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Constructing Haag-Kastler net from quantum field

e Wightman field ¢(x) (operator-valued distribution):
Poincaré/conformal covariance, positive energy, vacuum, locality.

e Haag-Kastler net {.A(O)} (family of von Neumann algebras):
Poincaré/conformal covariance, positive energy, vacuum, locality.

o A(0) = {?(") : supp f c 0}".

Strong commutativity of fields

Does locality of A, [A(O1), A(O2)] = {0} for O1, O> spacelike separated,
follow from locality of ¢, [¢(f), #(g)] = O for supp f,supp g spacelike
separated?

Yes, in some cases.

New examples:
e Ws-algebra with ¢ > 2 (2d CFT) joint with S. Carpi and W. Weiner

e Bullough-Dodd model (2d massive integrable QFT) joint with H.
Bostelmann and D. Cadamuro
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Strong commutativity

Nelson's counterexample

e L2(X), where X is the Riemann surface obtained by glueing two
cutted R2.
@ Z:the set of smooth functions whose supports do not contain 0

@ A be the derivative in x, B the derivative in y.

A and B commute on 2, while e™ and e*B are translations on X which
do not commute globally.

itB | etAeltB WeitB oitA
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When strong commutativity fails, there is a good reason.
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A sufficient condition for strong commutativity

Theorem (Driessler-Frohlich)

Let T be a positive self-adjoint operator, A, B symmetric operators on
Dom(T) such that for W, d € Dom(T)

o ||[AV|| < C|| TV, ||BVY| < C|TV|| for W € Dom(T).
o [(AV, T®) — (TW, Ad)| < C|| TV||||®]],
(BY, T®) — (TW,BO)| < C||TV[[||®].
o [(AU, TO) — (T, Ad)| < C|| T2V T2,
[(BY, TO) — (TW, Bd)| < C||T2V|||| T2|.
o (AU, BO) = (B, Ad)
Then A and B strongly commute.

The difficult part is estimating [H, A],[H, B] by T.
In Quantum Field Theory, there is a standard way: linear energy bound.
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Linear energy bound

@ ¢ a Wightman field: for each test function f, ¢(f) is a symmetric
operator.

o [¢(f),p(g)] =0 if supp f,supp g are spacelike separated (weak
locality).

e Hamiltonian: [H, ¢(f)] = i¢(f’) (translation covariance).

Linear energy bound
(AW < Cr||(H + re1)W|| for all f.

In this case, ||[[H, ¢(F)]V|| = [|o(f")V]| < Co||(H + rgz1)W|| and one can
apply the Driessler-Frohlich theorem with T = H (Glimm-Jaffe). Many
interacting scalar fields (including &?($)2 models) have a corresponding
Haag-Kastler net.

Does linear energy bound fails in interesting examples?
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Primary fields in 2d CFT

o ¢(z) = ¢nz~""9: primary (diffeomorphism covariant) field on S*
with conformal dimension d.

o L(z) =3 L,z~""2: Virasoro algebra (Lie algebra of Diff(S!)).

2

C
[Lm, L] = (m = n)Lmyn + Em(m = 1)0m+n.0,

[Lm7 gbn] = ((d - 1)m - n)¢m+n7

(Conformal) Hamiltonian H = Lo = L(1).

@ Bad news: A primary field with dimension d > 2 never satisfies linear
energy bound.

o Good news: for arbitrariy f, [¢(f9~1), L(f)] = 0.

Can L(f) be used for “local” Hamiltonian?
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Local energy bounds

Theorem
A primary field ¢ with conformal dimension d can satisfy at best the

following bound:
IgoW|| < ClI(Lo + r)?t1¥|

If this holds, then it satisfy the following local energy bound:

lo(F W < CII(L(F) + r1)?~tw|

for non-negative test function f.

Proof: we have U(7)d(g)U(7)* = ¢((y' oy 1)1 (g o y71)) for test
function f and v € Diff(S') and U(7)LoU(7)* = L(v oy 1) + 1.
v oy~1 = g must satisfy fé = 2m.

To extend this to general nonnegative f, we need the optimal estimate.
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Example: the WWs-algebra

A non-Lie algebraic extension of the Virasoro algebra:

C
[Lmy Ln] = (m — n)Lpmin + Em(m2 —1)0m+n0,
[Lma Wn] = (2m - n) Wintn,

(Wi, Wy| = 3 5| ——(m? = 4)(m* = 1)mmino

1
+ b2(m — n)Amin + 2—( —n)(2m? — mn +2n°* = 8) L,

The lowest weight representations are parametrized by (¢, h,w) € C.
When ¢ > 2, h=w =0, it is unitary (Carpi-T.-Weiner arXiv:1910.08334)

A conformal net be associated to it if the generating fields commute
strongly (strong locality of Vertex Operator Algebra,
Carpi-Kawahigashi-Longo-Weiner ‘18)
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https://arxiv.org/abs/1910.08334

@ unitary vacuum representation for ¢ > 2.
o W-field has conformal dimension 3.
o W satisfies the optimal bound ||W(f2)W|| < C|(L(f) + r¢1)?W]|.
o [W(f?),L(f)] = 0. = Driessler-Frahlich theorem with
T = (L(f) + L(g) + rr¢)? for nonnegative f, g.
e For general f, g, C*(Lyp) is a nice core.

The Ws-algebra for ¢ > 2 has an associated unitary simple VOA which is
strongly local. One can construct the corresponding conformal
Haag-Kastler net.

Lesson: avoid the condition on [H, A], [H, B].
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Wedge-local construction of massive 2d integrable QFT

e Haag-Kastler net ({.A(0)}, U,Q): local observables A(O), spacetime
symmetry U and the vacuum Q.

o Wedge-algebras first (Lechner, Schroer): construct A(Wg), U, Q2 from
wedge-local fields, then take the intersection

A(D,p) = U(a)A(Wr)U(a)* N U(b)A(WR) U(b)*

° Negd to construct wedge-local observables: gg, 5’ such that

[eid’(&)’ ei¢/(n)] — 0
@ two-particle S-matrix of the Bullough-Dodd model

tanh% (0 + %) tanh% (9 _ (1—36)7r) tanh % (0 B %)
tanh (6 20) tanh d (9 + 852 tanh § (9 + )

5(0)

T
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Standard wedge and double cone
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Wedge observables for the Bullough-Dodd S-matrix

o S-symmetric Fock space: Hy = L2(R, df), H, = P,,H‘?”, where P, is
the projection onto S-symmetric functions:

wn(el) e 70n) — S(9k+1 - Hk)wn(elv e 70k+179k5 e 7‘9n)-

@ S-symmetrized creation and annihilation operators (ZF-algebra):
21(€) = Pal(6)P, 2(€) = Pa(¢)P,P = @, Pa.
@ Bound state operator:
((E)W1(0) == varlRIE (0+ %) w1 (6 - 5) , R = Res_an S(C)
° X(&) =@ xal8),  xnl§) =nPr(a(@1®---01)P,
Wedge-local fields (Lechner ‘03, Cadamuro-T. ‘16 arXiv:1502.01313)

O(&) == (&) +x(&)  (=21(&) + x(&) + 2(¢)),
¢'(n) == Jo(hn)J, X' (n) = Ix(n)J,

where J is the CPT operator.
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https://arxiv.org/abs/1502.01313

The one-particle bound state operator

@ £(C): analytic in R+ i(0,7), £(60 + mi) = £(6) (“real”).
o Hi = L2(R)
o 99 = H*(—%,0): L-analytic functions in R + i(—%,0)

o (x1(§)V1(0) == 2x[RIE(0 + F)V1(0 — F)

What are self-adjoint extensions of x1(£)? (T.arXiv:1508.06402) ]

e Many extensions: ny(x1(£)) = "half of the zeros” of £
e Choose ¢ = £2.
1
x1(§) == Mg, A} Mg, is self-adjoint and a natural extension of the

1 ,
above, Mg, is unitary, (A} W1)(0) = V1(6 — F).
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Strong commutativity

1
Note: x1(§) = Mg, A} M, have different domains for different ¢.

X(©€) =P xal®),  xal&) =nPr(a(§)@1®---®1)P,

x(&) + X/(n) is self-adjoint, hence...
e Xx(&)+ X'(n) + cN is self-adjoint.
o T(&,1) = (&) + ¢ (n) + cN is self-adjoint by Kato-Rellich.
@ use Driessler-Frohlich theorem (weak = strong commutativity:
[e"g(f), e"&(”)] = 0) with T(&,n) as the reference operator.
e — wedge-local observables (= Haag-Kastler net)
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