
Digital Object Identifier (DOI) 10.1007/s00220-017-2969-8
Commun. Math. Phys. Communications in

Mathematical
Physics

Rotational KMS States and Type I Conformal Nets

Roberto Longo , Yoh Tanimoto

Dipartimento di Matematica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome,
Italy. E-mail: longo@mat.uniroma2.it; hoyt@mat.uniroma2.it

Received: 31 August 2016 / Accepted: 28 June 2017
© The Author(s) 2017

Abstract: We consider KMS states on a local conformal net on S1 with respect to
rotations. We prove that, if the conformal net is of type I, namely if it admits only type I
DHR representations, then the extremal KMS states are the Gibbs states in an irreducible
representation. Completely rational nets, theU(1)-current net, theVirasoro nets and their
finite tensor products are shown to be of type I. In the completely rational case, we also
give a direct proof that all factorial KMS states are Gibbs states.

1. Introduction

QFT,QuantumField Theory, was originally designed to describe finitelymany quantum,
relativistic particles, with particle creation/annihilation due to the interaction. In this
view, statistical mechanics aspects due to an infinitely many particle distribution are
absent. There are however extreme situations where QFT shows a thermodynamical
behaviour, a most important one being the black hole background Hawking radiation,
that lead to consider thermal states in QFT.

As is known, thermal equilibrium states at infinite volume in quantum statistical me-
chanics are characterized by the KMS condition for the dynamical flow, a one-parameter
automorphism group αt of the observable C∗-algebra A. A state ϕ, i.e. a positive linear
functional on A normalized with ϕ(1) = 1, satisfies the KMS condition w.r.t. τ at in-
verse temperature β > 0 if, for any x, y ∈ A, there is a function Fxy analytic in the strip
Sβ = {0 < Im z < β}, bounded and continuous on the closure Sβ , such that

Fxy(t) = ϕ
(
xαt (y)

)
,

Fxy(t + iβ) = ϕ
(
αt (y)x

)
.
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At finite volume,where the degrees of freedomare finite, KMS states areGibbs states:
ϕ(x) = Tr(e−βH x)/Tr(e−βH )with H the Hamiltonian; at infinite volume, Gibbs states
might not exist as e−βH is not necessarily trace class, yet the KMS condition is preserved
under the infinite volume limit.

From the mathematical viewpoint, KMS states are of most importance, being related
to the Tomita–Takesaki modular theory of von Neumann algebras. The KMS condition
measures, in a sense, the deviation of the stateϕ from the tracial propertyϕ(xy) = ϕ(yx).
In view of an infinite-dimensional quantum index theorem, one expects QFT to be the
underlying framework and the role of the (super)-trace to be played by (super)-KMS
states. The description of the KMS states then turns out a natural problem with different
motivations.

This paper concerns KMS states in low dimensional CFT, Conformal Quantum Field
Theory. On one hand the mathematical structure of CFT is much better understood,
with very interesting connections with other mathematical subjects, and in particular
the Operator Algebraic approach is powerful and deep. On the other hand, CFT is of
much interest in Physics in various situations, e.g. Critical Phenomena or AdS/CFT
correspondence.

CFT in (1+1)-dimensions is an extensionof the tensor product of twoone-dimensional
(one could say

( 1
2 + 1

2

)
-dimensional) CFT, so initially one has to study CFT on the real

line or on its compactification S1. The real line and the circle pictures are equivalent,
however, the physical Hamiltonian as QFT is the one associated to the translation flow in
the real line picture. The conformal Hamiltonian is the one associated with the rotation
flow in the circle picture and one can usually extract more easily information from the
conformal Hamiltonian since its spectrum is discrete.

An analysis of the KMS states w.r.t.the translation flow has been given in [CLTW12a,
CLTW12b]. The main result in [CLTW12a] is that, in the completely rational case, for
every fixed inverse temperature β > 0, there exists a uniqueKMS state w.r.t.translations,
the geometric KMS state. In the non-rational case, however, there might be uncountably
many KMS states. They are all described for the U (1)-current net and possibly all for
the Virasoro nets [CLTW12b].

The purpose of this paper is to investigate the KMS states with respect to the rotation
flow. In the rotational case, the first point to clarify is the choice of the C∗-algebra that
supports the rotational flow and on which the KMS state is to be defined. Such a choice
is natural and well known in the translation case: the C∗-algebra generated by the local
von Neumann algebras associated to bounded intervals of the real line. On the other
hand, the intervals of the circle do not form an inductive family and a more thoughtful
construction is necessary. A universal C∗-algebras was defined by Fredenhagen, and a
different construction is in [Fre90,GL92]. We shall explain in detail the construction as
we need it.

We shall first give a general, complete description in the completely rational case:
every extremal KMS state is a Gibbs state in some irreducible representation. We shall
make use of the structure of the universal C∗-algebra in this case [CCHW13]; a similar
description for super-KMS states in this case is due to Hillier [Hil15]. Rotational KMS
states in the completely rational case were also studied in [Iov15].

Our results are not restricted to the rational case. Indeed, we shall prove that any
extremal rotational KMS state on a large class of non-rational conformal nets is a Gibbs
state in some irreducible representation. The point is that, in general, the GNS represen-
tation with respect to a KMS state might be of type II or III and could not be decomposed
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uniquely into irreducible (type I) representations. We exclude this possibility for many
important conformal nets.

Actually, we prove that some conformal nets are of type I, namely they do not have
type II or III representations at all. Moreover, at the moment, no example of conformal
net not of type I is known. It is possible that diffeomorphism covariance implies the
type I property. One can understand how general the type I property is by the following.
Suppose A is a conformal net such that, for any given λ > 0, there exists at most
countably many irreducible representations ρ of A such that λ if the lowest eigenvalue
of the conformal Hamiltonian Lρ

0 of ρ. Then A is of type I. Many conformal nets are
then immediately shown to be of type I by this criterion. Among them are the Virasoro
nets and the U (1)-current net. Their finite tensor products can be shown to be of type I
by a separate argument.

This paper is organized as follows. In Sect. 2, we recall our operator-algebraic setting
for conformal field theory and introduce our main dynamical system, the universal C∗-
algebra. The fundamental examples of KMS state, the Gibbs states, are also introduced.
In Sect. 3, we present our classification result of KMS states. First we are concerned
with the completely rational case where the structure of the universal C∗-algebra is
completely understood, then we pass to the general case. We determine that an extremal
KMS state on a type I net is a Gibbs state, and prove that some well-known nets are of
type I. The problem of the possible occurrence of type II and III representations naturally
arises here and we make some observations. In Sect. 4, we discuss possible applications
of our results.

2. Preliminaries

2.1. Conformal nets and their representations. Let us recall our mathematical frame-
work for conformal field theory on the compactified one-dimensional spacetime S1. See
also [CLTW12a].

Let I be the set of open, connected, non-empty and non-dense subsets (intervals) of
the circle S1. A (local) Möbius covariant net is a triple (A, U,�) where A is a map
that assigns to each I ∈ I a von Neumann algebra A(I ) on a common Hilbert spaceH
and satisfies the following requirements:

1. (Isotony) If I1 ⊂ I2, then A(I1) ⊂ A(I2).
2. (Locality) If I1 ∩ I2 = ∅, then A(I1) and A(I2) commute.
3. (Möbius covariance) U is a strongly continuous unitary representation of theMöbius

group Möb = PSL(2, R) onH and for any g ∈ Möb and any interval I ∈ I we have

AdU (g)(A(I )) = A(gI ).

4. (Positivity of energy) The generator L0 of the rotation one-parameter subgroup is
positive (U (Rt ) = eit L0 with Rt the rotation by t).

5. (Vacuum vector) � is a unit vector of H, which is the unique (up to a scalar) U -
invariant vector; � cyclic for

⋃
I∈I A(I ).

From these assumptions, the following automatically follow, see [FJ96, Section 3]

6. (Additivity) If I ⊂ ⋃
κ Iκ , then A(I ) ⊂ ∨

κ A(Iκ), where
∨

κ Mκ denotes the von
Neumann algebra generated by {Mκ}.

7. (Reeh–Schlieder property) � is cyclic for each local algebra A(I ).
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A representation of aMöbius covariant netA is a family ρ = {ρI }I∈I , where ρI is a
unital ∗-representation ofA(I ), on a commonHilbert spaceHρ such thatρI2 |A(I1) = ρI1
for I1 ⊂ I2. We say that ρ is locally normal if each ρI is normal. We say ρ is factorial
if

∨
I∈I ρI (I ) is a factor.

AMöbius covariant net (A, U,�) is called a conformal net if the representationU of
theMöbius group extends to a strongly continuous projective representation of the group
Diff(S1) of orientation-preserving diffeomorphisms of S1, that is covariant, namely
AdU (g)(A(I )) = A(gI ), and AdU (g) acts trivially onA(I ) if g is acts identically on
I .

We say that the net A has the split property if for each pair I1, I2 of intervals such
that I1 ⊂ I2, there is a type I factor N (I1, I2) such that A(I1) ⊂ N (I1, I2) ⊂ A(I2).
The split property follows from the conformal covariance [MTW16].

2.2. The universal C∗-algebra. For agivenMöbius covariant netA, Fredenhagen [Fre90]
proposed to consider aC∗-algebra which is universal in the sense that any representation
of the net A can be regarded as a representation of this algebra. This notion has been
used widely in the study of superselection sectors in conformal field theories, and we
will take it as the algebra of our physical system.

Yet, there seems to be a confusion in the literature about the construction. The first
paper which introduced the universal C∗-algebra was [Fre90, Section 2]. We take a
slight variation of it: one considers the free ∗-algebra A0 generated by {A(I )}, modulo
the relations due to the inclusions A(I1) ⊂ A(I2), for I1, I2 ∈ I, I1 ⊂ I2. Clearly a
representation ρ of A defines a representation of A0, still denoted by ρ. For a given
x ∈ A0, one defines the seminorm by

sup
ρ∈


‖ρ(x)‖,

where 
 is the class of all representations. In the Zermelo–Fraenkel set theory with the
axiom of Choice (ZFC), 
 is not a set (an intuitive explanation would be the following:
on each set with cardinality larger or equal to the cardinality of the continuum, one can
define a structure as a Hilbert space. Hence the class of all Hilbert spaces is “as large as”
the class of all sets (with cardinality larger or equal to the cardinality of the continuum),
and would cause Russell’s paradox. A precise reason is that the sets in ZFC are only
those which are constructed by axiom schemas). However, the above supremum can be
justified in ZFC as follows:1 For a given x ∈ A0, we consider the following:

{s ∈ R : there is a representation ρ of A0 such that s = ‖ρ(x)‖} ,

which is a subset ofR in ZFCby the axiom schema of separation2 (see standard textbooks
on axiomatic set theory, e.g. [Sup60,Jec78]). Hence one can take the supremum and the
rest follows.

Another commonly cited paper [GL92, Section 8] has a problem, because one has to
take the direct sum parametrized by “all the representations”, which is definitely not a
set.

1 We owe this observation to Sebastiano Carpi.
2 The axiom schema of separation reads, for a given predicate F(x) with a variable x as follows:

(∃B)(∀x)(x ∈ B ↔ x ∈ A & F(x)). In words, it states that for a set A there is a subset B which con-
sists of all elements of A which satisfy F .
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Let us also provide a construction of the universal algebra which is closer to that of
[GL92]. We consider as before the free ∗-algebra A0 generated by {A(I )} modulo the
inclusion relations as above. We denote by ιI the embedding ofA(I ) intoA0. Let S0 be
the set of states (positive, unital linear functionals in the sense ϕ(x∗x) ≥ 0, x ∈ A0) ϕ

onA0. By definition ofA0, the GNS representation ρϕ ofA0 with respect to ϕ satisfies
for I ⊂ J

ρϕ ◦ ιJ |A(I ) = ρϕ ◦ ιI .

Note that, for any ϕ, an element x ∈ A(I ) is represented by a bounded operator ρϕ(x).
Indeed, x∗x ≤ ‖x‖21 in A(I ), hence ρϕ(x∗x) ≤ ‖x‖21 because ρϕ |A(I ) is a rep-
resentation of a von Neumann algebra and a representation of a C∗-algebra is order
preserving.

Now let x be an element of A0; then x is a finite sum
∑

k
∏

l xk,l of finite products
of elements of A(Ik,l), Ik,l ∈ I.

Let ρ be a representation of the net A. Then ρ gives rise to a representation of A0.
With x = ∑

k
∏

l xk,l as above, we have

‖ρ(x)‖ =
∥
∥∥∥
∥∥
ρ

⎛

⎝
∑

k

∏

l

xk,l

⎞

⎠

∥
∥∥∥
∥∥

=
∥
∥∥∥
∥∥

∑

k

∏

l

ρ(xk,l )

∥
∥∥∥
∥∥

≤
∑

k

∥∥
∥∥∥
∥

∏

l

ρ(xk,l )

∥∥
∥∥∥
∥

≤
∑

k

∏

l

‖ρ(xk,l )‖ ≤
∑

k

∏

l

‖xk,l‖,

where ‖ρ(xk,l)‖ is the norm of r(xk,l) in A(Ik,l). Thus ‖ρ(x)‖ ≤ Cx < ∞, where the
constant Cx does not depend on ρ.

We define a seminorm on A0 by

‖x‖ = sup
ϕ∈S0

‖ρϕ(x)‖,

which is finite since ‖x‖ ≤ Cx , and we take the C∗-completion (modulo null elements),
that we denote by C∗(A).

Let us remark that this construction avoids the set-theoretical problem: while “the
class of all representations” is too large to be a set, one can consider the set of all states,
because it is a subset of all maps from A0 into C with linearity, positivity and unitarity,
which can be formulated again by the axiom schema of separation.

Now, as C∗(A) is not defined through the supremum over all representations, we
have to check the universal property.

Proposition 2.1. For each representation {ρI } of the net A, there is a representation ρ

of the algebra C∗(A) constructed above such that ρI = ρ ◦ ιI .

Proof. {ρI } gives rise to a representation ρ of A0. In order to prove that ρ extends to
C∗(A)we have to show that ρ is continuous w.r.t.the norm of C∗(A), namely ‖ρ(x)‖ ≤
‖x‖, x ∈ A0. This follows because every representation of a C∗-algebra is direct sum
of cyclic representations, thus ‖ρ(x)‖ is the supremum of ρϕ(x) with ϕ running in a
family of states. ��

Now we may properly call C∗(A) the universal C∗-algebra of the netA. By the very
universal property, it is unique up to an isomorphism.

Actually,we aremostly interested in locally normal representations, hence it is natural
to take account of locally normal representations only. This has beendoneby [CCHW13]:
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we take ourC∗(A) and consider the locally normal universal representation ρln, which is
the direct sumof allGNS representations over all statesϕ onC∗(A) such thatρϕ is locally
normal. The universal property can be again proven by decomposing an arbitrary rep-
resentation into cyclic representations. We take the quotient C∗

ln(A) := C∗(A)/ ker ρln
and call it the locally normal universalC∗-algebra of the netA. The properties ofC∗

ln(A)

claimed in [CCHW13] can be restored without any modification, since the actual con-
struction is not needed in the proofs but only the universality is used.

If the net A is conformal, any locally normal representation ρ is covariant with
respect to the universal cover M̃öb of the Möbius group and one can take the unique
implementing operators from ρ(C∗

ln(A)), and indeed they are finite products of local

elements [DFK04, Theorem 6]. From this it follows that the action of M̃öb on C∗
ln(A)

is inner.

Proposition 2.2. Let A be a Möbius covariant net with the split property and ρ be a
locally normal representation of C∗

ln(A) with a cyclic vector �. Then the representation
space Hρ is separable.

Proof. As in [KLM01, Appendix C], we consider the set IQ of intervals with rational
end points, an intermediate type I factor N (I1, I2) between A(I1) ⊂ A(I2), I1, I2 ∈
IQ, I1 ⊂ I2 (we just choose one N (I1, I2) for each pair I1 ⊂ I2, not necessarily
the canonical choice of [DL84]), let K(I1, I2) be the algebra of compact operators in
N (I1, I2) (under the identificationN (I1, I2) ∼= B(H)) and denote by A the C∗-algebra
generated by {K(I1, I2)}. Note that A is a separable C∗-algebra.

As ρ is locally normal, for each I we have ρ(A(I )) ⊂ ρ(A)′′. Indeed, if I1 ⊂ I2 ⊂ I ,
I1, I2 ∈ IQ, then K(I1, I2) ⊂ A(I ) and as I1 tends to I , any element in A(I ) can be
approximated from A in the σ -weak topology. Then the claim follows from the local
normality of ρ, and it also follows that ρ(C∗

ln(A)) ⊂ ρ(A)′′.
Now, by assumption there is a cyclic vector � for ρ(C∗

ln(A)), hence it is also cyclic
for ρ(A)′′. As ρ(A) is a C∗-algebra, ρ(A)′′ is the closure of ρ(A) in the strong operator
topology and we have ρ(A)� = ρ(A)′′� = Hρ . As ρ(A) is separable, Hρ is also
separable. ��
Remark 2.3. The converse of Prop. 2.2 is also true. If A is a Möbius covariant net and
ρ a representation of C∗

ln(A) with separable Hρ , then ρ is locally normal. Indeed the
A(I )’s are type III factors, and every representation of a σ -finite type III factor on a
separable Hilbert space is normal [Tak02, TheoremV.5.1], while the local algebrasA(I )
are automatically σ -finite by the Reeh–Schlieder property: the vacuum state is faithful
[Tak02, Proposition II.3.9].

2.3. KMS states with respect to rotations, Gibbs states. Let A be a C∗-algebra and α a
one-parameter automorphism group of A (not necessarily pointwise norm-continuous).

A KMS state of A w.r.t. α at inverse temperature β ∈ R+ is a state ϕ on A such that
for any pair of elements x, y ∈ A there is a bounded analytic function Fxy onR+ i(0, β),
which is continuous on R + i[0, β], such that

Fxy(t) = ϕ(αt (x)y), Fxy(t + iβ) = ϕ(yαt (x)).

Given a conformal net A, we are interested in states on the universal C∗-algebra
C∗(A) w.r.t. the rotation one-parameter automorphism group. Any state ψ on C∗(A)

gives rise to a GNS representation ρψ of C∗(A), whose restriction to {A(I )} (i.e.
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{ρψιI }I∈I ) is a representation of the net. We say that ψ is locally normal if its re-
striction to each local algebra A(I ) is normal. We do not know whether this implies
in general that the GNS representation ρψ is locally normal. Yet, for KMS states, we
have the following Lemmas. The proof of the first one is essentially the same as that of
[TW73, Theorem 1], one should only note that the funnel structure is not necessary.

Lemma 2.4. Let A be a C∗-algebra which contains a σ -finite properly infinite von
Neumann algebra M, and ϕ a state on A such that the GNS vector � (for the GNS
representation ρϕ with respect to ϕ) is separating for ρϕ(A)′′. Then ϕ|M is normal and
ρϕ |M is normal.

Proof. As � is separating for ρϕ(A)′′, ρϕ(A)′′ is σ -finite, hence ρϕ(M)′′ is σ -finite as
well. Then the restriction ρϕ to a properly infinite algebraM is normal [Tak02, Theorem
V.5.1]. ��
Lemma 2.5. Let ϕ be a KMS state on C∗(A) with respect to the rotation flow α. Then
ϕ is locally normal and its GNS representation ρϕ is locally normal.

Proof. The local algebras in the vacuum representation have a separating vector �,
hence they are σ -finite, and are known to be of type III1 [GL96, Proposition 1.2]. Now
the claim follows from Lemma 2.4 and the fact that the GNS vector � is separating
for ρϕ(A)′′ for any KMS state ϕ (see [BR97, Lemma 5.3.8 and Corollary 5.3.9]. The
pointwise norm-continuity assumption of α is not necessary for this result). ��

Thanks to these Lemmas, we do not have to distinguish C∗(A) and C∗
ln(A) as long

as we are interested in KMS states.

Remark 2.6. In the real line case, the GNS representation of every locally normal state
(i.e. normal on each local algebra) is locally normal. To see this, let ϕ be a locally normal

state of the quasi-local C∗-algebra A ≡ ⋃
I�RA(I )

‖·‖
with GNS triple (H, ρ,�) and

fix an interval I ∈ I. The restriction of ρI toHI ≡ ρ(A(I ))� is normal as it is the GNS
representation of a normal state. For any larger interval Ĩ ⊃ I we have ρI = ρ Ĩ

∣∣A(I ), so
ρI is normal on H Ĩ too. Since the H Ĩ ’s form an inductive family whose union is dense
inH by the cyclicity of �, it follows that ρI is normal on H.

Let ρ be a locally normal, rotation-covariant, irreducible representation ofA in which
e−βLρ

0 is trace class for β > 0, where Lρ
0 is the generator of the one-parameter unitary

group of rotations. This is a typical situation that holds true in most important cases.
Then one can define the following Gibbs state on C∗(A):

ϕρ,β(x) = Tr
(
e−βLρ

0 ρ(x)
)

Tr(e−βLρ
0 )

. (1)

ϕρ,β is a (locally normal) rotational β-KMS state of C∗(A). Thus we have a natural
class of KMS states. The relation between the KMS condition and the Gibbs states at the
given temperature can be found in [Haa96]. An early consideration of rotational Gibbs
states can be found in [Sch94].

For some important class of nets, the structure of the irreducible representations is
well understood. This is the case, in particular, for the class of completely rational nets,
which we will consider in Sect. 3.1. In such cases, we shall see that all extremal KMS
states are Gibbs states as in (1). Our main question is whether this is always true. We
show this to be true under a mild condition in Sect. 3.2.3, but the question remains open
in general.
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2.4. Energy expectation value. The stress energy density in a Gibbs state can be com-
puted through the character formula. For a test function f with support in an interval
I ∈ I, the stress energy tensor T in the vacuum representation, smoothed with f , is an
unbounded operator T ( f ) affiliated to A(I ). If ρ is an irreducible representation of A,
wemay define Tρ( f ) = ρ(T ( f )), making use that bounded functions, e.g. the resolvent,
of T ( f ) belong to A(I ). The expectation value of the stress-energy tensor in the Gibbs
state is then

ϕρ,β(T ( f )) =
Tr

(
e−βLρ

0 Tρ( f )
)

Tr
(

e−βLρ
0

) .

This is indeed finite if, for example, there is ε > 0 such that Tr(e−(β−ε)Lρ
0 ) is finite

because the polynomial energy bound holds for the Virasoro algebra [CW05, Lemma
4.1] (which implies that e−εLρ

0 T ( f ) is bounded). This condition is quite generic.
Furthermore, in such a case, one can compute this value by expanding Tρ( f ) =∑
fn Lρ

n , where the fn = 1
2π

∫ π

−π
f (eit )e−int dt are the Fourier modes of f . As Lρ

n ,
n �= 0 changes the energy eigenvalues while Tr can be computed by expanding along a
basis of Lρ

0 eigenvectors, all the contributions from Lρ
n , n �= 0 drop out and we have

ϕρ,β(T ( f )) = f0
Tr

(
e−βLρ

0 Lρ
0

)

Tr
(

e−βLρ
0

) = f0
−dχρ(e−s)/ds|s=β

χρ(e−β)

= − 1

2π

∫ π

−π

f (eit )dt · dχρ(e−s)/ds

χρ(e−s)

∣∣∣
s=β

,

where χρ(q) = Tr q Lρ
0 is known as the character of the representation ρ. Thus

ϕρ,β(T (1)) = − 1

2π

dχρ(e−s)/ds

χρ(e−s)

∣∣
∣
s=β

= q

2π

dχρ(q)/dq

χρ(q)

∣
∣∣
q=e−β

= q

2π

d log(χρ(q))

dq

∣
∣∣
q=e−β

.

The characters for some specific examples can be found in the literature, e.g. [KR87].

3. Classification of KMS States

3.1. Completely rational case. In this section we determine all KMS states in the com-
pletely rational case.

LetA be aMöbius covariant net on S1. Following [KLM01], one defines theμ-index
μA of A as the Jones index of the 4-interval inclusion:

μA ≡ [
(A(I1) ∨ A(I3))

′ : A(I2) ∨ A(I4)
]
,

where Ik ∈ I, k = 1...4, are disjoint intervals in S1 whose union is dense in S1 and
Ik, Ik+2, k = 1, 2, have no common boundary point.

A is said to be completely rational if μA < ∞ andA satisfies the split property and
the strong additivity property [KLM01]. The split property follows from the trace class
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property of e−βL0 , for all β > 0 in the vacuum representation [BDL07]; it holds auto-
matically for a conformal net [MTW16]. The strong additivity property automatically
holds for a conformal net with the split property and finite μ-index [LX04]. Thus, for a
local conformal net A, the only condition for A to be completely rational is μA < ∞.

If A is completely rational, then

μA =
∑

k

d(ρk)
2

where {ρk} is a complete family of irreducible inequivalent representations of A and
d(ρk) is the dimension of ρk . It follows that A has only finitely many irreducible rep-
resentations, all of them have finite index and every representation is a direct sum of
irreducible finite index representations [KLM01].

As shown in [CCHW13], the locally normal universal C∗-algebra C∗
ln(A) takes a

particularly simple form in the completely rational case.

Theorem 3.1 [CCHW13]. If A is a completely rational net, then C∗
ln(A) is isomorphic

to a finite direct sum of type I factors:

C∗
ln(A) = F0 ⊕ F1 ⊕ · · · ⊕ Fn,

with Fk = B(Hk), where Hk , k = 0, 1, . . . n corresponds to inequivalent irreducible
representations of the net A. In particular, C∗

ln(A) is a von Neumann algebra and its
center is finite dimensional.

The minimal central projections ek of C∗
ln(A) are thus in one-to-one correspondence

with the irreducible representations ρk of C∗
ln(A):

ρk(x) = xek, x ∈ C∗
ln(A), (2)

say with ρ0 the vacuum representation.
Recall that, as a completely rational net, it admits only finitely many irreducible rep-

resentations (up to equivalence), so any representation is Möbius covariant (see [GL92,
Corollary 7.2], and the modification to the circle is straightforward). WithU0 the unitary
representation of Möb associated with the net A, the adjoint action of U0 on the net A
gives, by the universal property of C∗

ln(A), an automorphism group of C∗
ln(A) that acts

trivially on the center. In view of Theorem 3.1,

U = U0 ⊕ · · · ⊕ Un,

with Uk the covariance unitary representation of M̃öb in the representation ρk .
Let now ϕ be an extremal β-KMS state of C∗

ln(A) w.r.t. the rotation one-parameter
group αt . As the GNS representation of ϕ acts on a separable Hilbert space by Propo-
sition 2.2 and Lemma 2.5, it must either be faithful on or annihilate the components
B(Hk). Being extremal, the support of ϕ is ek for some k, namely ϕ(e j ) = δ jk . Thus ϕ

can be viewed as a normal state on B(Hk) and we have:

Theorem 3.2. LetA be a completely rational net as above, and ϕ an extremal, rotational
β-KMS state. Then there exists an irreducible representation ρ of A such that

ϕ(x) = Tr
(
e−βLρ

0 ρ(x)
)

Tr(e−βLρ
0 )

, x ∈ C∗
ln(A),

In particular e−βLρ
0 is trace class.
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Proof. By the above discussion, ρ is equal to a ρk given in (2), so the proof follows by
the following lemma, which is essentially known. ��
Lemma 3.3. Let R = B(H) be a type I factor, ϑ a one-parameter automorphism group,
and ϕ a normal β-KMS state of R w.r.t. ϑ . Then there exists a positive, non-singular,
selfadjoint operator H on H (thus affiliated to R) such that

ϕ(x) = Tr
(
e−βH x

)

Tr(e−βH )
, x ∈ R.

We have Tr(e−βH ) < ∞ and ϑt (x) = Adeit H (x), x ∈ R, t ∈ R.

Proof. SinceR is a factor, ϕ is faithful due to the KMS property: this follows from the
faithfulness of the GNS representation and the fact that the GNS vector is separating for
a KMS state [BR97, Lemma 5.3.8 and Corollary 5.3.9]. As R is a type I factor, there
exists a positive, non-singular trace class operator T with trace one [BR97, Proposition
2.4.3] such that ϕ(x) = Tr(T x). We may write T = e−βH with a self-adjoint operator
H and, as T is bounded, the spectrum of H is bounded below. By adding a scalar, we
may assume that H is positive, but then the trace Tr(e−βH ) is no longer 1, so we have

the formula ϕ(x) = Tr(e−βH x)

Tr(e−βH )
.

Then t �→ Ade−iβt H is the modular group of ϕ [BR97, Example 2.5.16]. Therefore,
we have Adeit H = ϑt as there is a unique one-parameter automorphism group which
satisfies the KMS condition with respect to the state ϕ [Tak03a, Theorem VIII.1.2]. ��

3.2. General case. Let A be a Möbius covariant net. We say that a (locally normal)
representation ρ of A is of type I if ρ(C∗(A))′′ is a type I von Neumann algebra.

3.2.1. Factorial decomposition

Proposition 3.4. Let A be a Möbius covariant net with the split property and ϕ a β-
KMS state on C∗(A) with respect to the rotation flow α. Then ϕ can be decomposed a.e.
uniquely as follows:

ϕ =
∫ ⊕

X
dμ(λ) ϕλ,

where the GNS representation ρϕλ with respect to ϕλ is factorial. If ρϕλ is type I, then

ϕλ(x) = Tr
(
e−βLλ

0ρϕλ(x)
)

Tr(e−βLλ
0 )

,

where Lλ
0 is the conformal Hamiltonian in the representation ρϕλ .

Proof. By Lemma 2.5, the GNS representation ρϕ is locally normal, and by Proposi-
tion 2.2 ρϕ acts on a separable Hilbert space. By considering the central disintegration of
ρϕ(C∗(A))′′, we also obtain the disintegration of the representation of ρ|A, with A any
separable, suitably chosen C∗-subalgebra of C∗(A), by a similar argument as [KLM01,
Proposition 56] (see also [Dix77, Theorem 8.4.2], [Tak02, Theorem IV.8.21 and Section
V.1]):

ρϕ |A =
∫

X
dμ(λ) ρϕλ |A
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and ρϕλ are locally normal for almost all λ. According to this disintegration, the GNS
vector �ϕ disintegrates

�ϕ =
∫

X
dμ(λ)�ϕλ

and the state 〈�, ·�〉onρϕ(C∗(A))′′ gets the disintegration [Tak02, Proposition IV.8.34]:

ϕ(x) = 〈�ϕ, ρϕ(x)�ϕ〉 =
∫ ⊕

X
dμ(λ) 〈�ϕλ, ρϕ(x)λ�ϕλ〉.

Hence we can define ϕλ(x) = 〈�ϕλ, ρϕ(x)λ�ϕλ〉 first for x ∈ A and then extend it to
C∗(A) by local normality, which is the first statement. ϕλ are again KMS states with
respect to rotations for almost all λ, by considering the disintegration of the modular
operator.

If ρϕλ is of type I, then it follows that the state ϕλ is given by the Gibbs state by
Lemma 3.3. ��

3.2.2. General remarks If we assume conformal covariance, type III representations do
not occur since the rotations are inner. Furthermore, for type II states on a conformal
net, a Gibbs-like formula is valid by replacing Tr by the unique tracial weight τ , c.f.
Lemma 3.3.

Lemma 3.5. If A is conformal, then for any KMS states ϕ, ρϕ(C∗(A))′′ contains no
type III component.

Proof. As we saw in Sect. 2.2, M̃öb, especially the rotations, is inner. Thus, the modular
automorphisms of ρϕ(C∗(A))′′ with respect toϕ are inner, hence the ρϕ(C∗(A))′′ cannot
have a type III component (see [Tak02,Theorem IV.8.21, SectionV.1], [Tak03a,Theorem
VIII.3.14]). ��

Let A be a conformal net and ρ a representation of A on Hρ . As we recalled in
Sect. 2.2, by conformal covariance, there is a canonical inner implementation Uρ on

Hρ with Uρ(g) ∈ ρ(C∗(A))′′ of M̃öb. The generator of the associated unitary rotation
one-parameter subgroup of Uρ is positive [Wei06], which we denote by Lρ

0 and we call
it the conformal Hamiltonian of ρ. Of course, in case ρ is irreducible, this gives the usual
definition of the conformal Hamiltonian.

Lemma 3.6. Let A be a conformal net and ϕ an extremal, rotational β-KMS state.
Suppose the GNS representation ρϕ of ϕ is of type II, namely ρϕ(C∗(A))′′ is a type
II factor.3 Let τ denote the semi-finite trace of ρϕ(C∗(A))′′. Then there is a positive
self-adjoint operator Lρ

0 affiliated to ρϕ(C∗(A))′′ as above and we obtain

ϕ(x) = τ
(
e−βLρ

0 ρ(x)
)

τ(e−βLρ
0 )

, x ∈ C∗(A),

In particular τ(e−βL
ρλ
0 ) < ∞.

3 In this case, it would be necessarily type II∞ as the local algebras are of type III.
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Proof. Set M ≡ ρϕ(C∗(A))′′. By the KMS property, the GNS vector ξϕ is cyclic

and separating for M and Ade−iβt L
ρλ
0 is the modular group of M w.r.t. to the state

ϕ̄ ≡ 〈ξϕ, · ξϕ〉 on M. By the Radon-Nikodym theorem, ϕ̄ = τ(h·) with h a positive
operator onHρ affiliated toM, and τ(h) = 1. The modular group of ϕ̄ is then equal to

Adhit . Then h is proportional to e−βL
ρλ
0 , thus h = e−βL

ρλ
0 /τ(e−βL

ρλ
0 ) and the Lemma

follows. ��

3.2.3. Nets of type I We say that a Möbius covariant net is of type I if it admits only
locally normal representations ρ such that ρ(C∗(A))′′ is of type I.

Some important conformal nets turn out to be type I, therefore, any extremal KMS
state is the Gibbs state in one of the irreducible representations.

Theorem 3.7. If a conformal net A is of type I, then any rotational β-KMS state ϕ is a
convex combination (integration) of the Gibbs states in irreducible representations.

Proof. Immediate from Lemma 3.3 and Proposition 3.4 (note that the split property
follows from conformal covariance [MTW16]). ��

As we recalled in Sect. 2.2, for a conformal net the representatives of M̃öb are
inner and unique, hence any locally normal representation ρ of the net (or the universal
algebra C∗(A)) is M̃öb-covariant. The implementation is unique if we assume that the
representatives belong to ρ(C∗(A))′′. With this unique inner implementation, the lowest
eigenvalue l0 of the generator Lρ

0 of rotations is non-negative [Wei06, Theorem 3.8].

Proposition 3.8. Let A be a conformal net and assume that there are only countably
many equivalence classes of locally normal irreducible representations with a specified
lowest eigenvalue of the generator of rotations. Then A is of type I.

Proof. By local normality and its disintegration restricted to A as in Proposition 3.4,
it is enough to treat factorial representations. Let us consider a locally normal factorial
representation ρ ofA. The implementation of the 2π -rotation commutes with any local
element, hence with ρ(C∗(A))′′, on the other hand, it belongs to ρ(C∗(A))′′ by our
choice that it is inner. When ρ(C∗(A))′′ is a factor, the implementation is then a scalar.
This applies to any integer-multiple of 2π , hence the spectrum of Lρ

0 must be included
in N0 + l0, where l0 ≥ 0, and N0 is the set of non-negative integers.

Now, we consider any disintegration of ρ|A into irreducible representations where
A is the separable C∗-subalgebra of C∗(A) as in Proposition 3.4 (this is possible, by
choosing a maximally abelian algebra in ρ(C∗(A))′ because we have the split property:
see [KLM01, Proposition 56] for disintegration and [MTW16] for the implication of the
split property from conformal covariance):

ρA =
∫ ⊕

X
ρλdμ(λ),

where X is a certain index set. Let us assume, by contradiction, that ρ(C∗(A))′′ is a factor
of not type I. Then by [KLM01, Proposition 57, Corollary 58], for a fixed λ, ρλ is locally
normal, hence extends to C∗(A) and must be inequivalent to ρλ′ for almost all λ′, and
there are uncountably many such λ′’s. But on the other hand, the inner implementation
of M̃öb also disintegrates and the lowest eigenvalue of L0 remains in N0 + l0 for each λ.
By assumption, there are only countably many such inequivalent representations, which
contradicts the above uncountable family of representations. This concludes the proof
that ρ is of type I. ��
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We have two basic examples with this property.

Example 3.9. The U(1)-current net AU(1): In two-dimensional spacetime, the naively
definedmassless freefield is plaguedby the infraredproblem.Yet it is possible to consider
its derivative. Its chiral components are called the U(1)-current. See [BMT88,Lon08]
for its operator-algebraic formulation.

The algebra is generated by the Fourier modes {Jn} of the current which satisfy the
following relations [Jm, Jn] = mδm+n,0. This algebra has a distinguished representation
with the vacuum vector � such that Jm� = 0 for m ≥ 0, J ∗

m = J−m . For a smooth

function f on S1, one defines the Weyl operator W ( f ) by W ( f ) = exp
(

i
∑

m f̂m Jm

)
,

where f̂m are the Fourier components of f (z) = ∑
m f̂meimz .

One defines the net by AU(1)(I ) = {W ( f ) : supp f ⊂ I }′′. It turns out that this net
is conformally covariant. The generator of rotations is given by the Sugawara formula

L0 = 1

2
J0 +

∑

m>0

J−m Jm .

For each q ≥ 0, there are irreducible representations of the net AU(1) given by the state
�q such that Jm� = 0 for m > 0 and J0�q = q� [BMT88].

It can be proved that they are indeed all irreducible locally normal representations
[CW16]. By their local energy bounds, {Jm} can be also defined in any locally nor-
mal representation. In each ρ of these representations, Lρ

0 is again given by the above

Sugawara formula and the lowest eigenvalue is q2

2 . Namely, only two values q and −q
share the same lowest energy. By Proposition 3.8 and Theorem 3.7, all KMS states with
respect to rotations are a direct integral of Gibbs states.

We also note that the regular KMS states (namely, those in whose GNS representation
the generators {Jm} can be defined) have been classified by [BMT88].

Example 3.10. Virasoro nets Virc: the net generated by the conformal covariance itself
is called the Virasoro net. More precisely, one considers the group Diff(S1) and its
projective unitary representations. There is a natural action of rotations, and if this
action is also implemented by unitary operators and the generator is positive, then we
call such a projective representation of Diff(S1) a positive-energy representation. Such
positive-energy irreducible representations have been classified by the so-called central
charge c > 0 and the lowest energy h ≥ 0 [GKO86,KR87,GW85,NS15]. The possible

values of c and h are: c = 1 − 6
m(m+1) and h = ((m+1)r−ms)2−1

4m(m+1) , where m = 2, 3, 4, . . .
and r = 1, 2, 3, . . . , m − 1 and s = 1, 2, 3, . . . , r , or c ≥ 1 and h ≥ 0.

For each such a positive-energy representation πc with h = 0, one can construct the
corresponding Virasoro net by Virc(I ) = {πc(g) : supp g ⊂ I }′′ and it constitutes a
conformal net (see [Car04]). If c < 1, Virc is completely rational [KL04].

Let us consider c ≥ 1. To any irreducible (hence type I) locally normal irreducible
representation of Virc there corresponds a positive-energy representation of Diff(S1)

with c ≥ 1 and h ≥ 0 (see [Car04, Proposition 2.1]). Conversely, for the values c ≥
1, h ≥ 0 there is a corresponding locally normal irreducible representation πc

h of Virc
[BSM90][Car04, Section 2.4][Wei16].

Therefore, our Proposition 3.8 applies to any value of c ≥ 1 and obtain that any KMS
state on Virc whose GNS representation is factorial is the Gibbs state corresponding to
the value h, and all such h ≥ 0 are possible, the latter can be read off from the character
formula, e.g. [KR87].
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For a Möbius covariant net (A, U,�), one can naturally consider the tensor product
(A ⊗ A, U ⊗ U,� ⊗ �). Any finite tensor product of these nets has again the same
property. Indeed we have the following.

Proposition 3.11. A Möbius covariant net with the split property A is of type I if and
only if 4 any factorial locally normal representation of A ⊗ A is of the form ρ1 ⊗ ρ2.

Proof. Suppose thatA has only locally normal type I representations. Take a locally nor-
mal factorial representation ρ̃ ofA⊗A.We show that the centerZ (∨

I∈I ρ̃(A(I ) ⊗ C1)
)

is trivial. Indeed, on one hand we have
∨

I∈I ρ̃(A(I )⊗C1) ⊂ ρ̃(C∗(A⊗A))′′. On the
other hand, let us take

p ∈ Z
(

∨

I∈I
ρ̃(A(I ) ⊗ C1)

)

=
(

∨

I∈I
ρ̃(A(I ) ⊗ C1)

)

∩
(

∨

I∈I
ρ̃(A(I ) ⊗ C1)

)′
.

Byadditivity of the net and local normality of ρ̃, we have p ∈ ∨
I∈I,|I |< π

2
ρ̃(A(I )⊗C1).

Any element in the latter algebra commutes with ρ̃(C1 ⊗ A(Iκ)), where |Iκ | < π
2 ,

because for any pair of two intervals I1, I2 shorter than π
2 , one can find an interval

which contains both, and it follows that the images ρ̃(A(I1) ⊗ C1) and ρ̃(C1⊗A(I2))
commute. Again by additivity, p commutes with ρ̃(C1⊗A(I )) for any I and, therefore,
p ∈ ρ̃(C∗(A⊗A))′. Namely, p ∈ Z (∨

I∈I ρ̃(A(I ) ⊗ C1)
) ⊂ Z(ρ̃(C∗(A⊗A))′′) =

C1 as ρ̃ is factorial. This implies that the restriction of ρ̃ toA⊗ C1 is already factorial,
and by assumption, it is of type I, namely its image is of the form B(H1) ⊗ C1, where
Hρ̃ = H1 ⊗ H2. As the image

∨
I∈I ρ̃(C1 ⊗ A(I )) commutes with

∨
I∈I ρ̃(A(I ) ⊗

C1) = B(H1) ⊗ C1 by the same argument as above, we have
∨

I∈I ρ̃(C1 ⊗ A(I )) ⊂
C1 ⊗ B(H2). In other words, ρ̃ is a product representation of the form ρ1 ⊗ ρ2.

To show the converse under the split property, we take a non-type I factorial represen-
tation ρ ofA and construct ρ̄(x) = Jρρ(J x J )Jρ , where Jρ is the modular conjugation
of ρ(A)′′ with respect to a certain faithful normal weight and J is an antilinear conjuga-
tion which maps local algebras to local algebras, for example, the modular conjugation
of an interval with respect to the vacuum state. We define ρ̃(x ⊗ y) = ρ(x)ρ̄(y). We
first show that this is a locally normal representation. By the split property, A(I1) is
included in a type I factor N (I1, I2), where I1 ⊂ I2. As ρ is locally normal, the image
ρ̃(N (I1, I2) ⊗ C1) = ρ(N (I1, I2)) is again a type I factor. The image ρ̃(C ⊗ A(I1))
commutes with this, therefore, ρ̃ is locally a tensor product representation, and therefore,
locally normal. The consistency condition for ρ̃ is obvious, hence it is a locally normal
representation ofA⊗A. Yet its image is B(Hρ), and its restriction is not of type I, thus
ρ̃ cannot be a product representation. ��

3.3. Remarks on non-type I representations: open problems. As we saw, important
classes of conformal nets are of type I. It is an open problem whether there exists a
Möbius covariant net not of type I. The situation is quite different from the case of nets
on the real line, where any translation KMS state on the quasilocal algebra is of type
III1 [CLTW12a] or of nets on the Minkowski space where one can have any type of
representation [DS82,DS83,BD84,DFG84].

One concrete open case is the cyclic orbifold [LX04]. Take a conformal netA, make
the tensor product A ⊗ A and consider the fixed point net (A ⊗ A)flip with respect to

4 Actually, the split property is not necessary for the “only if” part.
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the flip between two components. If A is completely rational, then (A ⊗ A)flip is again
completely rational and all the sectors can be explicitly written in terms of sectors ofA
and twisted sectors. On the other hand, if A is not completely rational, then we do not
have a complete classification of sectors of (A⊗A)flip. In particular, we are not able to
exclude the possibility of non-type I representations, although all known sectors are of
type I.

Another candidate for a net with non-type I representations would be an infinite
tensor product. Recall that (see e.g. [CW05, Section 6]) for a given countable family of
Möbius covariant nets {(Ak, Uk,�k)}, one can define a Möbius covariant net by

A(I ) :=
⊗

Ak(I ), U (g) :=
⊗

Uk(g),

with respect to the reference vector � = ⊗
�k (see e.g. [Tak03b, Section XIV.1]). Let

us assume that each Ak admits a representation ρk which is converging to the vacuum
representation in some sense. Then one may hope that the infinite tensor product of
representations

⊗
ρk could make sense. Even if each ρk is of type I, the resulting

product could be of non type I. However, this discussion depends on the nature of the
sequence ρk and a detailed analysis is needed.

We note that the type I property for rotational β-KMS states can be characterized
by a compactness criterion similar to the Haag–Swieca compactness condition (and the
Buchholz–Wichmann nuclearity condition, see [Haa96]).

Proposition 3.12. Let A be a local conformal net and ϕ a rotational, factorial β-KMS

state of C∗(A). Then ρ ≡ ρϕ is of type I if and only if the closure of e− β
4 Lρ

0 ρϕ(C∗(A)1)�

is compact in the norm topology of H for some, hence for every, non-zero vector � of
the GNS Hilbert space H of ϕ. Here the suffix 1 denotes the unit ball.

In this case e−sLρ
0 ρϕ(C∗(A)1)� is compact for every s > 0, � ∈ H.

Proof. LetM be theweak closure ofρ(C∗(A)). By assumptionM is a factor.Moreover,
M1� = C∗(A)1� by Kaplansky density theorem. Note that e−sLρ

0 ∈ M for s > 0.
Let T (s)

� : M → H be the map x �→ e−sLρ
0 x�. Clearly T (s)

� is compact if and only if

e−sLρ
0M1� is compact. Now if e−sLρ

0M1� compact, then e−sLρ
0M1� ′ is compact for

any other vector � ′ in the linear span of {xx ′� : x ∈ M, x ′ ∈ M′}, which is a dense
subspace of H as M is a factor. Since ‖T�1 − T�2‖ = ‖T�1−�2‖ ≤ ‖e−sLρ

0 ‖ ‖�1 −
�2‖ ≤ ‖�1−�2‖ (‖e−sLρ

0 ‖ ≤ 1 as Lρ
0 is positive), T (s)

� ′ is then compact for all� ′ ∈ H.
Assume first that M is of type I. As M is in the standard form, we may identify

M � B(K) ⊗ C1 where H = K ⊗ K, and further H with the Hilbert space HS(K) of
the Hilbert-Schmidt operators, so every vector � ∈ H with a Hilbert-Schmidt operator
S. In this identification, an element x ∈ M acts by left multiplication on HS(K). Thus
e−sLρ

0M1� is identified with e−sLρ
0 B(K)1S, whose closure is compact because e−βLρ

0

is of trace class (Lemma 3.3), hence e−sLρ
0 is compact for any s > 0 hence for s = β

4 ,

thus x ∈ B(K) �→ e− β
4 Lρ

0 x S is compact (c.f. [BDL90]).

On the other hand, assume now that T
(

β
4 )

� is compact for some non-zero �, then by

the above argument T
(

β
4 )

�′ is compact for any vector �′. As the rotation one-parameter

group is inner, themodular operator� ofMw.r.t.� is given by� = e−βLρ
0 JeβLρ

0 J with

J the modular conjugation of (M,�). Thus the map x ∈ M �→ e− β
4 Lρ

0 Je
β
4 Lρ

0 J x� =
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T
(

β
4 )

�′ (x), with �′ = Je
β
4 Lρ

0 J� is compact (� belongs to the domain of JesLρ
0 J if

s <
β
2 ). As this is the modular nuclearity map x ∈ M �→ �

1
4 x� ∈ H, M is of type I

by [BDL90, Corollary 2.9]. ��

4. Outlook

Although the conformal Hamiltonian is not the physical Hamiltonian, namely it does not
implement the time translation QFT flow, there is some physical interest in considering
rotational KMS states in CFT.

One example comes from the three-dimensional quantum gravity. If the cosmological
constant is assumed to be negative, one should then look at the solutions of the Einstein
equation which are asymptotically close to the AdS3 spacetime. Different solutions have
different boundary data and such solutions (with certain fall-off conditions) have been
classified in [GL14]. Two copies of theVirasoro groupmake the transformations between
these solutions. Such an action of the Virasoro group is called a coadjoint action [Wit88].
Maloney andWitten [MW10] tried to compute the partition function of the AdS3 gravity,
but they arrived at an expression that cannot be interpreted as a trace over a Hilbert space
of the exponential of a self-adjoint operator. It has been proposed to study each orbit
of the Virasoro group first, e.g. [GL14]. In particular, one can consider the so-called
BTZ black hole solutions [BnTZ92]. In a hypothetical quantum theory, the Virasoro
group should appear as a symmetry of the theory, while the black hole should be in a
thermal state. Furthermore, the energy, hence the mass, of the black hole corresponds
to the conformal Hamiltonian (see [GL14, Eq. (50)]). In this way, KMS states on the
Virasoro nets with respect to rotations should appear naturally. From our results, one
can conclude that all such KMS states can be represented on the direct sum or integral
of the Verma module.

Besides, it is an interesting question to make sense of quantum entropy of such black
hole states from the operator-algebraic point of view.
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