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We review recent operator-algebraic constructions of quantum field theories, especially
of two-dimensional integrable models. In the operator-algebraic approach, a model of

quantum field theory is realized as a net of von Neumann algebras associated to space-

time regions. A key idea in the recent developments is to construct first the observables
localized in wedge-shaped regions, then to define the algebras for double cones by inter-

section.

Up to now, these constructions are limited to the class of S-matrices whose compo-
nents are analytic in rapidity in the physical strip. We present candidates for observables

in wedge regions for scalar factorizing S-matrices with poles in the physical strip. We dis-
cuss the self-adjointness of these candidate operators and strong commutativity between

them.
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1. Operator-algebraic approach to QFT

A mathematically consistent construction of Quantum Field Theories (QFT) is a

hard task: On the one hand, the conventional perturbation theory has been phe-

nomenologically very successfully and is well-understood as formal power series.3

On the other hand, it has been argued that Quantum Electrodynamics, a represen-

tative QFT, has divergent perturbative series in coupling constant.7

A program called Constructive QFT8 has been quite successful in constructing

models of QFT in two- and three-dimensional spacetimes. These models fit into

mathematically sound frameworks (Wightman, Osterwalder-Schrader and Haag-

Kastler axioms) and are shown to be different from the physically trivial free the-

ories. However, no nontrivial model has been constructed in the physical four

dimensions.

Several progresses have been made in the last decade in the operator-algebraic

framework (Haag-Kastler nets). A central idea is that, while an interacting local

quantum fields can be very complicated objects, an infinitely-extended spacetime

region can accommodate observables which have moderate behaviors in the momen-

tum space. Especially, Schroer proposed the use of so-called wedge-local fields for a

class of integrable QFT in two dimensions.14 Lechner took these wedge-local fields

as a starting point and constructed Haag-Kastler nets for a family of integrable

QFT.11 See 12 a more detailed review.

This program has been extended to several directions. Models with multiple

particle spectrum have been also studied,13 but the existence proof of local observ-

ables is at the moment still missing.1 Given a model with global gauge symmetry,
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a purely operator-algebraic method to obtain new models has been developed.16

Relations between massless models and conformal field theories have been also in-

vestigated.2,15 The novel result in this review is some progress in models with bound

states, or with S-matrices which have poles in the physical strip.5

2. Haag-Kastler nets

In the traditional axiomatic QFT, one considers a Wightman field φ, which is an

operator-valued distribution φ on the spacetime Rd. It represents pointwise lo-

calized observables. For a spacetime region O, one takes the algebra of operators

A(O) := {eiφ(f) : suppf ⊂ O}′′, whereM′ means the set of bounded operators com-

muting with any element of M. The double commutant M′′ is the smallest von

Neumann algebra which includes M. They are the algebra of observables which

can be measured in the region O.

More in general, a Haag-Kastler net, or a Poincaré covariant net (of

observables) is an assignment of a von Neumann algebra A(O) to each open region

O. It should be covariant with respect to a continuous unitary representation U

of the Poincaré group on H and there should be an invariant ground state, the

vacuum Ω. A set of these objects encodes the full information of the given model

and one can, for example, define canonically the scattering operator under some

assumptions on U .9

A fundamental open problem can now be stated as follows: to construct exam-

ples of interacting nets in physical four spacetime dimensions. For two and three

dimensions, several families of interacting nets have been constructed, including

those with polynomial interaction and especially the φ43 model in three dimensions.

3. Wedge-local net of observables

Recently, we have seen several constructions of Haag-Kastler nets in two dimen-

sions which are not (directly) generated by Wightman fields. In general, interacting

Wightman fields are not easy objects to construct. Instead, if one considers ob-

servables localized in infinitely extended regions, there is a better chance to find

more tractable observables. Thereafter, the algebras for compact regions can be de-

fined as the intersection of the algebras of such extended regions. This idea has been

proposed by Schroer for so-called integrable QFT14 and implemented by Lechner.11

More precisely, one considers the (left) Rindler wedge: WL = {(a0, a1) : a1 <

−|a0|}. In two dimensions, any double cone is the intersection of two translated

wedges: Da,b = (WL + a) ∩ (WR + b). So the strategy is first to find appropriate

observables {φ} which should be localized in WL then to take the von Neumann

algebra M generated by them. One has also to have the spacetime symmetry U .

Finally, the net is defined first for double cones by A(Da,b) := U(a)MU(a)∗ ∩
U(b)M′U(b)∗, and for an arbitrary region O by A(O) :=

⋃
Da,b⊂O A(Da,b).

Two-dimensional spacetime is special because a double cone is obtained as the

intersection of two wedges. Thanks to this property, one can prove that the ab-
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stractly defined algebra A(Da,b) is nontrivial for some integrable models by exam-

ining a property of Lorentz boosts called modular nuclearity.4

4. Integrable models

Let us consider a particular class of models which contains only one species of par-

ticle, in which the number of particles is preserved during the scattering process.

By the conservation of energy and momentum, the two-particle scattering process

is given by a phase S(θ), where θ is the difference of rapidity of two particles. Fur-

thermore, one may assume that the higher-particle scattering operator factorizes6.

First the Hilbert space is constructed as follows: the one-particle space is H1 =

L2(R, dθ) and n-particle space Hn consists of the S-symmetric functions:

Ψn(θ1, · · · , θn) = S(θk+1 − θk)Ψn(θ1, · · · , θk+1, θk, · · · , θn).

On the S-symmetric Fock space H =
⊕

nHn, one can define the creation and

annihilation operators z†, z as in the usual Fock space. Lechner proved that, if S

has no pole in the physical strip R+ i(0, π), then for real test functions f supported

in WL,

φ(f) := z†(f+) + z(f+), f+(θ) :=

∫
daeip(a)·af(a), p(θ) = (m cosh θ,m sinh θ),

where m > 0 is the mass of the particle, generate the algebraA(WL) of the wedge.10.

Furthermore, if S satisfies a certain regularity condition, the local algebra A(O) is

nontrivial and the two-particle scattering function turns out to be S.11

This construction of observables in wedges can be generalized to models with

more complicated particle spectrum.13. In this general case, the existence proof

of local observables works partially,1 but the fact that S satisfies nontrivial Yang-

Baxter equation makes some estimates of the boost operator more complicated.

5. Models with bound states

The cases where S has poles turned out to be much more difficult than expected.

The poles in S should correspond to bound states of elementary particles, therefore,

the model should represent more complicated scattering processes.

Let us consider the simplest possible case, where there is still only one species

of particle. Then the poles of S must appear only at πi
3 ,

2πi
3 . In 5, we introduced

an operator χ(f) =
⊕

n χn(f) by

(χ1(f)Ψ1) =
√

2π|R|f+
(
θ +

π

3

)
Ψ1

(
θ − π

3

)
, χn(f) = Pn(χ1(f)⊗ I ⊗ · · ·⊗ I)Pn,

where Pn is the projection from H⊗n1 onto the space Hn of S-symmetric functions.

If we set φ̃(f) = φ(f)+χ(f) and introduce a similar operator φ̃′(g) for the opposite

wedge WR, we can show that they commute weakly on a dense domain.

In contrast to φ(f), χ(f) has a subtle domain property and it is at the moment

unclear whether φ̃(f) and ′̃(g) strongly commute. Yet, once this is established, we

are expecting that also the modular nuclearity can be proved.
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