Construction of two-dimensional quantum field models through Longo-Witten endomorphisms

Yoh Tanimoto

University of Rome "Tor Vergata", supported by Programma Rita Levi Montalcini

June 8th 2017, ISQS25, Prague

Constructing QFT

What is quantum field theory? (cf. quantum mechanics, classical field)

- Lagrangian approach: perturbation theory is divergent.
- Need to compute *n*-point (Wightman) functions \implies S-matrix.
- Hilbert space and local observables can be reconstructed.

Form factor programme (Babujian, Karowski, Smirnov...)

- (Factorizing) S-matrix is conjectured from general requirements.
- Form factors $\operatorname{out}\langle q_1,\cdots,q_m|O(x)|p_1,\cdots,p_n
 angle^{\operatorname{in}}$ are obtained.
- *n*-point functions $\langle 0|O(x)O(0)|0\rangle = \sum_n \int dp_1 \cdots dp_n \langle 0|O(x)|p_1, \cdots, p_n \rangle^{\text{in in}} \langle p_1, \cdots, p_n | O(0)|0 \rangle.$
- Convergence? Locality in e.g. the sine-Gordon model?

von Neumann algebraic approach (Schroer, Lechner, T,...)

Find simpler observables in wedges, then local observables abstractly!

08/06/2017, Prague 2 / 10

Algebraic QFT

Haag-Kastler axioms

- Concerned with algebras of observables $\mathcal{A}(O)$ in spacetime regions O.
- Isotony, locality, Poincaré covariance, positivity of energy, existence of vacuum
- ϕ : quantum (Wightman) field $\Longrightarrow \mathcal{A}(O) := \overline{\{e^{i\phi(f)} : \operatorname{supp} f \subset O\}}^{\operatorname{vN}}$
- Examples: P(φ)₂, Yukawa₂, φ⁴₃, · · · (many other models in the Wightman axioms, Haag-Kastler net? c.f. Glimm-Jaffe)

Interacting QFT is difficult because pointlike field $\phi(x)$ is complicated... Isotony: $O_1 \subset O_2 \Longrightarrow \mathcal{A}(O_1) \subset \mathcal{A}(O_2)$ means that **larger** regions contain **more** observables, also **simpler** ones. Wedge: $W_R := \{(t, x) : x > |t|\}$.

A strategy for constructing Haag-Kastler nets

- \bullet Construct observables in ${\it W}_{\rm R}$
- Local observables by $\mathcal{A}(D_{a,b}) = \mathcal{A}(W_{\mathrm{R}} + a) \cap \mathcal{A}(W_{\mathrm{L}} + b)$

Standard wedge and double cone

Wedge-observables in integrable models (Schroer, Lechner)

- analytic S-matrix (e.g. the sinh-Gordon model) $S : \mathbb{R} + i(0, \pi) \to \mathbb{C}$, $\overline{S(\theta)} = S(\theta)^{-1} = S(-\theta) = S(\theta + \pi i), \ \theta \in \mathbb{R}.$
- S-symmetric Fock space: $\mathcal{H}_1 = L^2(\mathbb{R}, d\theta)$, $\mathcal{H}_n = P_n \mathcal{H}_1^{\otimes n}$, where P_n is the projection onto S-symmetric functions: $\Psi_n(\theta_1, \dots, \theta_n) = S(\theta_{k+1} - \theta_k)\Psi_n(\theta_1, \dots, \theta_{k+1}, \theta_k, \dots, \theta_n).$
- Zamolodchikov-Faddeev algebra: S-symmetrized creation and annihilation operators z[†](ξ) = Pa[†](ξ)P, z(ξ) = Pa(ξ)P, P = ⊕_n P_n.
- Wedge-local field: with J_1 : CPT, $f^{\pm}(\theta) = \int dx e^{\pm ix \cdot p(\theta)} f(x)$,

$$\phi(f) = z^{\dagger}(f^+) + z(J_1f^-).$$

Wedge-localization (Lechner '03, Bostelmann-Cadamuro '15)

If $\operatorname{supp} f$, $\operatorname{supp} g \subset W_{\mathrm{R}}$, then $[e^{i\phi(f)}, e^{iJ\phi(g)J}] = 0$. $\phi(f)$ formally commutes with observables coming from form factors localized at 0.

< (17) > < 3

Local observables

- Define $\mathcal{A}(W_{\mathrm{R}} + a) := \overline{\{e^{i\phi(f)} : \operatorname{supp} f \subset W_{\mathrm{R}} + a\}}^{\mathrm{vN}}$, $\mathcal{A}(W_{\mathrm{L}} + b) := \overline{\{e^{iJ\phi(f)J} : \operatorname{supp} f \subset W_{\mathrm{R}} - b\}}^{\mathrm{vN}}$.
- Question: is there any nontrivial observable in $\mathcal{A}(D_{a,b}) = \mathcal{A}(W_{\mathrm{R}} + a) \cap \mathcal{A}(W_{\mathrm{L}} + b)$?
- Let $\Delta^{\frac{1}{4}} = U(\Lambda(\frac{\pi i}{2}))$ (imaginary Lorentz boost), consider the map

$$\mathcal{A}(W_{\mathrm{R}}) \ni x \longmapsto \Delta^{\frac{1}{4}} U(a) x \Omega,$$

 $a \in W_{\rm R}$. If this is a **nuclear** map (approximated "well" by finite matrices), then there are **many** local observables (Buchhoz-D'Antoni-Longo '90).

Theorem (Lechner '08)

If S is analytic, satisfies a regularity condition and and S(0) = -1, the map above is indeed nuclear for sufficiently large a, therefore, there are local observables in $\mathcal{A}(D_{a,0})$ for such a, and hence a **Haag-Kastler net**.

S-matrices with poles (bound states)

If S has a pole (e.g. the Bullough-Dodd model, the sine-Gordon model), $\phi(f) = z^{\dagger}(f^+) + z(J_1f^-)$ is **no longer wedge-local**.

S: scalar, poles at $\theta = \frac{\pi i}{3}, \frac{2\pi i}{3}, S(\theta) = S\left(\theta + \frac{\pi i}{3}\right)S\left(\theta - \frac{\pi i}{3}\right)$ P_n : S-symmetrization, $\mathcal{H} = \bigoplus P_n \mathcal{H}_1^{\otimes n}, \mathcal{H}_1 = L^2(\mathbb{R}),$

$$(\chi_1(f))\xi(\theta) := \sqrt{2\pi|R|}f^+\left(\theta + \frac{\pi i}{3}\right)\xi\left(\theta - \frac{\pi i}{3}\right),$$

$$\chi_n(f) := n P_n(\chi_1(f) \otimes I \otimes \cdots \otimes I) P_n, \quad \chi(f) := \bigoplus \chi_n(f).$$

Theorem (Cadamuro-T. arXiv:1502.01313, CMP)

 $\widetilde{\phi}(f) := \phi(f) + \chi(f)$ commute weakly with $\widetilde{\phi}'(g)$ on a dense domain.

Problem: self-adjointness (problem of domain)! (\implies Haag-Kastler net) Work in progress: A_n -affine Toda, sine-Gordon...

・ロト ・ 一下 ・ ミト ・ ヨト

Twisting the massive free field

Let ϕ be the massive **complex** free field, with the charge operator Q, and $\mathcal{M} = \overline{\{e^{i\phi(f)} : \operatorname{supp} f \subset W_{\mathrm{R}}\}}^{\mathrm{vN}}$ be the wedge-algebra. Take $\mathcal{H} \otimes \mathcal{H}$.

Theorem (T. arXiv:1301.6090, FOMS)

From the algebra generated by $\mathcal{M} \otimes \mathbb{C}\mathbb{1}$ and $e^{tQ \otimes Q}(\mathbb{C}\mathbb{1} \otimes \mathcal{M})e^{-tQ \otimes Q}$, one can obtain an interacting Haag-Kastler net, $t \in \mathbb{R} \setminus 2\pi\mathbb{Z}$. Federbush?

Proof of wedge-localization: $e^{sQ} \cdot e^{-sQ}$ is an **automorphism** of \mathcal{M} . **A variation**: Let ϕ be the massive **real** free field, φ an inner symmetric function, \mathcal{M} the wedge-algebra. One can construct an operator \tilde{R}_{φ} :

Theorem (T., Alazzawi-Lechner '17)

From the algebra generated by $\mathcal{M} \otimes \mathbb{C}\mathbb{1}$ and $\tilde{R}_{\varphi}(\mathbb{C}\mathbb{1} \otimes \mathcal{M})\tilde{R}_{\varphi}^*$, one can obtain an interacting Haag-Kastler net.

Proof of wedge-localization: $\Gamma(\varphi(P_1)) \cdot \Gamma(\varphi(P_1))^*$ implements an endomorphism of \mathcal{M} . $\tilde{R}_{\varphi} \cdot \tilde{R}_{\varphi}^*$ maps $\mathcal{M} \otimes \mathbb{C}\mathbb{1}$ into $\mathcal{M} \otimes \mathcal{B}(\mathcal{H})$.

Relations to CFT?

 ϕ : massive free field, \mathcal{M} : the wedge algebra.

- One obtaines a CFT (the Heisenberg algebra) by restricting to the lightray.
- $\Gamma(\varphi(P_1))$ implements a Longo-Witten endomorphism: $\Gamma(\varphi(P_1))\mathcal{M}\Gamma(\varphi(P_1))^* \subset \mathcal{M} \text{ and } \Gamma(\varphi(P_1))$ commutes with the lightlike translations.

Take an interacting (integrable) QFT. Consider the wedge algebra \mathcal{M} and the restriction to the lightray $a \in W_{\rm B}$. **Question**: How large is the lightlike intersection $\mathcal{M} \cap U(a)\mathcal{M}'U(a)^*$? If this is nontrivial, one obtains a chiral component of a CFT (Guido-Longo-Wiesbrock '98). Integrable perturbation of CFT?

an

Summary and open problems

- Some integrable QFT, including the sinh-Gordon model and other models with diagonal S-matrices (with CDD facctors), have been constructed in a mathematically satisfactory way.
- Some of them can be realized on the same Hilbert space as the free field, by twisting the observables in wedges, thus by "perturbing" the Heisenberg algebra (CFT).
- Complete the proof of modular nuclearity for nondiagonal S-matrices.
- Self-adjointness of the bound state operators (⇒ models with bound states).
- Study the lightlike intersection (\implies CFT from integrable models?).
- Wedge-algebras by free product (Longo-T.-Ueda '17), local observables?
- Nets on the de Sitter spacetime (cf. Barata-Jäkel-Mund), conserved charges, proof of integrability?