Deformation of chiral conformal field theory

Yoh Tanimoto

Department of Mathematics, University of Rome "Tor Vergata"

June 1st, 2011, Paris

Introduction: Quantum field theory

- Quantum Field Theory treats infinite particles.
- Physicists calculate observable quantities by perturbation.

Main problem

No interacting consistent model in 4 spacetime dimensions.

- Different approaches: Operator-valued distributions, *n*-point functions, **von Neumann algebraic**.
- Recently, examples in 2 dimensions have been constructed by algebraic approach (Lechner '08).

Main results

- New candidate of interacting examples in 2 dimensions
- First steps towards classification

Introduction: Algebraic QFT

We consider a **family of von Neumann algebras** $\{A(O)\}$ parametrized by bounded regions $\{O\}$: "physical quantities measured in O".

Definition

A local net \mathcal{A} of observables is a map $\mathbb{R}^2 \supset O \longmapsto \mathcal{A}(O) \subset B(\mathcal{H})$ such that

- $O_1 \subset O_2 \Rightarrow \mathcal{A}(O_1) \subset \mathcal{A}(O_2)$
- \mathcal{O}_1 and \mathcal{O}_2 are causally disjoint $\Rightarrow [\mathcal{A}(\mathcal{O}_1), \mathcal{A}(\mathcal{O}_2)] = 0$
- \exists rep U of Poincaré group \mathcal{P}^{\uparrow}_+ such that $U(g)\mathcal{A}(O)U(g)^* = \mathcal{A}(gO)$
- $U|_{\mathbb{R}^2}$ has joint spectrum contained in V_+
- $\exists \Omega \in \mathcal{H}$ such that $U(g)\Omega = \Omega$, and cyclic for $\mathcal{A}(\mathcal{O})$
- Possible to define interaction
- Difficult to construct interacting examples

Introduction: Wedge-local QFT

The standard right wedge $W_R := \{a = (a_0, a_1) : |a_0| < a_1\}.$

Definition

A wedge-local net (Borchers triple) is a triple of a single von Neumann algebra \mathcal{M} , a rep U of \mathbb{R}^2 with spectrum condition and Ω such that

•
$$\mathfrak{M}(a):=U(a)\mathfrak{M}U(a)^*\subset\mathfrak{M}$$
 for $a\in W_{\mathrm{R}}$

•
$$U(a)\Omega = \Omega$$

Example

Let $(\mathcal{A}, \mathcal{U}, \Omega)$ be a local net. Then $(\mathcal{A}(\mathcal{W}_R), \mathcal{U}, \Omega)$ is a wedge-local net.

If (\mathcal{M}, U, Ω) is a wedge-local net, then U extends to $\mathcal{P}^{\uparrow}_{+}$ and (\mathcal{A}, U, Ω) where $\mathcal{A}(D_{a,b}) := \mathcal{M}(a) \cap \mathcal{M}(b)$ satisfies the condition of local net **except the cyclicity of** Ω .

イロト 不得下 イヨト イヨト

æ

<ロ> (日) (日) (日) (日) (日)

We define asymptotic fields

$$\Phi^{\text{out}}_{\pm}(x) := \operatorname{s-lim}_{\mathcal{T} \to \infty} \int dt \, h_{\mathcal{T}}(t) \operatorname{Ad} U(t, \pm t)(x),$$

where h_T has support around T and $\int dt h_T(t) = 1$. Similarly we define $\Phi^{\rm in}_{\pm}$.

The **S-matrix** is defined by:

$$S \cdot \Phi^{\text{out}}_+(x) \Phi^{\text{out}}_-(y) = \Phi^{\text{in}}_+(x) \Phi^{\text{in}}_-(y).$$

If S is not a multiple of 1, then we say the net A is **interacting**.

Problems

- To construct interacting local net
- To show that the intersection is "sufficiently large"

Results

- Construct several families of interacting wedge-local nets
- Explicit calculation of intersection of some of such families

- One considers a net A₀ on S¹ = ℝ ∩ {∞}, without the notion of interaction, with Möbius = PSL(2, ℝ) symmetry U₀ and Ω₀.
- \mathcal{A}_0 assigns to each interval $I \subset \mathbb{R}$ a von Neumann algebra $\mathcal{A}_0(I)$ satisfying several conditions.
- With \mathcal{A}_0 , one can construct a two-dimensional net.
- A chiral conformal net with a component \mathcal{A}_0 is defined as follows $\mathcal{A}(I \times J) = \mathcal{A}_0(I) \otimes \mathcal{A}_0(J)$, a representation $U = U_0 \otimes U_0$ of $\mathrm{PSL}(2,\mathbb{R}) \otimes \mathrm{PSL}(2,\mathbb{R}) \supset \mathcal{P}_+^{\uparrow}$, $\Omega = \Omega_0 \otimes \Omega_0$. A chiral net \mathcal{A} is not interacting.
- It is possible to construct from A an **interacting** wedge-local net (Buchholz-Lechner-Summers '10).

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

•
$$(\mathcal{A}_0, \mathit{U}_0, \Omega_0)$$
: a net on S^1 , $\mathit{U}_0(au(t)) = e^{it P_0}$: translation

Theorem

For $\kappa \geq 0$, the triple

- $\mathfrak{M} := \{ \mathrm{Ad} e^{i\kappa P_0 \otimes P_0}(x \otimes \mathbb{1}), \mathbb{1} \otimes y : x \in \mathcal{A}(\mathbb{R}_+), y \in \mathcal{A}(\mathbb{R}_-) \}'',$
- $U := U_0 \otimes U_0$,
- $\Omega = \Omega_0 \otimes \Omega_0$

is an **interacting** wedge-local net with S-matrix $S = e^{i2\kappa P_0 \otimes P_0}$. It coincides with the BLS-deformation.

Proof: Use $e^{i\kappa P_0 \otimes P_0} = \int e^{i\kappa t P_0} \otimes dE_0(t)$ to show that Ω is separating for \mathcal{M} . Note that $\operatorname{Ad} e^{i\kappa t P_0}$ is an **endomorphism** of $\mathcal{A}_0(\mathbb{R}_+)$. We have $\operatorname{Ad} e^{i\kappa P_0 \otimes P_0}(x \otimes 1) = \int \operatorname{Ad} e^{i\kappa t P_0}(x) \otimes dE_0(t)$, which commutes with $z \otimes 1, z \in \mathcal{A}_0(\mathbb{R}_-)$.

•
$$(\mathcal{A}_0, U_0, \Omega_0)$$
: a net on S^1 .

• Let e^{isQ_0} , $s \in \mathbb{R}$ be a periodic inner symmetry: Ad $e^{isQ_0}(\mathcal{A}_0(I)) = \mathcal{A}_0(I)$, $e^{isQ_0}\Omega_0 = \Omega_0$.

Theorem

The triple

- $\mathcal{M} := \{ \mathrm{Ad} e^{i\kappa Q_0 \otimes Q_0}(x \otimes \mathbb{1}), \mathbb{1} \otimes y : x \in \mathcal{A}(\mathbb{R}_+), y \in \mathcal{A}(\mathbb{R}_-) \}'',$
- $U := U_0 \otimes U_0$,
- $\Omega = \Omega_0 \otimes \Omega_0$

is a **interacting** wedge-local net with S-matrix $S = e^{i2\kappa Q_0 \otimes Q_0}$.

It is possible to determine the strictly local elements.

Theorem

If $\alpha_s = Ade^{isQ_0}$ is periodic and A_0 satisfies a technical condition, then it holds that

$$\mathcal{A}(D_{\mathsf{a},b}):=\mathfrak{M}_{\mathcal{Q}_{0},\kappa}(\mathsf{a})\cap\mathfrak{M}_{\mathcal{Q}_{0},\kappa}(b)'=\mathcal{A}_{0}(I)^{lpha_{\kappa}}\otimes\mathcal{A}_{0}(J)^{lpha_{\kappa}}$$

If we let $\overline{\mathcal{A}_0(I)^{\alpha_\kappa} \otimes \mathcal{A}_0(J)^{\alpha_\kappa} \Omega} =: \mathfrak{H}_{\mathcal{A}}$, we have $S|_{\mathfrak{H}_{\mathcal{A}}} = \mathbb{1}|_{\mathfrak{H}_{\mathcal{A}}}$.

Constructions through Longo-Witten endomorphisms

- \mathcal{A}_0 : U(1)-current net (Weyl algebra on the symmetric Fock space).
- φ(p) = e^{-i/p}: an inner symmetric function (the boundary value of an analytic function on the upper-half plain).
- $\Gamma(\varphi(P_0)) := \mathbb{1} \oplus \varphi(P_0) \oplus (\varphi(P_0) \otimes \varphi(P_0)) \oplus \cdots$: the second quantization. Put $e^{isQ_0} = \Gamma(\varphi(P_0/s))$.

Theorem (Longo-Witten)

$$e^{i\kappa Q_0}\mathcal{A}_0(\mathbb{R}_+)e^{-i\kappa Q_0}\subset \mathcal{A}_0(\mathbb{R}_+)$$
 for $\kappa\geq 0$.

Theorem

For $\kappa \geq 0$, the triple $\mathfrak{M} := \{ \operatorname{Ad} e^{i\kappa Q_0 \otimes Q_0}(x \otimes \mathbb{1}) \cdots \}'', U, \Omega \text{ is an interacting wedge-local net with S-matrix } S = e^{i2\kappa Q_0 \otimes Q_0}.$

イロト 不得下 イヨト イヨト 二日

For a more general inner function φ , $(\mathcal{M} := {AdS(x \otimes 1) \cdots }'', U, \Omega)$ is a wedge-local net, where ...

•
$$\mathcal{H}^{n} := \mathcal{H}_{0}^{\otimes n}, \mathcal{H}^{m,n} := \mathcal{H}^{m} \otimes \mathcal{H}^{n}$$

• $\mathcal{H}^{\Sigma,\Sigma} = \bigoplus_{m,n=0}^{\infty} \mathcal{H}^{m,n}.$
• $P_{i,j}^{m,n} := (\mathbbm{1} \otimes \cdots \otimes P_{0} \otimes \cdots \otimes \mathbbm{1}) \otimes (\mathbbm{1} \otimes \cdots \otimes P_{0} \otimes \cdots \otimes \mathbbm{1}),$
acting on $\mathcal{H}^{m,n}, 1 \le i \le m$ and $1 \le j \le n.$
• $\varphi_{i,j}^{m,n} := \varphi(P_{i,j}^{m,n})$ (functional calculus on $\mathcal{H}^{m,n}$).
• $S^{m,n} := \prod_{i,j} \varphi_{i,j}^{m,n}$ (component of the S-matrix)
• $S^{\Sigma,n} := \bigoplus_{m} S^{m,n}$
• $S := \bigoplus_{m,n} S^{m,n} = \bigoplus_{m} \prod_{i,j} \varphi(P_{i,i}^{m,n})$

- S-matrix S is an invariant of a net \mathcal{A}
- Asymptotic fields Φ^{out}_{\pm} generate a chiral CFT $\mathcal{A}^{out}_0 \otimes \mathcal{A}^{out}_0$ (another invariant).

Theorem

If the net \mathcal{A} is asymptotically complete and satisfies standard asymptotics (Bisognano-Wichmann property), then $\mathcal{A}(W_R) = \mathcal{A}_0^{out}(\mathbb{R}_+) \vee S\mathcal{A}_0^{out}(\mathbb{R}_-)S^*.$

In other words, S-matrix and asymptotic fields consist a complete invariant.

Results:

- New procedure to produce wedge-local QFT
- S-matrix and chiral component as complete invariants

Open problems:

- To find examples with large intersection
- Classification of two-dimensional massless theories