U of PSU(1, 1) (which
acts naturally on S1) such that AdU(g)(A(I)) = A(gI). If U can be
further extended to a projective unitary representation of Diff(S1) and
the covariance holds and AdU(g) acts trivially on A(I), where I and
supp g are disjoint, the net A is said to be a conformal net.

Given a net {A(I)}, one can consider a representation {ρI}, which
is a family of representations ρI of A(I) on a common Hilbert space Hρ
with the compability condition ρI2 |A(I1) = ρI1 for I1 ⊂ I2. One can
consider a universal C∗-algebra C∗(A) of the net which includes each
local algebra A(I), and any representation ρ can be factored through
C∗(A) [11, 19]. Actually, we are interested in locally normal representa-
tions (i.e. each ρI is σ-weakly continuous) and one can consider universal
algebra C∗ln(A) for such locally normal representations [8]. A represen-
tation ρ is said to be irreducible if ρ(C∗(A))′′ = B(H). It is important
to note that a general representation of a C∗-algebra cannot be mean-
ingfully decomposed into irreducible representations, and even if it is
possible and an irreducible representations appears in a decomposition,
it may not appear in another decomposition [10, 16].

A natural dynamics to consider here is the rotation group: PSU(1, 1)

contains a subgroup

{(
e
iθ
2 0

0 e−
iθ
2

)}
, whose elements are represented

by eiθL0 , θ ∈ R. The adjoint action Ad eiθL0 passes to an automorphism
σθ of the universal algebra C∗(A), and our task is to classfy the KMS
states with respect to {σθ}.

A KMS state ϕ on the universal algebra can be studied through its
GNS representation ρϕ: one can introduce a (pre-)Hilbert space struc-
ture on C∗(A) with the inner product 〈y, x〉ϕ = ϕ(y∗x) and C∗(A) itself
acts naturally from the left. In the GNS representation, it is natural to
take the weak closure of ρϕ(C∗(A)), which is a von Neumann algebra.
Any von Neumann algebra can be decomposed into a direct integral
of so-called factors, and factors are classified into type I, II and III [22,
Chapter V]. Following this, the state ϕ gets also decomposed as a convex
combination (possibly an integral), so that the weak closure in the GNS
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representation of each component is a factor. The KMS state naturally
extends to the weak closure, where the Tomita-Takesaki modular theory
[23] can be exploited.

In some concrete cases, representations may be completely classified,
and the classification of KMS states follows, as we see in the next section.

§3. KMS state with respect to rotations

If we assume conformal covariance, any representation ρ is Möbius
covariance [9, Theorem 5]: in particular there is a positive self-adjoint

operator Lρ0 such that ρ(σθ(x)) = Ad eiθL
ρ
0 (ρ(x)). Furthermore, for ir-

reducible representations of some nets, e−βL
ρ
0 turns out to be of trace

class. In that case, one can define the Gibbs state by

ϕρ(x) =
Tr(e−βL

ρ
0x)

Tr(e−βL
ρ
0 )
.

This clearly satisfies the KMS condition.
Conversely, for a given KMS state ϕ, one can consider its GNS

representation ρϕ and its factorial decomposition, as explained above.
First observation is that no type III component appears, because by [9]
the modular group, in this case the rotation automorphisms, is inner.
Therefore, the weak closure ρϕ(C∗(A))′′ is a factor of either type I or
type II, and it admits the canonical trace Tr. One has furthermore the
following.

Theorem 1. Let ϕ be a rotational β-KMS state on C∗(A) such that

ρϕ(C∗(A))′′ is of type I, then Tr(e−βL
ρϕ
0 ) <∞ and

ϕ(x) =
Tr(e−βL

ρϕ
0 x)

Tr(e−βL
ρϕ
0 )

.

Then a natural question arises whether (locally normal) type II rep-
resentation can appear in the GNS representation. It turns out that we
can even exclude type II representations for many conformal nets.

The first class is the so-called competely rational nets [16, Definition
8]. Complete rationality is defined through certain analytic properties
of the net, yet it can be characterized by their representation theory:
a completely rational net admits only finitely many irreducible repre-
sentations up to unitary equivalence and each irreducible representation
has its conjugate [20, Theorem 4.9]. In this case, any representation
can be decomposed into a direct sum of irreducible representations [16,
Corollary 39], in particular, they are of type I.
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Let us consider non-rational conformal nets. The U(1)-current net
[4] is generated by the derivative of the massless free field, and it ad-
mits a family of irreducible representations {ρq} parametrized by the
charge density q ∈ R. In each ρq, the lowest eigenvalue of the confor-

mal Hamiltonian L
ρq
0 is q2

2 . Another family is called the Virasoro nets
generated by the diffeomorphism covariance itself. They are classified
by the so-called central charge c, and their irreducible representations
are classified by the lowest eigenvalue h of the conformal Hamiltonian
[7, 24]. In both cases, for each fixed value of the lowest eigenvalue of
the conformal Hamiltonian, there are only finitely many inequivalent
irreducible representations. With this property we can prove that the
conformal net admits only type I reprensetations. One can also prove
that any finite tensor product of such nets have the same property.

As a straightforward corollary, we obtain the following.

Theorem 2. Let A be either completely rational, the U(1)-current
net, the Virasoro net Virc or a finite tensor product of them. Then any
rotational β-KMS state ϕ on C∗(A) is a convex combination of Gibbs
states in irreducible representations.

It is an open problem whether there is any conformal net with rep-
resentations not of type I. A simple class of nets whose representations
have not been classified are the fixed point nets by finite groups acting
on non-rational nets.

§4. KMS state with respect to translations

Another natural choice of dynamics, when the two-dimensional CFT
is considered as the full system, is time-translations, as we studied in
[5, 6]. We take again the chiral components of the full CFT.

To study translational KMS states, we come back to the real line
picture R = S1 \ {∞}, and restrict the conformal net on S1 to R. There
is the one-parameter subgroup in the PSU(1, 1), which acts on R as
the usual translations. The C∗-algebra of the interest is the quasilocal
C∗-algebra

A =
⋃
IbR
A(I)

‖·‖
.

A conformal net A has the distingished vacuum state 〈Ω, ·Ω〉, and it has
the Bisognano-Wichmann property: the modular automorphism group
of A(R+) with respect to the vacuum is dilations. This implies that the
vacuum is the KMS state with respect to dilations.
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By exploiting the Bisognano-Wichmann property and conformal co-
variance, one can construct a canonical, geometric KMS state: by a
local diffeomorphism, the action of dilations can be locally intertwined
to the action of translations. By composing this and a KMS state of the
half-line algebra A(R+), namely the vacuum, one obtains a KMS state
of the quasilocal algebra with respect to translations. The temperature
1/β can be tuned by further composing it with a dilation.

Theorem 3. Any conformal net has a translational β-KMS state
ϕgeo, the geometric KMS state.

The next natural question is whether there are other KMS states.
As for completely rational nets, the answer turns out to be no. The
reason is, if one has a translational KMS state, one can naturally obtain
a Möbius covariant net [18, 25], and by complete rationality, this can
be identified as an extension of A as a conformal net. Yet, again by
complete rationality, such extensions are severely restricted and one can
actually prove that the KMS state must be the geometric KMS state
ϕgeo.

Non-rational nets can admit non-geometric KMS states. The U(1)-
current net has irreducible representations parametrized by q ∈ R, and
correspondingly, we can construct different KMS states ϕq. When these
states are restricted to the Virasoro net Vir1, they are different states
for different q2. We can prove that they exhaust all the KMS states
whose GNS representations are factorial (i.e. extremal KMS states):
This is based on the fact that Vir1 is the fixed point net of a completely
rational net LSU(2)1, the SU(2)-loop group net at level 1 [21]. Any ex-
tremal KMS state on Vir1 can be extended to an extremal KMS state
on LSU(2)1, but the dynamics is modified by a one-parameter automor-
phism group (by the argument of [1]: while the original statement and
a textbook argument [3] contain a flaw, for translational KMS states on
conformal nets one can adjust it). This one-parameter group specifies a
subnet of LSU(2)1 isomorphic to the U(1)-current net, which is the fixed
point subnet under the given one-parameter group. Therefore, a trans-
lational KMS state on Vir1 extends to a translational KMS state on the
U(1)-current net. For other Virc, c > 1, we can construct a continuous
family of translationa KMS states. It is open whether they exhaust the
extremal KMS states on Virc.

As we pointed out above, from these KMS states, one can construct
a Möbius covariant net [18]. It is also an interesting problem to idenfity
these nets with know nets.
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mal States in Conformal QFT. II. Comm. Math. Phys., 315(3):771–802,
2012. http://arxiv.org/abs/1109.2064.

[ 7 ] Sebastiano Carpi. On the representation theory of Virasoro nets. Comm.
Math. Phys., 244(2):261–284, 2004. http://arxiv.org/abs/math/

0306425.
[ 8 ] Sebastiano Carpi, Roberto Conti, Robin Hillier, and Mihály Weiner. Repre-
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