Half-sided modular inclusions (and free products in AQFT) YOH TANIMOTO (joint work with Roberto Longo, Yoshimichi Ueda)

1. Conformal Nets on the circle

In two-dimensional conformal field theory on the Minkowski space, important observables such as currents and stress-energy tensor decompose into the so-called chiral components, which are quantum fields living on one of the lightrays. These chiral components extends further to the circle (the one-point compactification of the lightray) (the Lüscher-Mack theorem, see [FST89, Section 3.2]). It turns out that operator algebras are useful in constructing such chiral components.

In the operator-algebraic approach, such a chiral component is realized as a **Möbius covariant net** on S^1 : a family $\{\mathcal{A}(I)\}_{I \subset S^1}$ of von Neumann algebras parametrized by open, proper, connected and non empty intervals in S^1 , a unitary representation U of the Möbius group $PSL(2, \mathbb{R})$ and the "vacuum" vector Ω invariant for U, which satisfy the Haag-Kastler axioms, namely, isotony, locality, Möbius covariance, positivity of energy and cyclicity of the vacuum [GF93, Definition 2.5].

It follows from these axioms that Ω is cyclic and separating for each algebra $\mathcal{A}(I)$ (Reeh-Schlieder property), hence we can define the modular objects:

$$S_I: \mathcal{A}(I)\Omega \ni x\Omega \longmapsto x^*\Omega,$$

whose closure is still denoted by S_I and $S_I = J_I \Delta_I^{\frac{1}{2}}$ is the polar decomposition.

Let us recall that the lightray \mathbb{R} is identified as a subset of S^1 by the stereographic projection. With this identification, the positive half-line \mathbb{R}_+ is an interval in S^1 . For a Möbius covariant net, the Bisognano-Wichmann property holds [GF93, Theorem 2.19]: $\Delta_{\mathbb{R}_+}^{it} = U(D_{\mathbb{R}_+}(2\pi t))$, where $D_{\mathbb{R}_+}$ is the one-parameter subgroup of dilations of PSL(2, \mathbb{R}), which clearly preserves \mathbb{R}_+ . Now, observe that, by covariance, it holds that $\operatorname{Ad} \Delta^{it}(\mathcal{A}(\mathbb{R}_+ + 1)) \subset \mathcal{A}(\mathbb{R}_+ + 1)$ for $t \geq 0$. This inclusion of algebras, called a half-sided modular inclusion, turns out to contain much information of the given net.

2. Half-sided modular inclusions

Let $\mathcal{N} \subset \mathcal{M}$ be von Neumann algebras and Ω be a vector cyclic and separating for both \mathcal{N} and \mathcal{M} . We can then define the modular group $\Delta_{\mathcal{M}}^{it}$ of \mathcal{M} with respect to Ω . This triple ($\mathcal{N} \subset \mathcal{M}, \Omega$) is said to be a **half-sided modular inclusion** (HSMI) if $\operatorname{Ad} \Delta_{\mathcal{M}}^{it}(\mathcal{N}) \subset \mathcal{N}$ for $t \geq 0$. From this simple object, many interesting properties follow, among which is that $\Delta_{\mathcal{M}}^{it}$ and $\Delta_{\mathcal{N}}^{is}$ generate a positiveenergy representation of the translation-dilation group [Wie93] [AZ05, Theorem 2.1]. Moreover, if Ω is cyclic for $\mathcal{N}' \cap \mathcal{M}$ (\mathcal{N}' is the set of all bounded operators commuting with \mathcal{N}), this inclusion is said to be **standard**.

Let (\mathcal{A}, U, Ω) be a Möbius covariant net. It is said to be **strongly additive** if $\mathcal{A}(I_1) \vee \mathcal{A}(I_2) = \mathcal{A}(I)$ holds, where I_1 and I_2 are two intervals made from an interval

I by removing one point, and $\mathcal{A}(I_1) \vee \mathcal{A}(I_2)$ denotes the von Neumann algebra generated by $\mathcal{A}(I_1)$ and $\mathcal{A}(I_2)$. There is a one-to-one correspondence between

- Standard half-sided modular inclusions $(\mathcal{N} \subset \mathcal{M}, \Omega)$
- Strongly additive Möbius covariant nets (\mathcal{A}, U, Ω)

and the correspondence is given by $\mathcal{N} = \mathcal{A}(\mathbb{R}_+ + 1), \mathcal{M} = \mathcal{A}(\mathbb{R}_+)$ [GLW98, Corollary 1.9].

This correspondence allows one to construct new Möbius covariant nets from standard HSMIs. For example, consider the Virasoro nets Vir_c with c > 1 (the nets generated by the stress-energy tensor only). They are known not to be strongly additive [BSM90, Section 4], therefore, from the standard HSMI ($\mathcal{N} = \operatorname{Vir}_c(\mathbb{R}_+ + 1), \mathcal{M} = \operatorname{Vir}_c(\mathbb{R}_+), \Omega$) one obtains a Möbius covariant net \mathcal{A} which is different from Vir_c . These nets have not been identified with any known Möbius covariant net.

Another construction goes as follows: for a given Möbius covariant net \mathcal{A} , one considers its restriction $\mathcal{A}|_{\mathbb{R}}$ to the real line \mathbb{R} . If one takes a KMS state φ on $\mathcal{A}|_{\mathbb{R}}$ and makes the GNS representation π_{φ} with the GNS vector Ω_{φ} , with respect to the translation group, then the inclusion $(\pi_{\varphi}(\bigcup_{I \in \mathbb{R}_+} \mathcal{A}(I)) \subset \pi_{\varphi}(\bigcup_{I \in \mathbb{R}} \mathcal{A}(I))'', \Omega_{\varphi})$ is a standard HSMI, and hence one can construct a Möbius covariant net [Lon01, Proposition 3.2]. We have constructed continuously many different KMS states on Vir_c, $c \geq 1$ [CLTW12, Section 5], therefore, from these standard HSMIs one can construct (possibly new) Möbius covariant nets.

Problem 2.1. Determine whether these Möbius covariant nets are isomorphic to any known net.

3. Non standard HSMI from free products

If \mathcal{A} is a Haag-Kastler net in 1 + 1 or more dimensions with the Bisognano-Wichmann property (meaning that the modular group is the Lorentz boost), then $(\mathcal{A}(W + a) \subset \mathcal{A}(W), \Omega)$ is a half-sided modular inclusion, where W is a wedge region and a is a past lightlike vector in W. It is in general a difficult problem to determine whether such a given HSMI is standard or not, if \mathcal{A} is not the free field net. Some successful cases are those coming from two-dimensional interacting nets [Tan14], and they are some fixed point subnets of the tensor product of the so-called U(1)-current net [BT15, Section 5.3]. Many other cases are open.

Problem 3.1. Determine whether the HSMIs coming from the interacting nets of [Lec08] are standard.

Now it is a natural question whether there is a HSMI ($\mathcal{N} \subset \mathcal{M}, \Omega$) where $\mathcal{N}' \cap \mathcal{M}$ is trivial, i.e. containing only the multiples of the identity operator. We answer this positively by constructing an example from free products [LTU17].

A free product of a family of von Neumann algebras $\{\mathcal{M}_k\}_{k\in K}$ with respect to cyclic and separating vectors $\{\Omega_k\}_{k\in K}$ is a large von Neumann algebra containing isomorphic images of all \mathcal{M}_k 's which are highly non commutative, and equipped with a cyclic separating vector Ω [Voi85]. One can determine the modular objects of (\mathcal{M}, Ω) in terms of those of $(\mathcal{M}_k, \Omega_k)$ [Bar95, Lemma 1].

Let $(\mathcal{N}_0 \subset \mathcal{M}_0, \Omega_0)$ be a standard HSMI and $\{(\mathcal{N}_k \subset \mathcal{M}_k, \Omega_k)\}_{k \in K}$ isomorphic copies of $(\mathcal{N}_0 \subset \mathcal{M}_0, \Omega_0)$. We can then construct an inclusion of the free product von Neumann algebras $(\mathcal{N} \subset \mathcal{M}, \Omega)$. As the modular objects are known, it is immediate to see that this is a HSMI.

Theorem 3.1. If $|K| = \infty$, then for the free product HSMI ($\mathcal{N} \subset \mathcal{M}, \Omega$), $\mathcal{N}' \cap \mathcal{M}$ is trivial.

Problem 3.2. Determine $\mathcal{N}' \cap \mathcal{M}$ when $|K| < \infty$, and if it is nontrivial, study the corresponding Möbius covariant net.

References

- [AZ05] Huzihiro Araki and László Zsidó. Extension of the structure theorem of Borchers and its application to half-sided modular inclusions. *Rev. Math. Phys.*, 17(5):491-543, 2005. https://arxiv.org/abs/math/0412061.
- [Bar95] Lance Barnett. Free product von Neumann algebras of type III. Proc. Amer. Math. Soc., 123(2):543-553, 1995. http://www.ams.org/journals/proc/1995-123-02/ S0002-9939-1995-1224611-7/S0002-9939-1995-1224611-7.pdf.
- [BT15] Marcel Bischoff and Yoh Tanimoto. Integrable QFT and Longo-Witten endomorphisms. Ann. Henri Poincaré, 16(2):569–608, 2015. https://arxiv.org/abs/1305.2171.
- [BSM90] Detlev Buchholz and Hanns Schulz-Mirbach. Haag duality in conformal quantum field theory. Rev. Math. Phys., 2(1):105-125, 1990. https://www.researchgate.net/ publication/246352668.
- [CLTW12] Paolo Camassa, Roberto Longo, Yoh Tanimoto, and Mihály Weiner. Thermal States in Conformal QFT. II. Comm. Math. Phys., 315(3):771-802, 2012. https://arxiv.org/abs/ 1109.2064.
- [FST89] P. Furlan, G. M. Sotkov, and I. T. Todorov. Two-dimensional conformal quantum field theory. *Riv. Nuovo Cimento (3)*, 12(6):1-202, 1989. link.springer.com/content/pdf/10. 1007/BF02742979.pdf.
- [GF93] Fabrizio Gabbiani and Jürg Fröhlich. Operator algebras and conformal field theory. Comm. Math. Phys., 155(3):569-640, 1993. http://projecteuclid.org/euclid.cmp/ 1104253398.
- [GLW98] D. Guido, R. Longo, and H.-W. Wiesbrock. Extensions of conformal nets and superselection structures. Comm. Math. Phys., 192(1):217-244, 1998. https://arxiv.org/abs/ hep-th/9703129.
- [Lec08] Gandalf Lechner. Construction of quantum field theories with factorizing S-matrices. Comm. Math. Phys., 277(3):821-860, 2008. http://arxiv.org/abs/math-ph/0601022.
- [Lon01] Roberto Longo. Notes for a quantum index theorem. Comm. Math. Phys., 222(1):45-96, 2001. https://arxiv.org/abs/math/0003082.
- [LTU17] Roberto Longo, Yoh Tanimoto, and Yoshimichi Ueda. Free products in AQFT. 2017. https://arxiv.org/abs/1706.06070.
- [Tan14] Yoh Tanimoto. Construction of two-dimensional quantum field models through Longo-Witten endomorphisms. Forum Math. Sigma, 2:e7, 31, 2014. https://arxiv.org/abs/1301. 6090.
- [Voi85] Dan Voiculescu. Symmetries of some reduced free product C*-algebras. In Operator algebras and their connections with topology and ergodic theory (Buşteni, 1983), volume 1132 of Lecture Notes in Math., pages 556-588. Springer, Berlin, 1985. http://dx.doi.org/ 10.1007/BFb0074909.
- [Wie93] Hans-Werner Wiesbrock. Half-sided modular inclusions of von-Neumann-algebras. Comm. Math. Phys., 157(1):83-92, 1993. https://projecteuclid.org/euclid.cmp/ 1104253848.