Construction of wedge-local nets of observables through Longo-Witten endomorphisms

> Yoh Tanimoto (arXiv:1107.2629, work in progress with M. Bischoff)

Department of Mathematics, University of Rome "Tor Vergata"

September 16th 2011, Pavia

Introduction

Historical problem

- Long standing open problem: interacting models in 4-dim
- Construction of nets of von Neumann algebras

Recent progress:

- Wedge-local net in 2-dim, based on a single von Neumann algebra and the modular theory (Borchers '92)
- Factorizing S-matrix models (Lechner '08).

Present approach:

- Chiral conformal net on S¹: many examples
- Endomorphisms of the half-line algebra (Longo-Witten '11)

Wedge-local nets (Borchers '92)

- Local net: von Neumann algebras $\mathcal{A}(O)$ parametrized by open regions O
- \bullet Wedge-local net: a single von Neumann algebra ${\mathcal M}$ acted on by spacetime translations

Definition

 \mathcal{M} : vN algebra, \mathcal{T} : positive-energy rep of \mathbb{R}^2 , Ω : vector, is a wedge-local net on 2-dim if Ω is cyclic and separating for \mathcal{M} and

• $\operatorname{Ad} T(a)(\mathcal{M}) \subset \mathcal{M}$ for $a \in W_{\mathbb{R}}$, $T(a)\Omega = \Omega$

 $\mathsf{Correspondence:} \ \mathcal{A}(\mathcal{W}_R) \Leftrightarrow \mathfrak{M}, \ \mathsf{where} \ \mathcal{W}_R := \{ a = (a_0, a_1) : |a_0| < a_1 \}.$

examples

• Factorizing S-matrix models (Lechner '06)

• Deformations (Buchholz-Lechner-Summers '10, Dybalski-T. '11, Lechner '11, etc.)

3

イロト イヨト イヨト イヨト

Scattering theory (Buchholz '75, Dybalski-T. '11)

Let $(\mathcal{M},\,\mathcal{T},\,\Omega)$ be a wedge-local net. We define asymptotic fields

$$\Phi^{\text{out}}_+(x) := \operatorname{s-lim}_{\mathfrak{I} \to \infty} \int dt \, h_{\mathfrak{I}}(t) \operatorname{Ad} U(t, t)(x),$$

where $h_{\mathcal{T}}$ has support around \mathcal{T} and $\int dt h_{\mathcal{T}}(t) = 1$. Similarly we define Φ^{in}_{\pm} . Note that if $x \in \mathcal{M}$ then, $\Phi^{\text{out}}_{\pm}(x)$ and $\Phi^{\text{in}}_{-}(x)$ stays in \mathcal{M} .

- The net is asymptotically complete if $\Phi^{out}_+(x)\Phi^{out}_-(y)\Omega$ spans \mathcal{H} .
- The net is **interacting** if $S \neq 1$ where

$$S \cdot \Phi^{\text{out}}_+(x) \Phi^{\text{out}}_-(y) \Omega = \Phi^{\text{in}}_+(x) \Phi^{\text{in}}_-(y) \Omega.$$

Main problem

Construct interacting wedge-local nets.

• • • • • • • • •

Chiral conformal net

Definition

A **conformal net** on S^1 is a map \mathcal{A} from the set of intervals in S^1 into the set of von Neumann algebras on \mathcal{H} which satisfies

- Isotony: $I \subset J \Rightarrow \mathcal{A}(I) \subset \mathcal{A}(J)$.
- Locality: $I \cap J \Rightarrow [\mathcal{A}(I), \mathcal{A}(J)] = 0.$
- Möbius covariance: $\exists U$: positive energy rep of $PSL(2, \mathbb{R})$ such that $AdU(g)\mathcal{A}(I) = \mathcal{A}(gI)$.
- Vacuum: $\exists \Omega$ such that $U(g)\Omega = \Omega$ and cyclic for $\mathcal{A}(I)$.

Many examples: U(1)-current (free massless boson), Free massless fermion, Virasoro nets (stress energy tensor), Loop group nets (noncommutative currents).

In the present work, important are the U(1)-current net and the free massless fermion which admit the Fock space structure.

- 4 同 ト 4 三 ト 4 三

Although there exist a plenty of conformal nets on S^1 , there is no notion of *interaction* for one-dimensional theory.

However, it is easy to construct a (noninteracting) two-dimensional net from a *pair* of nets on S^1 .

For two nets \mathcal{A}_+ , \mathcal{A}_- on S^1 , we define

- a chiral net on \mathbb{R}^2 : $\mathcal{A}(I \times J) := \mathcal{A}_+(I) \otimes \mathcal{A}_-(J)$
- a representation $U = U_+ \otimes U_-$ of $PSL(2, \mathbb{R}) \otimes PSL(2, \mathbb{R}) \supset \mathcal{P}_+^{\uparrow}$,
- the vacuum $\Omega = \Omega_+ \otimes \Omega_-$

A chiral net A is asymptotically complete, but not interacting (Dybalski-T. '11). Such nets with a simple tensor product structure can be considered as free theory in 2 dimensions.

э

イロト イヨト イヨト イヨト

General structure of asymptotically complete nets (T. '11)

If $(\mathcal{M},\,\mathcal{T},\,\Omega)$ is an asymptotically complete wedge-local net with S-matrix S, then

- $\mathcal{H} = \mathcal{H}_+ \otimes \mathcal{H}_-$
- $\Phi^{out}_+(x)$ and $\Phi^{out}_-(y)$ act like operators respectively on \mathcal{H}_+ and \mathcal{H}_- , hence they generate two nets \mathcal{A}^{out}_\pm on \mathbb{R} (if the net is *strictly local*, they are indeed conformal nets)
- $\mathcal{M} = \{x \otimes \mathbb{1}, S(\mathbb{1} \otimes y)S^* : x \in \mathcal{A}^{\text{out}}_+(\mathbb{R}_-), y \in \mathcal{A}^{\text{out}}_-(\mathbb{R}_+)\}''$

Furthermore, for the modular objects we have

- $\Delta = \Delta^{\text{out}} = \Delta^{\text{out}}_+ \otimes \Delta^{\text{out}}_-$
- $J = SJ^{\text{out}} = S \cdot J^{\text{out}}_+ \otimes J^{\text{out}}_-$

In other words, any interacting asymptotically complete net is a *twisting* of a chiral CFT by an operator S.

The search for interacting nets is reduced to the search for appropriate S.

Example: the U(1)-current net

The Weyl algebra

$$W(f)W(g) = \exp\left(-\frac{i}{2}\int f(t)g'(t)dt\right)W(f+g),$$

where $f, g \in C^{\infty}(\mathbb{R}, \mathbb{R})$ admits the vacuum representation π_0 on the Fock space $F(L^2(\mathbb{R}, dp))$ (there is a representation U of Möb which renders W covariant). One defines the U(1)-current net by

$$\mathcal{A}^{(0)}(I) = \{\pi_0(W(f)) : \operatorname{supp} f \subset I\}'',$$

where we identified \mathbb{R} with $S^1 \setminus \{-1\}$.

- The free massless bosonic field on 2 dimensions decomposes into the tensor product of two copies of the U(1)-current net.
- The Fock space structure allows to consider particle number.
- For a unitary V_1 on $L^2(\mathbb{R}, dp)$, one defines the second quantization $\Gamma(V_1) = \mathbb{1} \oplus V_1 \oplus (V_1 \otimes V_1) \otimes \cdots$

Definition

A Longo-Witten endomorphism of a net \mathcal{A} on S^1 is an endomorphism of $\mathcal{A}(\mathbb{R}_+)$ implemented by a unitary V commuting with translation T(t).

Simplest examples: AdT(s) for $s \ge 0$, inner symmetry (automorphism which preserves each local algebra $\mathcal{A}(I)$ and the vacuum state)

An **inner symmetric** function φ is the boundary value of a bounded analytic function on the upper-half plane with $|\varphi(p)| = 1, \varphi(p) = \overline{\varphi(-p)}$ for $p \in \mathbb{R}$. Example: $\varphi(p) = e^{i\kappa p}$ with $\kappa \ge 0, \frac{p-i\kappa}{p+i\kappa}$ with $\kappa > 0$

Theorem (Longo-Witten '11)

 $\mathcal{A}^{(0)}$: the U(1)-current net $V_{\varphi} := \Gamma(\varphi(P_1))$ implements a Longo-Witten endomorphism of $\mathcal{A}^{(0)}$, where P_1 is the generator of the translation on the one-particle space.

イロト イヨト イヨト イヨト

Construction of wedge-local nets

As we know the general structure of wedge-local nets, we only have to construct the scattering operator. For an inner symmetric function φ , set

•
$$\mathcal{H}^{n} := \mathcal{H}_{1}^{\otimes n}$$

• $P_{i,j}^{m,n} := (\mathbb{1} \otimes \cdots \otimes P_{1} \otimes \cdots \otimes \mathbb{1}) \otimes (\mathbb{1} \otimes \cdots \otimes P_{1} \otimes \cdots \otimes \mathbb{1}),$
acting on $\mathcal{H}^{m} \otimes \mathcal{H}^{n}, 1 \leq i \leq m$ and $1 \leq j \leq n.$
• $\varphi_{i,j}^{m,n} := \varphi(P_{i,j}^{m,n})$ (functional calculus on $\mathcal{H}^{m} \otimes \mathcal{H}^{n}).$
• $S_{\varphi} := \bigoplus_{m,n} \prod_{i,j} \varphi_{i,j}^{m,n}$

We can take the spectral decomposition of S_{φ} only with respect to the right component:

$$S_{\varphi} = \bigoplus_{n} \int \prod_{j} \Gamma(\varphi(p_{j}P_{1})) \otimes dE_{1}(p_{1}) \otimes \cdots \otimes dE_{1}(p_{n})$$

Note that the integrand is a unitary operator which implements a Longo-Witten endomorphism for any value of $p_j \ge 0$.

Construction of wedge-local nets

We set

Л

•
$$\mathcal{M}_{\varphi} := \{ x \otimes \mathbb{1}, S_{\varphi}(\mathbb{1} \otimes y) S_{\varphi}^* : x \in \mathcal{A}^{(0)}(\mathbb{R}_{-}), y \in \mathcal{A}^{(0)}(\mathbb{R}_{+}) \}''$$

• $T := T_0 \otimes T_0$

• $\Omega := \Omega_0 \otimes \Omega_0$

Theorem (T. '11)

 $(\mathcal{M}_{\varphi}, \mathsf{T}, \Omega)$ is an asymptotically complete wedge-local net with the S-matrix $S_{\varphi}.$

Proof) To see that it is a wedge-local net, what is nontrivial is the separating property of $\Omega.$ We set

$$\mathcal{M}^1_{\varphi} := \{S_{\varphi}(x \otimes \mathbb{1})S_{\varphi}^*, \mathbb{1} \otimes y : x \in \mathcal{A}^{(0)}(\mathbb{R}_+), y \in \mathcal{A}^{(0)}(\mathbb{R}_-)\}''$$

 $\mathfrak{l}_{\varphi} \text{ and } \mathcal{M}^1_{\varphi} \text{ commute since}$

$$S_{\varphi}(x \otimes \mathbb{1})S_{\varphi}^* = \bigoplus_n \int \operatorname{Ad}\left(\prod_j \Gamma(\varphi(p_j P_1))\right)(x) \otimes dE_1(p_1) \otimes \cdots dE_1(p_n).$$

Example: the complex free massless fermion

- $\mathcal{H}_1 := L^2(S^1)$ with the complex structure $I \cdot e_n = \operatorname{sign}(n)ie_n$
- *P*: the projection onto the space spanned by $\{e_n : n \ge 0\}$

On the fermionic Fock space $F(\mathfrak{H}_1)$, for $f \in \mathfrak{H}_1$, one defines

$$A(f)v = f \wedge v, \ \psi(f) = A(Pf) + A(P^{\perp}f)^*,$$

and the complex free fermionic net

$$\mathfrak{F}(I) := \{ \psi(f) : \operatorname{supp} f \subset I \}'',$$

which is a graded-local.

For $j =: \psi^* \psi$:, $W(f) = e^{ij(f)}$ satisfies the Weyl relation, hence \mathcal{F} contains the U(1)-current net as a subnet. There is an action of U(1) on \mathcal{F} determined by $\alpha_z(\psi(f)) = \psi(zf)$.

Fact

The U(1)-current subnet $\mathcal{A}^{(0)}$ is the fixed point of \mathcal{F} with respect to α .

Endomorphisms on $\ensuremath{\mathcal{F}}$

The one-particle space \mathcal{H}_1 has multiplicity 2 as the (projective) representation space of Möb, $P\mathcal{H}_1 \oplus P^{\perp}\mathcal{H}_1$.

Let φ be an inner (not necessarily symmetric) function. As an application of Longo-Witten '11, one sees that the unitary operator

$$\tilde{\varphi}(P,+) := \begin{pmatrix} \varphi(P) & 0 \\ 0 & \check{\varphi}(P) \end{pmatrix}, \quad \tilde{\varphi}(P,-) := \begin{pmatrix} \check{\varphi}(P) & 0 \\ 0 & \varphi(P) \end{pmatrix}$$

implements an endomorphism of $L^2(\mathbb{R}_+)$, hence the second quantization $\Gamma(\tilde{\varphi}(P, \pm))$ implements a Longo-Witten endomorphism of \mathfrak{F} .

Theorem (Bischoff-T, in preparation)

 $\Gamma(\tilde{\varphi}(P,\pm))$ commutes with the gauge action. Hence the endomorphism $\mathrm{Ad}\Gamma(\tilde{\varphi}(P,\pm))$ restricts to the fixed point subnet $\mathcal{A}^{(0)}$ and it is not implemented by any second quantization operator for a generic φ .

- 4 同 6 4 日 6 4 日

Wedge-local nets with particle production

We set

$$S_{\varphi} := \bigoplus_{n} \int \prod_{j} \Gamma(\widetilde{\varphi}(p_{j}P_{1}, \iota)) \otimes dE_{1}(p_{1}, \iota) \otimes \cdots \otimes dE_{1}(p_{n}, \iota)$$

- $\mathcal{N}_{\varphi} := \{ x \otimes \mathbb{1}, S_{\varphi}(\mathbb{1} \otimes y) S_{\varphi}^* : x \in \mathcal{A}^{(0)}(\mathbb{R}_-), y \in \mathcal{A}^{(0)}(\mathbb{R}_+) \}''$ • $T := T_0 \otimes T_0$
- $\Omega := \Omega_0 \otimes \Omega_0$

Theorem (Bischoff-T, in preparation)

 $(\mathcal{N}_{\varphi}|_{\mathcal{H}^{\alpha}}, \mathcal{T}|_{\mathcal{H}^{\alpha}}, \Omega)$ is an asymptotically complete wedge-local net with the S-matrix $S_{\varphi}|_{\mathcal{H}^{\alpha}}$, with the asymptotic algebra $\mathcal{A}^{(0)} \otimes \mathcal{A}^{(0)}$. The space $\mathcal{H}_1 \otimes \mathcal{H}_1$ is not preserved by S_{φ} for a generic φ , hence it represents particle production.

• • • • • • • • •

Summary

- General structure of two-dimensional massless asymptotically complete nets
- ${\scriptstyle \bullet }$ New Longo-Witten type endomorphisms on the $U(1)\mbox{-}current$ net
- Interacting wedge-local nets, some with particle production

Open problems

- Further examples with different asymptotic algebra
- Strict locality
- Massive analogue