Towards Construction of Integrable QFT with Bound States (partly with D. Cadamuro, arXiv:1502.01313)

Yoh Tanimoto

JSPS SPD fellow, Tokyo

July 16th 2015, Rome, 14th Marcel Grossmann Meeting

Nonperturbative Quantum Field Theory

- Nonperturbative construction of QFT is hard.
- "What is Quantum Field Theory? I have no idea." (N. Seiberg)

Computing all correlation functions

- $F(x_1, \dots, x_n) = \langle \Omega, \phi(x_1) \dots \phi(x_n) \Omega \rangle$: Wightman functions
- Constructive QFT: $\mathcal{P}(\phi)_2$ models (Glimm-Jaffe), Sine-Gordon (Fröhlich-Seiler),...

Integrable QFT

- Factorizing S-matrix (Zamolodchikov-Zamolodchikov): Sine-Gordon, Sinh-Gordon, O(N)- σ models, Toda field theories...
- Compute form factors: $\langle p_1, \cdots, p_n | \phi(x) | q_1, \cdots q_m \rangle$ and expand $F(x_1, x_2) = \sum \int \langle \Omega, \phi(x_1) p_1, \cdots p_n \rangle \langle p_1, \cdots, p_n \phi(x_2) \Omega \rangle$.
- Problem: convergence of the expansion.

Alternative strategy

- Pointlike field are hard. Larger regions have better observables.
- (left-)Wedge: $W_L := \{(t, x) : x < |t|\}.$

Wedge-local fields in integrable models (Schroer, Lechner)

- S: factorizing S-matrix.
- z^{\dagger}, z : Zamolodchikov-Faddeev algebra (creation and annihilation operators defined on *S*-symmetric Fock space).
- $\phi(f) = z^{\dagger}(f^{+}) + z(J_{1}f^{-})$, supp $f \subset W_{L}$, is localized in W_{L} .

The full QFT (without bound states)

- The observables $\mathcal{A}(W_{\mathrm{L}})$ in W_{L} are generated by $\phi(f)$.
- For diamonds $D_{a,b}$, define $\mathcal{A}(D_{a,b}) = \mathcal{A}(W_L + a) \cap \mathcal{A}(W_R + b)$.
- Examine the **boost operator** in order to show the existence of local operators (modular nuclearity (Buchholz, D'antoni, Longo, Lechner)).

Standard wedge and double cone

Factorizing S-matrix models (Schroer, Lechner)

• **Input**: meromorphic function $S: \mathbb{R} + i(0, \pi) \to \mathbb{C}$,

$$\overline{S(\theta)} = S(\theta)^{-1} = S(-\theta) = S(\theta + \pi i), \ \theta \in \mathbb{R}.$$

• *S*-symmetric Fock space: $\mathcal{H}_1 = L^2(\mathbb{R}, d\theta)$, $\mathcal{H}_n = P_n \mathcal{H}_1^{\otimes n}$, where P_n is the projection onto *S*-symmetric functions:

$$\Psi_n(\theta_1,\cdots,\theta_n)=S(\theta_{k+1}-\theta_k)\Psi_n(\theta_1,\cdots,\theta_{k+1},\theta_k,\cdots,\theta_n).$$

 Zamolodchikov-Faddeev algebra: S-symmetrized creation and annihilation operators

$$\begin{split} z^{\dagger}(\xi) &= P a^{\dagger}(\xi) P, \quad z(\xi) = P a(\xi) P, \quad P = \bigoplus_{n} P_{n}, \\ (a^{\dagger}(\xi) \Psi_{n})(\theta_{1}, \cdots, \theta_{n+1}) &= \xi(\theta_{1}) \Psi_{n}(\theta_{2}, \cdots, \theta_{n+1}). \end{split}$$

If S has **no pole**, then $\phi(f) = z^{\dagger}(f^{+}) + z(J_{1}f^{-})$ and the reflected field $J\phi(g)J$ commute (Lechner '04).

The bound state operator

S: two-particle S-matrix, **simple poles** at $\frac{\pi i}{3}$, $\frac{2\pi i}{3}$, bootstrap equation

$$S(\theta) = S\left(\theta + \frac{\pi i}{3}\right) S\left(\theta - \frac{\pi i}{3}\right).$$

 P_n : S-symmetrization, $\mathcal{H}=\bigoplus P_n\mathcal{H}_1^{\otimes n},\ \mathcal{H}_1=L^2(\mathbb{R}),$

$$Dom(\chi_1(f)) := H^2\left(-\frac{\pi}{3}, 0\right)$$

$$(\chi_1(f))\xi(\theta) := \sqrt{2\pi|R|}f^+\left(\theta + \frac{\pi i}{3}\right)\xi\left(\theta - \frac{\pi i}{3}\right),$$

$$R = \operatorname{Res}_{\zeta = \frac{2\pi i}{3}}S(\zeta),$$

where $H^2(\alpha, \beta)$ is the space of analytic functions in $\mathbb{R} + i(\alpha, \beta)$ such that $\xi(\cdot - \gamma i)$ is uniformly bounded in L^2 -norm, $\gamma \in (\alpha, \beta)$, and f^+ is analytic.

$$\chi_n(f) = nP_n (\chi_1(f) \otimes I \otimes \cdots \otimes I) P_n,$$

 $\chi(f) := \bigoplus \chi_n(f).$

Wedge-local fields and weak commutativity

The CPT operator: $(J_n\Psi_n)(\theta_1,\cdots,\theta_n)=\overline{\Psi_n(\theta_n,\cdots,\theta_1)}$.

New field:

$$\widetilde{\phi}(f) := \phi(f) + \chi(f) = z^{\dagger}(f^+) + \chi(f) + z(J_1f^-),$$

and the **reflected field**: $\widetilde{\phi}'(g) := J\widetilde{\phi}(g^j)J$, $g^j(x) = \overline{g(-x)}$.

Theorem (Cadamuro-T. arXiv:1502.01313)

For real $f, g, \operatorname{supp} f \subset W_L, \operatorname{supp} g \subset W_R$, then

$$\langle \widetilde{\phi}(f)\Phi, \widetilde{\phi}'(g)\Psi \rangle = \langle \widetilde{\phi}'(g)\Phi, \widetilde{\phi}(f)\Psi \rangle, \ \ \Phi, \Psi \in \mathrm{Dom}(\widetilde{\phi}(f)) \cap \mathrm{Dom}(\widetilde{\phi}'(g)).$$

Strong commutativity remains open.

Modular nuclearity can be proved if one assumes strong commutativity: One has to estimate the complex boost $\Psi_n(\underline{\theta} - \frac{\pi i}{2})$, which follows from the definition of the domain of $\chi(f)$.

Summary

- input: two-particle factorizing S-matrix with poles
- new field $\widetilde{\phi}(f) = \phi(f) + \chi(f)$
- weak commutativity
- modular nuclearity (by assuming strong commutation)
- \bullet some features of $\widetilde{\phi}(f)$: no polynomial Reeh-Schlieder property, no energy bound, non-temperateness

Open problems

- strong commutativity
- non-scalar models (Sine-Gordon, Z(N)-Ising...): weakly commuting fields are available. Strong commutativity and modular nuclearity are more difficult.

