# Strong locality beyond linear energy bounds

#### Yoh Tanimoto

University of Rome "Tor Vergata"

(Supported by Rita Levi Montalcini grant of MIUR)

Università di Roma "Tor Vergaga" 6th December 2019

# Constructing Haag-Kastler net from quantum field

- Wightman field  $\phi(x)$  (operator-valued distribution): Poincaré/conformal covariance, positive energy, vacuum, **locality**.
- Haag-Kastler net  $\{A(O)\}$  (family of von Neumann algebras): Poincaré/conformal covariance, positive energy, vacuum, **locality**.
- $\mathcal{A}(O) = \{e^{i\phi(f)} : \operatorname{supp} f \subset O\}''$ .

### Strong commutativity of fields

Does locality of  $\mathcal{A}$ ,  $[\mathcal{A}(O_1), \mathcal{A}(O_2)] = \{0\}$  for  $O_1, O_2$  spacelike separated, follow from locality of  $\phi$ ,  $[\phi(f), \phi(g)] = 0$  for  $\operatorname{supp} f, \operatorname{supp} g$  spacelike separated?

Yes, in some cases.

#### New examples:

- $W_3$ -algebra with  $c \ge 2$  (2d CFT) joint with S. Carpi and W. Weiner
- Bullough-Dodd model (2d massive integrable QFT) joint with H.
   Bostelmann and D. Cadamuro

# Strong commutativity

### Nelson's counterexample

- $L^2(X)$ , where X is the Riemann surface obtained by glueing two cutted  $\mathbb{R}^2$ .
- D:the set of smooth functions whose supports do not contain 0
- A be the derivative in x, B the derivative in y.

A and B commute on  $\mathcal{D}$ , while  $e^{itA}$  and  $e^{isB}$  are translations on X which do not commute **globally**.



When strong commutativity fails, there is a good reason.

# A sufficient condition for strong commutativity

## Theorem (Driessler-Fröhlich)

Let T be a positive self-adjoint operator, A,B symmetric operators on  $\mathrm{Dom}(T)$  such that for  $\Psi,\Phi\in\mathrm{Dom}(T)$ 

- $||A\Psi|| \le C||T\Psi||, ||B\Psi|| \le C||T\Psi||$  for  $\Psi \in \text{Dom}(T)$ .
- $|\langle A\Psi, T\Phi \rangle \langle T\Psi, A\Phi \rangle| \le C ||T\Psi|| ||\Phi||,$  $|\langle B\Psi, T\Phi \rangle - \langle T\Psi, B\Phi \rangle| \le C ||T\Psi|| ||\Phi||.$
- $|\langle A\Psi, T\Phi \rangle \langle T\Psi, A\Phi \rangle| \le C ||T^{\frac{1}{2}}\Psi|| ||T^{\frac{1}{2}}\Phi||,$  $|\langle B\Psi, T\Phi \rangle - \langle T\Psi, B\Phi \rangle| \le C ||T^{\frac{1}{2}}\Psi|| ||T^{\frac{1}{2}}\Phi||.$
- $\langle A\Psi, B\Phi \rangle = \langle B\Psi, A\Phi \rangle$

Then A and B strongly commute.

The difficult part is estimating [H, A], [H, B] by T. In Quantum Field Theory, there is a standard way: **linear energy bound**.

# Linear energy bound

- $\phi$  a Wightman field: for each test function f,  $\phi(f)$  is a symmetric operator.
- $[\phi(f), \phi(g)] = 0$  if  $\operatorname{supp} f, \operatorname{supp} g$  are spacelike separated (weak locality).
- **Hamiltonian**:  $[H, \phi(f)] = i\phi(f')$  (translation covariance).

### Linear energy bound

 $\|\phi(f)\Psi\| \le C_f \|(H + r_f \mathbb{1})\Psi\|$  for all f.

In this case,  $\|[H,\phi(f)]\Psi\|=\|\phi(f')\Psi\|\leq C_{g'}\|(H+r_{g'}\mathbb{1})\Psi\|$  and one can apply the Driessler-Fröhlich theorem with T=H (Glimm-Jaffe). Many interacting scalar fields (including  $\mathscr{P}(\phi)_2$  models) have a corresponding Haag-Kastler net.

Does linear energy bound fails in interesting examples?



# Primary fields in 2d CFT

- $\phi(z) = \sum \phi_n z^{-n-d}$ : primary (diffeomorphism covariant) field on  $S^1$  with conformal dimension d.
- $L(z) = \sum L_n z^{-n-2}$ : Virasoro algebra (Lie algebra of Diff( $S^1$ )).

$$[L_m, L_n] = (m-n)L_{m+n} + \frac{c}{12}m(m^2-1)\delta_{m+n,0},$$
  
$$[L_m, \phi_n] = ((d-1)m-n)\phi_{m+n},$$

(Conformal) Hamiltonian  $H = L_0 = L(1)$ .

- Bad news: A primary field with dimension d > 2 never satisfies linear energy bound.
- Good news: for arbitrariy f,  $[\phi(f^{d-1}), L(f)] = 0$ .

Can L(f) be used for "local" Hamiltonian?



## Local energy bounds

#### Theorem

A primary field  $\phi$  with conformal dimension d can satisfy at best the following bound:

$$\|\phi_0\Psi\| \le C\|(L_0+r)^{d-1}\mathbb{1}\Psi\|$$

If this holds, then it satisfy the following local energy bound:

$$\|\phi(f^{d-1})\Psi\| \leq \tilde{C}\|(L(f)+r\mathbb{1})^{d-1}\Psi\|$$

for non-negative test function f.

Proof: we have  $U(\gamma)\phi(g)U(\gamma)^* = \phi((\gamma'\circ\gamma^{-1})^{d-1}(g\circ\gamma^{-1}))$  for test function f and  $\gamma\in \mathrm{Diff}(S^1)$  and  $U(\gamma)L_0U(\gamma)^* = L(\gamma'\circ\gamma^{-1}) + r_\gamma$ .  $\gamma'\circ\gamma^{-1}=g$  must satisfy  $\int \frac{1}{g}=2\pi$ .

To extend this to general nonnegative f, we need the optimal estimate.

## Example: the $W_3$ -algebra

A non-Lie algebraic extension of the Virasoro algebra:

$$\begin{split} [L_m, L_n] &= (m-n)L_{m+n} + \frac{c}{12}m(m^2-1)\delta_{m+n,0}, \\ [L_m, W_n] &= (2m-n)W_{m+n}, \\ [W_m, W_n] &= \frac{c}{3 \cdot 5!}(m^2-4)(m^2-1)m\delta_{m+n,0} \\ &+ b^2(m-n)\Lambda_{m+n} + \frac{1}{20}(m-n)(2m^2-mn+2n^2-8)L_{m+n}, \end{split}$$

The lowest weight representations are parametrized by  $(c, h, w) \in \mathbb{C}$ . When  $c \geq 2$ , h = w = 0, it is **unitary** (Carpi-T.-Weiner arXiv:1910.08334)

A conformal net be associated to it if the generating fields commute strongly (**strong locality** of Vertex Operator Algebra, Carpi-Kawahigashi-Longo-Weiner '18)

## The $W_3$ -net

- unitary vacuum representation for  $c \ge 2$ .
- W-field has conformal dimension 3.
- W satisfies the optimal bound  $||W(f^2)\Psi|| \leq C||(L(f) + r_f \mathbb{1})^2\Psi||$ .
- $[W(f^2), L(f)] = 0$ .  $\Longrightarrow$  Driessler-Fröhlich theorem with  $T = (L(f) + L(g) + r_{f,g})^2$  for nonnegative f, g.
- For general  $f, g, C^{\infty}(L_0)$  is a nice core.

#### Theorem

The  $W_3$ -algebra for  $c \geq 2$  has an associated unitary simple VOA which is strongly local. One can construct the corresponding conformal Haag-Kastler net.

Lesson: avoid the condition on [H, A], [H, B].



# Wedge-local construction of massive 2d integrable QFT

- Haag-Kastler net  $(\{A(O)\}, U, \Omega)$ : local observables A(O), spacetime symmetry U and the vacuum  $\Omega$ .
- Wedge-algebras first (Lechner, Schroer): construct  $\mathcal{A}(W_{\mathrm{R}}),\,U,\Omega$  from wedge-local fields, then take the intersection

$$\mathcal{A}(D_{a,b}) = \mathit{U}(a)\mathcal{A}(\mathit{W}_{\mathrm{R}})\mathit{U}(a)^* \cap \mathit{U}(b)\mathcal{A}(\mathit{W}_{\mathrm{R}})'\mathit{U}(b)^*$$

- Need to construct wedge-local observables:  $\widetilde{\phi},\widetilde{\phi}'$  such that  $[e^{i\widetilde{\phi}(\xi)},e^{i\widetilde{\phi}'(\eta)}]=0.$
- two-particle S-matrix of the Bullough-Dodd model

$$S_{\varepsilon}(\theta) = \frac{\tanh\frac{1}{2}\left(\theta + \frac{2\pi i}{3}\right)}{\tanh\frac{1}{2}\left(\theta - \frac{2\pi i}{3}\right)} \cdot \frac{\tanh\frac{1}{2}\left(\theta - \frac{(1-\varepsilon)\pi}{3}\right)}{\tanh\frac{1}{2}\left(\theta + \frac{(1-\varepsilon)\pi i}{3}\right)} \frac{\tanh\frac{1}{2}\left(\theta - \frac{(1+\varepsilon)\pi i}{3}\right)}{\tanh\frac{1}{2}\left(\theta + \frac{(1+\varepsilon)\pi i}{3}\right)},$$

 $0 < \varepsilon < \frac{\pi}{6}$ .

# Standard wedge and double cone



## Wedge observables for the Bullough-Dodd S-matrix

• S-symmetric Fock space:  $\mathcal{H}_1 = L^2(\mathbb{R}, d\theta)$ ,  $\mathcal{H}_n = P_n \mathcal{H}_1^{\otimes n}$ , where  $P_n$  is the projection onto S-symmetric functions:

$$\Psi_n(\theta_1,\cdots,\theta_n)=S(\theta_{k+1}-\theta_k)\Psi_n(\theta_1,\cdots,\theta_{k+1},\theta_k,\cdots,\theta_n).$$

- S-symmetrized creation and annihilation operators (ZF-algebra):  $z^{\dagger}(\xi) = Pa^{\dagger}(\xi)P, z(\xi) = Pa(\xi)P, P = \bigoplus_{n} P_{n}.$
- Bound state operator:

$$(\chi_1(\xi))\Psi_1(\theta) := \sqrt{2\pi|R|}\xi\left(\theta + \frac{\pi i}{3}\right)\Psi_1\left(\theta - \frac{\pi i}{3}\right), R = \operatorname{Res}_{\zeta = \frac{2\pi i}{3}}S(\zeta)$$

•  $\chi(\xi) := \bigoplus \chi_n(\xi), \qquad \chi_n(\xi) = nP_n(\chi_1(\xi) \otimes \mathbb{1} \otimes \cdots \otimes \mathbb{1}) P_n$ 

Wedge-local fields (Lechner '03, Cadamuro-T. '16 arXiv:1502.01313)

$$\widetilde{\phi}(\xi) := \phi(\xi) + \chi(\xi) \qquad (= z^{\dagger}(\xi) + \chi(\xi) + z(\xi)),$$

$$\widetilde{\phi}'(\eta) := J\widetilde{\phi}(J_1\eta)J, \qquad \chi'(\eta) = J\chi(J_1\eta)J,$$

where J is the CPT operator.

# The one-particle bound state operator

- $\xi(\zeta)$ : analytic in  $\mathbb{R}+i(0,\pi)$ ,  $\overline{\xi(\theta+\pi i)}=\xi(\theta)$  ("real").
- $\mathcal{H}_1 = L^2(\mathbb{R})$
- $\mathscr{D}_0 = H^2(-\frac{\pi}{3},0)$ :  $L^2$ -analytic functions in  $\mathbb{R} + i(-\frac{\pi}{3},0)$
- $(\chi_1(\xi))\Psi_1(\theta) := \sqrt{2\pi|R|}\xi(\theta + \frac{\pi i}{3})\Psi_1(\theta \frac{\pi i}{3})$

What are self-adjoint extensions of  $\chi_1(\xi)$ ? (T. arXiv:1508.06402)

- Many extensions:  $n_{\pm}(\chi_1(\xi)) =$  "half of the zeros" of  $\xi$
- Choose  $\xi=\xi_0^2$ .  $\chi_1(\xi):=M_{\xi_+}^*\Delta_1^{\frac{1}{6}}M_{\xi_+} \text{ is self-adjoint and a natural extension of the above, } M_{\xi_+} \text{ is unitary, } (\Delta_1^{\frac{1}{6}}\Psi_1)(\theta)=\Psi_1(\theta-\frac{\pi i}{3}).$

# Strong commutativity

Note:  $\chi_1(\xi) = M_{\xi_+}^* \Delta_1^{\frac{1}{6}} M_{\xi_+}$  have different domains for different  $\xi$ .

$$\chi(\xi) := \bigoplus \chi_n(\xi), \qquad \chi_n(\xi) = nP_n(\chi_1(\xi) \otimes \mathbb{1} \otimes \cdots \otimes \mathbb{1}) P_n$$

 $\chi(\xi) + \chi'(\eta)$  is self-adjoint, hence...

- $\chi(\xi) + \chi'(\eta) + cN$  is self-adjoint.
  - $T(\xi,\eta):=\widetilde{\phi}(\xi)+\widetilde{\phi}'(\eta)+cN$  is self-adjoint by Kato-Rellich.
  - use Driessler-Fröhlich theorem (weak  $\Rightarrow$  strong commutativity:  $[e^{i\widetilde{\phi}(\xi)},e^{i\widetilde{\phi}'(\eta)}]=0)$  with  $T(\xi,\eta)$  as the reference operator.
  - ullet wedge-local observables ( $\Longrightarrow$  Haag-Kastler net)