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Abstract: We consider KMS states on a local conformal net on S' with respect to
rotations. We prove that, if the conformal net is of type I, namely if it admits only type I
DHR representations, then the extremal KMS states are the Gibbs states in an irreducible
representation. Completely rational nets, the U(1)-current net, the Virasoro nets and their
finite tensor products are shown to be of type I. In the completely rational case, we also
give a direct proof that all factorial KMS states are Gibbs states.

1. Introduction

QFT, Quantum Field Theory, was originally designed to describe finitely many quantum,
relativistic particles, with particle creation/annihilation due to the interaction. In this
view, statistical mechanics aspects due to an infinitely many particle distribution are
absent. There are however extreme situations where QFT shows a thermodynamical
behaviour, a most important one being the black hole background Hawking radiation,
that lead to consider thermal states in QFT.

As is known, thermal equilibrium states at infinite volume in quantum statistical me-
chanics are characterized by the KMS condition for the dynamical flow, a one-parameter
automorphism group «; of the observable C*-algebra 2. A state ¢, i.e. a positive linear
functional on 2l normalized with ¢(1) = 1, satisfies the KMS condition w.r.t. T at in-
verse temperature 8 > 01if, for any x, y € 2, there is a function F), analytic in the strip

Sg = {0 < Imz < B}, bounded and continuous on the closure Sg, such that
ny(t) = <P(X(Xt()’)),
Fey(t +iB) = ¢ (o (y)x).
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Atfinite volume, where the degrees of freedom are finite, KMS states are Gibbs states:
ox) = Tr(e PH x) / Tr(e #H) with H the Hamiltonian; at infinite volume, Gibbs states
might not exist as e “# is not necessarily trace class, yet the KMS condition is preserved
under the infinite volume limit.

From the mathematical viewpoint, KMS states are of most importance, being related
to the Tomita—Takesaki modular theory of von Neumann algebras. The KMS condition
measures, in a sense, the deviation of the state ¢ from the tracial property ¢ (xy) = ¢(yx).
In view of an infinite-dimensional quantum index theorem, one expects QFT to be the
underlying framework and the role of the (super)-trace to be played by (super)-KMS
states. The description of the KMS states then turns out a natural problem with different
motivations.

This paper concerns KMS states in low dimensional CFT, Conformal Quantum Field
Theory. On one hand the mathematical structure of CFT is much better understood,
with very interesting connections with other mathematical subjects, and in particular
the Operator Algebraic approach is powerful and deep. On the other hand, CFT is of
much interest in Physics in various situations, e.g. Critical Phenomena or AdS/CFT
correspondence.

CFTin (1+1)-dimensions is an extension of the tensor product of two one-dimensional
(one could say (% + %)-dimensional) CFT, so initially one has to study CFT on the real

line or on its compactification S'. The real line and the circle pictures are equivalent,
however, the physical Hamiltonian as QFT is the one associated to the translation flow in
the real line picture. The conformal Hamiltonian is the one associated with the rotation
flow in the circle picture and one can usually extract more easily information from the
conformal Hamiltonian since its spectrum is discrete.

An analysis of the KMS states w.r.t.the translation flow has been given in [CLTW12a,
CLTW12b]. The main result in [CLTW12a] is that, in the completely rational case, for
every fixed inverse temperature 8 > 0, there exists a unique KMS state w.r.t.translations,
the geometric KMS state. In the non-rational case, however, there might be uncountably
many KMS states. They are all described for the U (1)-current net and possibly all for
the Virasoro nets [CLTW12b].

The purpose of this paper is to investigate the KMS states with respect to the rotation
flow. In the rotational case, the first point to clarify is the choice of the C*-algebra that
supports the rotational flow and on which the KMS state is to be defined. Such a choice
is natural and well known in the translation case: the C*-algebra generated by the local
von Neumann algebras associated to bounded intervals of the real line. On the other
hand, the intervals of the circle do not form an inductive family and a more thoughtful
construction is necessary. A universal C*-algebras was defined by Fredenhagen, and a
different construction is in [Fre90,GL92]. We shall explain in detail the construction as
we need it.

We shall first give a general, complete description in the completely rational case:
every extremal KMS state is a Gibbs state in some irreducible representation. We shall
make use of the structure of the universal C*-algebra in this case [CCHW13]; a similar
description for super-KMS states in this case is due to Hillier [Hil15]. Rotational KMS
states in the completely rational case were also studied in [lov15].

Our results are not restricted to the rational case. Indeed, we shall prove that any
extremal rotational KMS state on a large class of non-rational conformal nets is a Gibbs
state in some irreducible representation. The point is that, in general, the GNS represen-
tation with respect to a KMS state might be of type II or III and could not be decomposed
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uniquely into irreducible (type I) representations. We exclude this possibility for many
important conformal nets.

Actually, we prove that some conformal nets are of type I, namely they do not have
type II or III representations at all. Moreover, at the moment, no example of conformal
net not of type I is known. It is possible that diffeomorphism covariance implies the
type I property. One can understand how general the type I property is by the following.
Suppose A is a conformal net such that, for any given A > 0, there exists at most
countably many irreducible representations p of A such that A if the lowest eigenvalue
of the conformal Hamiltonian Lg of p. Then A is of type I. Many conformal nets are
then immediately shown to be of type I by this criterion. Among them are the Virasoro
nets and the U (1)-current net. Their finite tensor products can be shown to be of type I
by a separate argument.

This paper is organized as follows. In Sect. 2, we recall our operator-algebraic setting
for conformal field theory and introduce our main dynamical system, the universal C*-
algebra. The fundamental examples of KMS state, the Gibbs states, are also introduced.
In Sect. 3, we present our classification result of KMS states. First we are concerned
with the completely rational case where the structure of the universal C*-algebra is
completely understood, then we pass to the general case. We determine that an extremal
KMS state on a type I net is a Gibbs state, and prove that some well-known nets are of
type L. The problem of the possible occurrence of type Il and III representations naturally
arises here and we make some observations. In Sect. 4, we discuss possible applications
of our results.

2. Preliminaries

2.1. Conformal nets and their representations. Let us recall our mathematical frame-
work for conformal field theory on the compactified one-dimensional spacetime S!. See
also [CLTW12a].

Let 7 be the set of open, connected, non-empty and non-dense subsets (intervals) of
the circle S'. A (local) Mobius covariant net is a triple (A, U, Q) where A is a map
that assigns to each / € Z a von Neumann algebra .A(/) on a common Hilbert space H
and satisfies the following requirements:

1. (Isotony) If I} C I, then A(I}) C A(I).

2. (Locality) If I; N I, = @, then A(I;) and A(/) commute.

3. (Mobius covariance) U is a strongly continuous unitary representation of the Mobius
group Mob = PSL(2, R) on H and for any g € Mob and any interval / € 7 we have

AdU (&) (A) = A(gD).

4. (Positivity of energy) The generator L of the rotation one-parameter subgroup is
positive (U (R;) = e''L0 with R, the rotation by 7).

5. (Vacuum vector) 2 is a unit vector of H, which is the unique (up to a scalar) U-
invariant vector; Q2 cyclic for 17 A,

From these assumptions, the following automatically follow, see [F]196, Section 3]

6. (Additivity) If I C |, I, then A(l) C \/, A(L), where \/,, M, denotes the von
Neumann algebra generated by {M,}.
7. (Reeh—Schlieder property) <2 is cyclic for each local algebra A([1).
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A representation of a Mobius covariant net A is a family p = {p;};c7, where p; isa
unital x-representation of A(/), on acommon Hilbert space H,, such that pr, | 4.1,y = o1,
for I1 C I,. We say that p is locally normal if each p; is normal. We say p is factorial
if \/ ez pr(I) is a factor.

A Mobius covariant net (A, U, ) is called a conformal net if the representation U of
the M6bius group extends to a strongly continuous projective representation of the group
Diff (S!) of orientation-preserving diffeomorphisms of S!, that is covariant, namely
AdU(g)(AI)) = A(gl),and AdU(g) acts trivially on A(I) if g is acts identically on
I.

We say that the net A has the split property if for each pair 7y, I> of intervals such
that Iy C Iy, there is a type I factor N (11, I3) such that A(Iy) C N (11, I) C A(l).
The split property follows from the conformal covariance [MTW16].

2.2. Theuniversal C*-algebra. Foragiven Mobius covariant net .4, Fredenhagen [Fre90]
proposed to consider a C*-algebra which is universal in the sense that any representation
of the net A can be regarded as a representation of this algebra. This notion has been
used widely in the study of superselection sectors in conformal field theories, and we
will take it as the algebra of our physical system.

Yet, there seems to be a confusion in the literature about the construction. The first
paper which introduced the universal C*-algebra was [Fre90, Section 2]. We take a
slight variation of it: one considers the free x-algebra A generated by {A(/)}, modulo
the relations due to the inclusions A(l1) C A(lL), for I, I, € Z, I C I,. Clearly a
representation p of A defines a representation of 4y, still denoted by p. For a given
x € Ay, one defines the seminorm by

sup [[p ()|,
pel’

where I is the class of all representations. In the Zermelo—Fraenkel set theory with the
axiom of Choice (ZFC), I is not a set (an intuitive explanation would be the following:
on each set with cardinality larger or equal to the cardinality of the continuum, one can
define a structure as a Hilbert space. Hence the class of all Hilbert spaces is “as large as”
the class of all sets (with cardinality larger or equal to the cardinality of the continuum),
and would cause Russell’s paradox. A precise reason is that the sets in ZFC are only
those which are constructed by axiom schemas). However, the above supremum can be
justified in ZFC as follows:! For a given x € Ao, we consider the following:

{s € R : there is a representation p of Ag such thats = || p(x)||},

which s a subset of R in ZFC by the axiom schema of separation? (see standard textbooks
on axiomatic set theory, e.g. [Sup60,Jec78]). Hence one can take the supremum and the
rest follows.

Another commonly cited paper [GL92, Section 8] has a problem, because one has to
take the direct sum parametrized by “all the representations”, which is definitely not a
set.

1 We owe this observation to Sebastiano Carpi.

2 The axiom schema of separation reads, for a given predicate F(x) with a variable x as follows:
3@B)(Vx)(x € B < x € A & F(x)). In words, it states that for a set A there is a subset B which con-
sists of all elements of A which satisfy F.
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Let us also provide a construction of the universal algebra which is closer to that of
[GL92]. We consider as before the free x-algebra Ay generated by {.A(/)} modulo the
inclusion relations as above. We denote by ¢; the embedding of 4 (/) into Ag. Let Sy be
the set of states (positive, unital linear functionals in the sense ¢(x*x) > 0, x € Ap) ¢
on Ap. By definition of Ao, the GNS representation p,, of Ay with respect to ¢ satisfies
forl C J

Py otylauy = pyotr.

Note that, for any ¢, an element x € A(]) is represented by a bounded operator py, (x).
Indeed, x*x < |x||*1 in A(I), hence Pp(x*x) < [x]>1 because Pyl Ay s a rep-
resentation of a von Neumann algebra and a representation of a C*-algebra is order
preserving.

Now let x be an element of Ag; then x is a finite sum ), []; xx; of finite products
of elements of A(Iy ), Ix; € .

Let p be a representation of the net A. Then p gives rise to a representation of Ay.
With x = ), [], x«,1 as above, we have

55
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where || p(xx )|l is the norm of r(xx ) in A(Ik ;). Thus [|p(x)| < Cy < oo, where the
constant C, does not depend on p.
We define a seminorm on 4 by

lx]l = sup [lpp ()l
eSSy

which is finite since ||x|| < C,, and we take the C*-completion (modulo null elements),
that we denote by C*(A).

Let us remark that this construction avoids the set-theoretical problem: while “the
class of all representations” is too large to be a set, one can consider the set of all states,
because it is a subset of all maps from .Ag into C with linearity, positivity and unitarity,
which can be formulated again by the axiom schema of separation.

Now, as C*(.A) is not defined through the supremum over all representations, we
have to check the universal property.

Proposition 2.1. For each representation {p;} of the net A, there is a representation p
of the algebra C*(A) constructed above such that p;y = p o (j.

Proof. {pr} gives rise to a representation p of 4y. In order to prove that p extends to
C*(A) we have to show that p is continuous w.r.t.the norm of C*(A), namely | p(x)| <
lx|l, x € Ap. This follows because every representation of a C*-algebra is direct sum
of cyclic representations, thus ||o(x)]| is the supremum of p,(x) with ¢ running in a
family of states. O

Now we may properly call C*(A) the universal C*-algebra of the net .A. By the very
universal property, it is unique up to an isomorphism.

Actually, we are mostly interested in locally normal representations, hence it is natural
to take account of locally normal representations only. This has been done by [CCHW 13]:
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we take our C*(A) and consider the locally normal universal representation py,, which is
the direct sum of all GNS representations over all states ¢ on C*(.A) such that p,, islocally
normal. The universal property can be again proven by decomposing an arbitrary rep-
resentation into cyclic representations. We take the quotient Cy}, (A) := C*(A)/ker piy
and call it the locally normal universal C*-algebra of the net .A. The properties of C}: (A)
claimed in [CCHW13] can be restored without any modification, since the actual con-
struction is not needed in the proofs but only the universality is used.

If the net A is conformal, any locally normal representation p is covariant with

respect to the universal cover MGb of the Mobius group and one can take the unique
implementing operators from p(Cj (A)), and indeed they are finite products of local

elements [DFK04, Theorem 6]. From this it follows that the action of M&b on Cr (A
is inner.

Proposition 2.2. Let A be a Mobius covariant net with the split property and p be a
locally normal representation of Cyi, (A) with a cyclic vector ®. Then the representation
space 'H, is separable.

Proof. As in [KLMOI1, Appendix C], we consider the set Zg of intervals with rational
end points, an intermediate type I factor N'(I1, Io) between A(l1) C A(l), I}, I, €
Igp, 1 C I (we just choose one N (1, I) for each pair I; C I, not necessarily
the canonical choice of [DL84]), let C(I1, I2) be the algebra of compact operators in
N (11, I) (under the identification N (11, I2) = B(H)) and denote by 2l the C*-algebra
generated by {/C(I1, I2)}. Note that 2 is a separable C*-algebra.

As p is locally normal, for each I we have p(A(I)) C p(A)”.Indeed,if Iy C I, C I,
I, I, € Ig, then K(I1, I) C A(I) and as I; tends to I, any element in A(/) can be
approximated from 2( in the o-weak topology. Then the claim follows from the local
normality of p, and it also follows that p(C; (A)) C p(2A)".

Now, by assumption there is a cyclic vector ® for p(Cy (A)), hence it is also cyclic
for p(21)”. As p(2l) is a C*-algebra, p(21)"” is the closure of p(2l) in the strong operator
topology and we have p(R)® = p(A)"® = H,. As p(2) is separable, H, is also
separable. 0O

Remark 2.3. The converse of Prop. 2.2 is also true. If A is a Mobius covariant net and
p a representation of CJ' (A) with separable H,,, then p is locally normal. Indeed the
A(I)’s are type III factors, and every representation of a o -finite type III factor on a
separable Hilbert space is normal [Tak02, Theorem V.5.1], while the local algebras A(1)
are automatically o -finite by the Reeh—Schlieder property: the vacuum state is faithful
[Tak02, Proposition I1.3.9].

2.3. KMS states with respect to rotations, Gibbs states. Let 2 be a C*-algebra and « a
one-parameter automorphism group of 2 (not necessarily pointwise norm-continuous).

A KMS state of 2 w.r.t. « at inverse temperature 8 € R, is a state ¢ on 2 such that
for any pair of elements x, y € 2 there is a bounded analytic function Fy, on R+i (0, B),
which is continuous on R + i[0, 8], such that

ny(t) = @(a;(x)y), ny(t+i/3) = p(yoy (x)).

Given a conformal net A, we are interested in states on the universal C*-algebra
C*(A) w.r.t. the rotation one-parameter automorphism group. Any state ¢ on C*(A)
gives rise to a GNS representation py, of C*(A), whose restriction to {A(I)} (i.e.
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{pytr}1ez) is a representation of the net. We say that v is locally normal if its re-
striction to each local algebra A(7) is normal. We do not know whether this implies
in general that the GNS representation py, is locally normal. Yet, for KMS states, we
have the following Lemmas. The proof of the first one is essentially the same as that of
[TW73, Theorem 1], one should only note that the funnel structure is not necessary.

Lemma 2.4. Let A be a C*-algebra which contains a o-finite properly infinite von
Neumann algebra M, and ¢ a state on 2 such that the GNS vector ® (for the GNS
representation p, with respect to @) is separating for p,(0)". Then ¢| a4 is normal and
Pyl M is normal.

Proof. As @ is separating for p, ()", p, ()" is o -finite, hence p,(M)” is o-finite as
well. Then the restriction p,, to a properly infinite algebra M is normal [Tak02, Theorem
V5.1]. O

Lemma 2.5. Let ¢ be a KMS state on C*(A) with respect to the rotation flow «. Then
@ is locally normal and its GNS representation py is locally normal.

Proof. The local algebras in the vacuum representation have a separating vector €2,
hence they are o-finite, and are known to be of type III; [GL96, Proposition 1.2]. Now
the claim follows from Lemma 2.4 and the fact that the GNS vector ® is separating
for p,(A)” for any KMS state ¢ (see [BR97, Lemma 5.3.8 and Corollary 5.3.9]. The
pointwise norm-continuity assumption of « is not necessary for this result). O

Thanks to these Lemmas, we do not have to distinguish C*(A) and C;; (A) as long
as we are interested in KMS states.

Remark 2.6. In the real line case, the GNS representation of every locally normal state

(i.e. normal on each local algebra) is locally normal. To see this, let ¢ be a locally normal

state of the quasi-local C*-algebra A = | J; cp .A(I)H'” with GNS triple (H, p, ®) and

fix an interval I € Z. The restriction of p; to H; = ,o(.Agl))CD is normal as it is the GNS
representation of a normal state. For any larger interval I O I we have p; = p 1~| Ay SO
pr is normal on H too. Since the H;’s form an inductive family whose union is dense
in H by the cyclicity of @, it follows that p; is normal on H.

Let p be alocally normal, rotation-covariant, irreducible representation of .4 in which

o . .

e PLo is trace class for B > 0, where Lg is the generator of the one-parameter unitary
group of rotations. This is a typical situation that holds true in most important cases.
Then one can define the following Gibbs state on C*(A):

Tr (e P10 p(x))
Tr(e L)

¢, is a (locally normal) rotational B-KMS state of C*(.A). Thus we have a natural
class of KMS states. The relation between the KMS condition and the Gibbs states at the
given temperature can be found in [Haa96]. An early consideration of rotational Gibbs
states can be found in [Sch94].

For some important class of nets, the structure of the irreducible representations is
well understood. This is the case, in particular, for the class of completely rational nets,
which we will consider in Sect. 3.1. In such cases, we shall see that all extremal KMS
states are Gibbs states as in (1). Our main question is whether this is always true. We
show this to be true under a mild condition in Sect. 3.2.3, but the question remains open
in general.

Pp.p(x) = &)
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2.4. Energy expectation value. The stress energy density in a Gibbs state can be com-
puted through the character formula. For a test function f with support in an interval
I € 7, the stress energy tensor 7" in the vacuum representation, smoothed with f, is an
unbounded operator T ( f) affiliated to A(I). If p is an irreducible representation of A,
we may define 7, () = po(T (f)), making use that bounded functions, e.g. the resolvent,
of T(f) belong to A(I). The expectation value of the stress-energy tensor in the Gibbs
state is then

Tr (e*ﬁLﬁ T,( f))
T (fﬁLS ) '

Pp.p(T(f)) =

This is indeed finite if, for example, there is € > 0 such that Tr(e’(ﬁ’€>Lg) is finite
because the polynomial energy bound holds for the Virasoro algebra [CWO05, Lemma
4.1] (which implies that e~<Lo T (f) is bounded). This condition is quite generic.
Furthermore, in such a case, one can compute this value by expanding 7,(f) =
3" fuLh, where the f, = % J7_ f(e'")e " dt are the Fourier modes of f. As Ly,
n # 0 changes the energy eigenvalues while Tr can be computed by expanding along a
basis of Lg eigenvectors, all the contributions from L/, n # 0 drop out and we have

—ﬁLp P —s
Tr(e OLO) —dxp(e™")/ds|s=p

0. 8(T(f)) = fo = fo

Tr (e_ﬁl‘g) Xp(e_ﬁ)
. _L T it . dxp(e™)/ds
=5 ] f(edt T s’

where x,(q) =Tr ng is known as the character of the representation p. Thus

1 dx,(e™)/ds
2w xp(e™¥)  ls=p

_ 4 dxp(q)/dq _ 9 dlog(xp(q))

2 xplq) lg=et 27 dq g=eb’

@p.p(T (1))

The characters for some specific examples can be found in the literature, e.g. [KR87].

3. Classification of KMS States

3.1. Completely rational case. In this section we determine all KMS states in the com-
pletely rational case.

Let A be a Mobius covariant net on S'. Following [KLMO1], one defines the p-index
4 of A as the Jones index of the 4-interval inclusion:

A= [(A) VA - Alhb) v A)],

where Iy € 7, k = 1...4, are disjoint intervals in S I whose union is dense in S! and
I, Ix+2, k = 1, 2, have no common boundary point.

A is said to be completely rational if © 4 < oo and A satisfies the split property and
the strong additivity property [KLMO1]. The split property follows from the trace class
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property of e=#L0_ for all 8 > 0 in the vacuum representation [BDLO07]; it holds auto-

matically for a conformal net [MTW16]. The strong additivity property automatically

holds for a conformal net with the split property and finite p-index [LX04]. Thus, for a

local conformal net .4, the only condition for A to be completely rational is 4 < o0.
If A is completely rational, then

pa = dp)’
k

where {pr} is a complete family of irreducible inequivalent representations of A and
d(py) is the dimension of py. It follows that A has only finitely many irreducible rep-
resentations, all of them have finite index and every representation is a direct sum of
irreducible finite index representations [KLMO1].

As shown in [CCHW13], the locally normal universal C*-algebra Cj (A) takes a
particularly simple form in the completely rational case.

Theorem 3.1 [CCHW 13]. If A is a completely rational net, then Cy, (A) is isomorphic
to a finite direct sum of type I factors:

ChD=Fo®F1 & & Fn,

with Fy = B(Hy), where Hy, k = 0, 1, ...n corresponds to inequivalent irreducible
representations of the net A. In particular, C}; (A) is a von Neumann algebra and its
center is finite dimensional.

The minimal central projections e of C}\ (A) are thus in one-to-one correspondence
with the irreducible representations oy of C}\ (A):

pe(x) = xer, x € Ch(A), (2)

say with pp the vacuum representation.

Recall that, as a completely rational net, it admits only finitely many irreducible rep-
resentations (up to equivalence), so any representation is Mobius covariant (see [GL92,
Corollary 7.2], and the modification to the circle is straightforward). With Uy the unitary
representation of Mob associated with the net .4, the adjoint action of Uy on the net .4
gives, by the universal property of C} (A), an automorphism group of C}' (A) that acts
trivially on the center. In view of Theorem 3.1,

U=Uyd ---dU,,

with Uy, the covariance unitary representation of Mob in the representation py.

Let now ¢ be an extremal 5-KMS state of Cj (A) w.r.t. the rotation one-parameter
group «;. As the GNS representation of ¢ acts on a separable Hilbert space by Propo-
sition 2.2 and Lemma 2.5, it must either be faithful on or annihilate the components
B(Hy). Being extremal, the support of ¢ is e, for some k, namely ¢(e;) = é;x. Thus ¢
can be viewed as a normal state on B(Hy) and we have:

Theorem 3.2. Let A be a completely rational net as above, and ¢ an extremal, rotational
B-KMS state. Then there exists an irreducible representation p of A such that

Tr (e_ﬁLgp(x))

, x €Ch(A,
Tr(e PL0) :

p(x) =

. _BL :
In particular e PL0 is trace class.
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Proof. By the above discussion, p is equal to a px given in (2), so the proof follows by
the following lemma, which is essentially known. O

Lemma 3.3. Let R = B(H) be a type I factor, ¥ a one-parameter automorphism group,
and ¢ a normal B-KMS state of R w.r.t. U. Then there exists a positive, non-singular,
selfadjoint operator H on 'H (thus affiliated to R ) such that

Tr (e_ﬁHx)
Tr(e—BH) ’
We have Tr(e ") < 0o and 9,(x) = Ade''M (x), x e R, t € R.

Proof. Since R is a factor, ¢ is faithful due to the KMS property: this follows from the
faithfulness of the GNS representation and the fact that the GNS vector is separating for
a KMS state [BR97, Lemma 5.3.8 and Corollary 5.3.9]. As R is a type I factor, there
exists a positive, non-singular trace class operator 7 with trace one [BR97, Proposition
2.4.3] such that ¢(x) = Tr(Tx). We may write T = e PH with a self-adjoint operator
H and, as T is bounded, the spectrum of H is bounded below. By adding a scalar, we

may assume that H is positive, but then the trace Tr(e ##) is no longer 1, so we have

—BH
the formula ¢(x) = %-

Thent — Ad e"P1H i5 the modular group of ¢ [BR97, Example 2.5.16]. Therefore,
we have Ade!’f! = ¥, as there is a unique one-parameter automorphism group which
satisfies the KMS condition with respect to the state ¢ [Tak03a, Theorem VIII.1.2]. O

px) = x €R.

3.2. General case. Let A be a Mobius covariant net. We say that a (locally normal)
representation p of A is of type Iif p(C*(A))” is a type I von Neumann algebra.

3.2.1. Factorial decomposition

Proposition 3.4. Let A be a Mobius covariant net with the split property and ¢ a B-
KMS state on C*(A) with respect to the rotation flow «. Then ¢ can be decomposed a.e.
uniquely as follows:

@
¢ = / du) ¢,
X
where the GNS representation p,, with respect to ;. is factorial. If py, is type I, then

Tr (e_ﬁLépw (x))

o0 = Tr(e~PL0)

’

where L(); is the conformal Hamiltonian in the representation p, .

Proof. By Lemma 2.5, the GNS representation p,, is locally normal, and by Proposi-
tion 2.2 p, acts on a separable Hilbert space. By considering the central disintegration of
Py (C*(A))", we also obtain the disintegration of the representation of p|g(, with 2 any
separable, suitably chosen C*-subalgebra of C*(A), by a similar argument as [KLMOI,
Proposition 56] (see also [Dix77, Theorem 8.4.2], [Tak02, Theorem I'V.8.21 and Section
V.1)):

p(p|Ql=/ diL(X) pg, 21
X
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and p,, are locally normal for almost all A. According to this disintegration, the GNS
vector ®, disintegrates

c1>¢,=/ di(h) ®y,
X

and the state (@, - ®) on p, (C*(A))” gets the disintegration [Tak02, Proposition IV.8.34]:

S7]
p(x) = (CI)(p, ptp(x)q)go) = /X du(r) <q)<pp P(p(x))»q)w;\>-

Hence we can define @) (x) = (D, , pp(X)5 Py, ) first for x € A and then extend it to
C*(A) by local normality, which is the first statement. ¢; are again KMS states with
respect to rotations for almost all A, by considering the disintegration of the modular
operator.

If py, is of type I, then it follows that the state ¢, is given by the Gibbs state by
Lemma3.3. O

3.2.2. General remarks 1f we assume conformal covariance, type III representations do
not occur since the rotations are inner. Furthermore, for type II states on a conformal
net, a Gibbs-like formula is valid by replacing Tr by the unique tracial weight , c.f.
Lemma 3.3.

Lemma 3.5. If A is conformal, then for any KMS states ¢, p,(C*(A))" contains no
type 11l component.

Proof. As we saw in Sect. 2.2, K/I\'(_BE, especially the rotations, is inner. Thus, the modular
automorphisms of p, (C*(A))” with respect to ¢ are inner, hence the p, (C*(A))” cannot
have a type IIl component (see [Tak02, Theorem I'V.8.21, Section V.1], [Tak03a, Theorem
VIIL3.14]). O

Let A be a conformal net and p a representation of A on H,. As we recalled in
Sect. 2.2, by conformal covariance, there is a canonical inner implementation U, on
H, with U, (g) € p(C*(A))" of Mob. The generator of the associated unitary rotation
one-parameter subgroup of U, is positive [Wei06], which we denote by Lg and we call
it the conformal Hamiltonian of p. Of course, in case p is irreducible, this gives the usual
definition of the conformal Hamiltonian.

Lemma 3.6. Let A be a conformal net and ¢ an extremal, rotational B-KMS state.
Suppose the GNS representation py of ¢ is of type II, namely p,(C*(A))" is a type
II factor Let t denote the semi-finite trace of pp(C*(A))". Then there is a positive
self-adjoint operator Lg affiliated to p,(C*(A))" as above and we obtain

7(e L p)

TN x € C*(A),

px) =

In particular r(e’ﬂLgx) < 00.

3 In this case, it would be necessarily type Ilno as the local algebras are of type III.
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Proof. Set M = p,(C*(A))". By the KMS property, the GNS vector &, is cyclic

and separating for M and Ade ! LG" is the modular group of M w.r.t. to the state
¢ = (&, &) on M. By the Radon-Nikodym theorem, ¢ = t(k-) with & a positive
operator on H,, affiliated to M, and t(h) = 1. The modular group of ¢ is then equal to

Adh'". Then h is proportional to e BLY"  thus h = e~ PLY" /T(efﬁLg/\) and the Lemma
follows. O

3.2.3. Nets of type I We say that a Mobius covariant net is of type I if it admits only
locally normal representations p such that p(C*(A))" is of type L.

Some important conformal nets turn out to be type I, therefore, any extremal KMS
state is the Gibbs state in one of the irreducible representations.

Theorem 3.7. If a conformal net A is of type I, then any rotational B-KMS state ¢ is a
convex combination (integration) of the Gibbs states in irreducible representations.

Proof. Immediate from Lemma 3.3 and Proposition 3.4 (note that the split property
follows from conformal covariance [MTW16]). O

As we recalled in Sect. 2.2, for a conformal net the representatives of Mob are
inner and unique, hence any locally normal representation p of the net (or the universal

algebra C*(A)) is Mob-covariant. The implementation is unique if we assume that the
representatives belong to p (C*(.A))”. With this unique inner implementation, the lowest
eigenvalue [ of the generator Lg of rotations is non-negative [Wei06, Theorem 3.8].

Proposition 3.8. Let A be a conformal net and assume that there are only countably
many equivalence classes of locally normal irreducible representations with a specified
lowest eigenvalue of the generator of rotations. Then A is of type I.

Proof. By local normality and its disintegration restricted to 2l as in Proposition 3.4,
it is enough to treat factorial representations. Let us consider a locally normal factorial
representation p of 4. The implementation of the 277 -rotation commutes with any local
element, hence with p(C*(A))”, on the other hand, it belongs to p(C*(A))” by our
choice that it is inner. When p (C*(A))” is a factor, the implementation is then a scalar.
This applies to any integer-multiple of 277, hence the spectrum of Lg must be included
in Ng + Iy, where lo > 0, and Ny is the set of non-negative integers.

Now, we consider any disintegration of p|g into irreducible representations where
2l is the separable C*-subalgebra of C*(A) as in Proposition 3.4 (this is possible, by
choosing a maximally abelian algebra in p(C*(A))" because we have the split property:
see [KLMOI, Proposition 56] for disintegration and [MTW 16] for the implication of the
split property from conformal covariance):

D
pat = / prd (),
X

where X is a certain index set. Let us assume, by contradiction, that o (C*(A))” is a factor
of not type I. Then by [KLMOI, Proposition 57, Corollary 58], for a fixed A, p; is locally
normal, hence extends to C*(A) and must be inequivalent to p;/ for almost all A/, and
there are uncountably many such A’’s. But on the other hand, the inner implementation
of Mob also disintegrates and the lowest eigenvalue of Lo remains in Ny + [ for each A.
By assumption, there are only countably many such inequivalent representations, which
contradicts the above uncountable family of representations. This concludes the proof
that pisof type I. O
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We have two basic examples with this property.

Example 3.9. The U(1)-current net Ay(y: In two-dimensional spacetime, the naively
defined massless free field is plagued by the infrared problem. Yetitis possible to consider
its derivative. Its chiral components are called the U(1)-current. See [BMT88,Lon08]
for its operator-algebraic formulation.

The algebra is generated by the Fourier modes {J,,} of the current which satisfy the
following relations [J,,, J,] = m&,;4n,0. This algebra has a distinguished representation
with the vacuum vector €2 such that J,,2 = Oform > 0, J = J_,,. For a smooth

function f on S', one defines the Weyl operator W (f) by W(f) = exp (i Yom fm Jm),

where fm are the Fourier components of f(z) =), fmeimz .
One defines the net by Ayy(I) = {W(f) : supp f C I}". It turns out that this net
is conformally covariant. The generator of rotations is given by the Sugawara formula

1
Lo = EJO + Z J_mIm.

m>0

For each ¢ > 0, there are irreducible representations of the net Ay(j) given by the state
24 such that J,, 2 = 0 form > 0 and Jp$2, = g2 [BMT83].

It can be proved that they are indeed all irreducible locally normal representations
[CW16]. By their local energy bounds, {J,,} can be also defined in any locally nor-
mal representation. In each p of these representations, Lg is again given by the above
Sugawara formula and the lowest eigenvalue is %. Namely, only two values g and —¢q
share the same lowest energy. By Proposition 3.8 and Theorem 3.7, all KMS states with
respect to rotations are a direct integral of Gibbs states.

We also note that the regular KMS states (namely, those in whose GNS representation
the generators {J,,} can be defined) have been classified by [BMTS88].

Example 3.10. Virasoro nets Vir.: the net generated by the conformal covariance itself
is called the Virasoro net. More precisely, one considers the group Diff(S') and its
projective unitary representations. There is a natural action of rotations, and if this
action is also implemented by unitary operators and the generator is positive, then we
call such a projective representation of Diff(S!) a positive-energy representation. Such
positive-energy irreducible representations have been classified by the so-called central
charge ¢ > 0 and the lowest energy 7 > 0 [GKO86,KR87,GW85,NS15]. The possible

valuesof cand h are: c =1 — % and h = %,Wherem =2,3,4,...
andr =1,2,3,....m—1lands =1,2,3,...,r,orc>1land h > 0.

For each such a positive-energy representation . with 4 = 0, one can construct the
corresponding Virasoro net by Vir.(I) = {r.(g) : suppg C I} and it constitutes a
conformal net (see [Car04]). If ¢ < 1, Vir. is completely rational [KL04].

Let us consider ¢ > 1. To any irreducible (hence type I) locally normal irreducible
representation of Vir, there corresponds a positive-energy representation of Diff(S!)
with ¢ > 1 and h > 0 (see [Car04, Proposition 2.1]). Conversely, for the values ¢ >
1, h > 0 there is a corresponding locally normal irreducible representation 7 of Vir,
[BSMO90][Car04, Section 2.4][Weil6].

Therefore, our Proposition 3.8 applies to any value of ¢ > 1 and obtain that any KMS
state on Vir, whose GNS representation is factorial is the Gibbs state corresponding to
the value £, and all such 4 > 0 are possible, the latter can be read off from the character
formula, e.g. [KR87].
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For a Mobius covariant net (A, U, ©2), one can naturally consider the tensor product
AR A UQ®U,2® Q). Any finite tensor product of these nets has again the same
property. Indeed we have the following.

Proposition 3.11. A Mobius covariant net with the split property A is of type I if and
only if * any factorial locally normal representation of A ® A is of the form p; ® po.

Proof. Suppose that A has only locally normal type I representations. Take a locally nor-

mal factorial representation 4 of A®.A. We show that the center Z (\/ ;.7 6(A(I) ® C1))
is trivial. Indeed, on one hand we have \/,; .7 6(A(I) ® C1) C p(C*(A® A))". Onthe

other hand, let us take

pez (\/ AAD ® m)> = (\/ AAD ® m)) a (\/ AAD ® m)) :

1eZ 1T 1€

By additivity of the net and local normality of 5, we have p € \/, eT|1<% P(A(I)®CT).

Any element in the latter algebra commutes with 5(C1 ® A(Iy)), where |I| < 7,
because for any pair of two intervals Iy, I> shorter than %, one can find an interval
which contains both, and it follows that the images o (A(l}) ® C1) and p(C1 ® A(1»))
commute. Again by additivity, p commutes with p(C1 ®.A(1)) for any / and, therefore,
p € H(C*(A®A) . Namely, p € Z (V7 H(A) ® CL)) C Z(5(CHAB®A))") =
C1 as p is factorial. This implies that the restriction of p to A ® C1 is already factorial,
and by assumption, it is of type I, namely its image is of the form B(H ) ® C1, where
Hs = Hi1 ® Ha. As the image \/;.7 p(C1 ® A(I)) commutes with \/; .7 p(A(]) ®
C1) = B(H1) ® C1 by the same argument as above, we have \/,; .7 p(C1 ® A(I)) C
C1 ® B(H>). In other words, p is a product representation of the form p; ® p;.

To show the converse under the split property, we take a non-type I factorial represen-
tation p of .4 and construct p(x) = J,p(JxJ)J,, where J, is the modular conjugation
of p(A)” with respect to a certain faithful normal weight and J is an antilinear conjuga-
tion which maps local algebras to local algebras, for example, the modular conjugation
of an interval with respect to the vacuum state. We define p(x ® y) = p(x)p(y). We
first show that this is a locally normal representation. By the split property, A([}) is
included in a type I factor N'(I{, I»), where I| C I». As p is locally normal, the image
PN, ) ® C1) = p(N(I, I)) is again a type I factor. The image o(C ® A(I}))
commutes with this, therefore, p is locally a tensor product representation, and therefore,
locally normal. The consistency condition for p is obvious, hence it is a locally normal
representation of 4 ® A. Yet its image is B(H,), and its restriction is not of type I, thus
p cannot be a product representation. 0O

3.3. Remarks on non-type I representations: open problems. As we saw, important
classes of conformal nets are of type I. It is an open problem whether there exists a
Mobius covariant net not of type 1. The situation is quite different from the case of nets
on the real line, where any translation KMS state on the quasilocal algebra is of type
III; [CLTW12a] or of nets on the Minkowski space where one can have any type of
representation [DS82,DS83,BD84, DFG84].

One concrete open case is the cyclic orbifold [LX04]. Take a conformal net .A, make
the tensor product A ® A and consider the fixed point net (A ® A)MP with respect to

4 Actually, the split property is not necessary for the “only if” part.
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the flip between two components. If A is completely rational, then (A ® A)™P is again
completely rational and all the sectors can be explicitly written in terms of sectors of A
and twisted sectors. On the other hand, if A is not completely rational, then we do not
have a complete classification of sectors of (A ® A)P_ In particular, we are not able to
exclude the possibility of non-type I representations, although all known sectors are of
type L.

Another candidate for a net with non-type I representations would be an infinite
tensor product. Recall that (see e.g. [CWO05, Section 6]) for a given countable family of
Mobius covariant nets {(Ay, Uk, Qx)}, one can define a Mbius covariant net by

A == Q) AcD), U(g) :=(X) Ui(g).

with respect to the reference vector 2 = X) Qi (see e.g. [Tak03b, Section XIV.1]). Let
us assume that each Ay admits a representation p; which is converging to the vacuum
representation in some sense. Then one may hope that the infinite tensor product of
representations (X) px could make sense. Even if each p; is of type I, the resulting
product could be of non type I. However, this discussion depends on the nature of the
sequence p; and a detailed analysis is needed.

We note that the type I property for rotational S-KMS states can be characterized
by a compactness criterion similar to the Haag—Swieca compactness condition (and the
Buchholz—Wichmann nuclearity condition, see [Haa96]).

Proposition 3.12. Let A be a local conformal net and ¢ a rotational, factorial B-KMS

state of C*(A). Then p = p,, is of type I if and only if the closure ofe_gl‘g Pu(CH(A) WY
is compact in the norm topology of H for some, hence for every, non-zero vector V of
the GNS Hilbert space H of ¢. Here the suffix I denotes the unit ball.

In this case e_SLgp(p(C*(A)l)\IJ is compact for every s > 0, W € H.

Proof. Let M be the weak closure of p (C*(A)). By assumption M is a factor. Moreover,
MV = C*(A) ¥ by Kaplansky density theorem. Note that Lo € Mfors > 0.
Let T\I(,‘Y) : M — H be the map x e SLox . Clearly T\I(,S) is compact if and only if

eSL MW s compact. Now if eSO MW compact, then eSLo MW s compact for
any other vector W’ in the linear span of {xx'W¥ : x € M, x’ € M’}, which is a dense
subspace of H as M is a factor. Since || Ty, — Ty, || = [|[Tw,—w, || < ||e—sL§ ¥ —
Wl < @) — Wl (lesL0 || < Tas LY is positive), TS} is then compact for all &' € H.

Assume first that M is of type I. As M is in the standard form, we may identify
M =~ B(K) ® C1 where H = K ® K, and further H with the Hilbert space HS(XC) of
the Hilbert-Schmidt operators, so every vector ¥ € ‘H with a Hilbert-Schmidt operator
S. In this identification, an element x € M acts by left multiplication on HS(X). Thus

p .. . . 14 . P
e L0 MW is identified with e ~L0 B(K)1 S, whose closure is compact because e A0
. /4
is of trace class (Lemma 3.3), hence e Lo

thus x € B(K) — e_ngxS is compact (c.f. [BDLIO0]).
i

is compact for any s > 0 hence for s = %,

On the other hand, assume now that Té,z) is compact for some non-zero W, then by

B
the above argument Tq(j) is compact for any vector ®’. As the rotation one-parameter
group is inner, the modular operator A of M w.r.t. ¥ is givenby A = ¢=# LG JePLo J with
L i B
J the modular conjugation of (M, ®). Thus the map x € M — e~ Lo Jetlo Jxd =
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B
Tq()f‘)(x), with &' = Jefi @ is compact (® belongs to the domain of Jesk0 J if

s < g). As this is the modular nuclearity map x € M +— Afxd e H, M is of type I
by [BDL90, Corollary 2.9]. O

4. Outlook

Although the conformal Hamiltonian is not the physical Hamiltonian, namely it does not
implement the time translation QFT flow, there is some physical interest in considering
rotational KMS states in CFT.

One example comes from the three-dimensional quantum gravity. If the cosmological
constant is assumed to be negative, one should then look at the solutions of the Einstein
equation which are asymptotically close to the AdS3 spacetime. Different solutions have
different boundary data and such solutions (with certain fall-off conditions) have been
classified in [GL14]. Two copies of the Virasoro group make the transformations between
these solutions. Such an action of the Virasoro group is called a coadjoint action [Wit88].
Maloney and Witten [MW 10] tried to compute the partition function of the AdS3 gravity,
but they arrived at an expression that cannot be interpreted as a trace over a Hilbert space
of the exponential of a self-adjoint operator. It has been proposed to study each orbit
of the Virasoro group first, e.g. [GL14]. In particular, one can consider the so-called
BTZ black hole solutions [BnTZ92]. In a hypothetical quantum theory, the Virasoro
group should appear as a symmetry of the theory, while the black hole should be in a
thermal state. Furthermore, the energy, hence the mass, of the black hole corresponds
to the conformal Hamiltonian (see [GL14, Eq. (50)]). In this way, KMS states on the
Virasoro nets with respect to rotations should appear naturally. From our results, one
can conclude that all such KMS states can be represented on the direct sum or integral
of the Verma module.

Besides, it is an interesting question to make sense of quantum entropy of such black
hole states from the operator-algebraic point of view.
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