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Abstract

The exponential decay of lattice Green functions is one of the main technical ingredients of the Bataban’s
approach to renormalization. We give here a self-contained proof, whose various ingredients were scattered
in the literature. The main sources of exponential decay are the Combes-Thomas method and the analyticity
of the Fourier transforms. They are combined using a renormalization group equation and the method of
images.
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1 Introduction

The approach of Balaban, which builds on the Wilsonian renormalization of lattice quantum field theory
(QFT), stands out as a charted route towards a construction of non-trivial just-renormalizable QFT. The
strategy, outlined e.g. in [BJ85, Ba90], can be divided into four main steps: (1) the exponential decay of
lattice Green functions [BJ85) 11.9,11.10,IV], (2) variational problem identifying the background field [BJ85
pp. 242-243], (3) Wilsonian renormalization in the small field region by an expansion around the background
field [BJ85, IIT.1-II1.5], (4) the large field problem [BJ85 I11.6][Ba90]. Unfortunately, most of the literature
on this topic was written in a style suitable for a small circle of experts and, after several decades, is difficult
to comprehend for interested readers. The main obstacle, as we see it, is the absence of systematic expositions
of the methods used and developed in these works. Relevant pieces of information are scattered over many
papers treating different models and a substantial part of the discussion is left to the reader. As a valuable
exception we would like to mention relatively recent papers of Dimock on the UV stability of the qﬁ% model
[Di13) Di13.1), Dil4], which are largely self-contained and readable line by line. But even these useful works on
a super-renormalizable model do not provide the reader with sufficient background to delve into the literature
on just-renormalizable theories. One reason is a rather brief discussion of the lattice Green functions in [Dil3],
which covers only the more elementary part of the subject, leaving the rest to rather cryptic references. As
the lattice Green functions are at the foundation of the entire subject and their detailed control is needed
already at the level of the variational problem in some just-renormalizable models, we decided to write this
systematic account. We recall that the need to present Balaban’s method in a more comprehensible manner
was stressed already in [Ri00].

Let us describe the content of our article in an informal way: Let €2 be a finite square lattice in d-dimensions
with lattice spacing 1. In the Wilsonian spirit, we divide this lattice into boxes B(y) of linear size L. The
points y, which label the boxes, form the coarse lattice ©; := (L) N2 We can repeat this procedure k times,
denoting the resulting boxes By (y) and the coarse lattice €, := (LFQ) N Q. We set in the following n = L~F,
in which case Q has a unit spacing. The operator of k-times averaging Qq . : £2(2) — £2(€2) is given by

@arNW) =75 3 S) (1.1

z€By(y)

and the relevant propagator has the form

Gr(Q) == (A + ik + ax Q6 Qak) - (1.2)

Here A/, is the discrete Laplacian on © with Neumann boundary conditions, {ax}ren is a concrete bounded
sequence which stays away from zero, see formula , and ji, = L?*[iy are mass parameters. It turns out
that Q5, . Qa,k 1s a projection operator on the subspace of functions in L£2(Q) which are constant on the blocks
By (y). The kernel (z,2’) — Gr(Q)(x,2’) is called a Green function.

Leaving the question of motivation of definition aside for a moment, let us justify the existence of
the inverse. Here the key observation is that the Laplacian vanishes only on constant functions, whereas
the averaging operator leaves such functions invariant (cf. Lemma . Moving towards the exponential
decay of Green functions, one observes that the denominator in resembles a simple Schrédinger operator
consisting of a Laplacian perturbed by a finite dimensional projection. Using the Combes-Thomas method
[CT74] from the Schrodinger operator theory, one easily obtains an £2 bound (cf. Lemma

(G < e WV f ]| £, (1.3)

where supp f C Bg(y), supp f' C Bi(y'). However, the small field conditions of the Balaban’s approach single
out the supremum norm, in particular in the analysis of the variational problem. This leads us to the main
theorem of this paper:



Theorem A. There is ¢ > 0 s.t. for all f € L>(Q)
(Gr(Q)f) ()] < cL e rd@=rpiD| | (1.4)

where d(x,supp(f)) := infycqupp(s) [T — | and c,c1 are constants depending only on dimension d of the lattice.
(In particular they are independent of the lattice spacing, the size of the lattice and the parameter L ).

We note that estimate (|1.4]) is non-trivial only because the constants ¢, ¢; are independent of the lattice size.
This result is stated in many references including [Ba83] and [Dil3] but we could not find a complete and
verifiable proof. Theorem A will be proven as Theorem below. We summarize the proof in the later part
of this introduction.

We mention as an aside that is not a direct consequence of : Setting f' = n—ld(sx in and

then estimating the £?-norm of f by the supremum norm, we immediately obtain a dependence of the
constants on the lattice spacing and the volume of the lattice. Furthermore, does not imply that
(x,2") = Gr(Q)(z,2’) is a bounded function uniformly in the lattice spacing: by setting f = nidéx in 1} we
obtain again n-dependence of the constants. The latter fact reflects the well-known singularity at coinciding
points of the free Green function in the continuum, e.g. for d > 3

1 . / 1 1 1 /
A —ip-(z— _ —m|z—
6w = ga " g = e =

To explain how the propagators defined in (1.2 appear in QFT on the lattice, let us define the following
family of functions on £2(€2)

pl(9) 1= e 2R iTS) A0 () = —AD + i, (1.6)

which, after integration in ¢, gives the generating functional of the theory in the variable J € £2(£2). Denote
by T(Z_’ ;; the renormalization group transformation, acting by averaging j-times over boxes, defined precisely

in (2.74)). The averaged function p}] =T [p({ | can be computed via Gaussian integration and has the form:

aj, LI

ol (W) = Z;z(me—%<w,A<J‘>vL”ﬁ(ﬂ)weiu,ﬂg?(mwe—%<J,G;-'(Q>J>_ (1.7)

By setting J = 0, we see that the covariance of the averaged theory is the inverse of
AUE(Q) = ¢y — e QoG () Q4 (1.8)

where c(;) = aj(Ln)~2. The propagator GZ(Q) is defined as in 1' with a; replaced by c(;), and it is
related to G;(§2) by a simple scaling transformation, cf. (2.65). It appears not only in (1.8, but also in
another ingredient of ([1.7))

HI(Q) = c(GH(Q)Q0, (1.9)

which will be important below. Thus the Green functions we study in this paper do not have an immediate
meaning as correlations of some physical system. Instead, they are convenient building blocks to express
various natural quantities appearing in the process of renormalization.

The semigroup property of the renormalization group transformation (cf. Lemma [2.16)) turns out to
be useful for proving Theorem A. On the one hand we have p}-]_H = T¢Z+1,Lj+l[p0J]’ on the other hand

,037 1= TaL 2’7 [p}l ]. The latter formula, stated explicitly in (2.95]), can be compared with 1' which results in
the so called renormalization group formula

(Q) = HIQCOPNQHIQ)* +GI(Q), CDENQ) = (ADENQ) + —2—08 Qa,) " .(1.10)

n
G (Lj+177)2

Jj+1
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Figure 1: Set of image points y; of the argument y in (1.12)). The square containing the origin is the set (2.

This formula appears (without proof) already in [Ba82], the proof sketched above is taken from [Di04]. It
turns out that an exponential decay of the kernel of C(j)’LJ”(Q) can be obtained by the Combes-Thomas
method [CT74]. The exponential decay of the kernel of 7—[;7((2) also holds, but its proof is a separate story,
which we will discuss below. The propagator G?Zl(Q) can be rescaled to Gj—1(L*~1Q), for which the bound

is easy to prove, again by the Combes-Thomas method, since the lattice L*~1Q has spacing L™! and
L is fixed in the discussion. It should be clear from these remarks, that the renormalization group formula
allows for an iterative proof of Theorem A.

To conclude the discussion of the proof of Theorem A, let us comment on the exponential decay of the
kernel of 77(€2). As usual, it suffices to study its rescaled variant Hy,(Q) := axG1(Q2)Qg ;- The first step is
to express the Green functions G(2) on the finite lattice © by their counterparts G on an infinite lattice.
This is achieved using the method of images:

Ge()(z,y) = > Grlz,yy), (1.11)

y;€lmg

where Img is the set of images of y as indicated in Figure (Think of the problem of determining the
electric field of a charge near infinitely extended conductive planes from basic electrostatic). Once stated,
formula is not difficult to prove, it suffices to check that the r.h.s. is indeed the inverse of (—A¢, + fix, +
ap Q5 ;Qa.k). The advantage of translating the problem on an infinite lattice is that we can use the Fourier
transform to obtain the following representation

(GL@D) ) = (20 [ dpe? V(). (112)
[=7/n,m/n[*?

If h can be analytically continued to a bounded function on a strip in a complex plane, then exponential
decay of this expression follows by standard arguments. The difficult part is in showing that the width of this
strip can be chosen uniformly in the lattice spacing and other relevant parameters. This step is completely
skipped in [Ba83| p. 586], a related discussion appears in [BOS89] in a different context, but we did not find
a complete proof of this fact in the literature. We provide such a proof in Appendix [F} which is the main
technical result of this article. The main idea of the proof is described below Lemma [3.19]
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The proof of Theorem A can thus be summarized as follows: there are two main sources of exponential
decay: the Combes-Thomas method and analytic continuation of the Fourier transform . To
combine them, two identities are used: the renormalization group equation and the method of images
formula .

To keep this article within reasonable limits, we deliberately omit the topic of random walk expansions.
They are useful, e.g., to translate Theorem A to periodic boundary conditions, cf. [Dil3l Lemma 6], or to
control the kernels of operators (Qka(Q)QZ)*l, which appear at the level of the variational problem of some
just-renormalizable models. We plan to come back to this topic in future publications.

Our paper is organized as follows: In Section [2| we focus on the Laplacian with Neumann boundary
conditions and provide a proof of Theorem A assuming the exponential decay of the kernel of H(€2). This
part is mostly based on [Di04], [Dil13] but our discussion is more detailed. In Section [3| we prove such a decay
for the counterpart of Hy(€2) on an infinite lattice, using the Fourier space representation . As this part
is omitted in [Dil3], we follow mostly [Ba83] and complete the discussion regarding analytic continuation.
Finally, in Section [4| we use the method of images to prove formula which is only stated in [Ba83]. This
implies the required decay of the kernel of Hy(£2) and concludes the proof of Theorem A. More technical steps
of the discussion are postponed to the appendices.
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of Rome “Tor Vergata” funding OAQM CUP E83C22001800005 and by GNAMPA-INdAM.

Notation

1. Bye,d,c1,cs. .. we denote numerical constants, independent of any parameters except for the dimension
d. These constants may change from line to line.

2. We denote by 7 the lattice spacing. We introduce an odd positive integer L > 1 and set n = L™, k € N.
To change the lattice spacing, we keep L fixed and change k.

3. Weset I =n[0,1,...,n—1], n —1 = L™, so that the parameter m > k controls the size of the interval.
(We remark that the interesting case is m much larger than k, since Theorem A concerns large-distance
properties).

4. We denote by Q C nZ% a cube Q := I*? = [0, 1,..., L™]*"
5. For j =1,...,m we denote by Q; C LinZ? the coarse lattices of the form Q; = Linlo,1,. .., L,

6. We will use k,m, ... € Z to number points of the lattice, as opposed to parameters k, m, which control
the lattice spacing and size of the box.

7. The elements of the Hilbert space £2(nZ) are complex-valued functions denoted f, f’,g,¢’. The scalar
product has the form

(f.9) =0 fegc=nY_ f(z)g(x), (1.13)

keZ renZ

where we write f(x) or fi for x = nk. We set || f||3 = (f, f). We use complex (rather than real) £2-spaces
for simplicity of Fourier analysis in Section



8. The Hilbert spaces £2(1), £L2(nZ%), £2(£2;) are defined analogously as £2(nZ) above and the correspond-
ing scalar products and norms will be denoted as for £2(nZ). If there is a risk of confusion, we will add
the region of summation as subscript, e.g. (-, )q;, [ - [|2,0,- The subspaces of real-valued functions are

denoted by L3(1I), L&(nZ%), L3(Q;).

9. For any region O C nZ? we will write || f||oo,0 = supzeo|f(x)|. If there is no risk of confusion, we will
drop O. We denote by £>°(0O) the Banach space of functions on O equipped with the norm || - |o,0-

10. For quantities or conditions X, depending on the spacetime index 1 = 0,1,...,d — 1 we will often write
X, as an abbreviation for X, u=0,1,...,d — 1.

11. We define the boxes in the lattice
Bi(y) :={xenZy, <z, <y, +Ln, p=01,...,d—1} (1.14)

and call y the label of the box. For j = k we obtain unit boxes A, := By(y), since n = L% We also
define A, := L7'By,1(Lz), z € L7, which are unit boxes in the lattice L~(.

12. We denote by Ag, resp. A", the Laplacian on 2 with Neumann boundary conditions, resp. the Laplacian
on nZ% with free boundary conditions.

13. The mass parameters have the form fi, = L?*fig for fip > 0. This corresponds to canonical scaling if fig
is the mass squared. As the mass parameter will play a minor role in our discussion, we abbreviate

—ABE = AL+ i, — AP = AT 4 iy (1.15)
Furthermore, in Appendix [F| we will use the notation ﬁ;%)au = (Zﬁ;%) ay) + tio.

14. d(z,2’) == |z — 2'| = (Zi;é(mu - xL)Q)I/Q, d(z,0) = infyeq |z — y| for O C nZ%, |x — 2|0 =

Supy=o,...,d—1 |x# - xm

15. 1p denotes the characteristic function of a set O.

2 Green functions with Neumann boundary conditions

2.1 Laplacian on interval with Neumann boundary conditions

We consider the finite dimensional Hilbert space £2(I), where I := n[0,1,2,...,n— 1], with the scalar product
n—1

(f,9) =1 fge (2.1)
k=0

We note that k — 6,.m i = %6m’k plays the role of the Dirac delta, since (0.1, f) = fm. Let A: L2(1) — L2(1)
be a linear map. We define its kernel by

A = (Onyms Adyy ). (2.2)
We have (Af) = (d,x, Af). By writing fi =0 1 0.1 fir, we have
(Afe=n>_ A fio. (2.3)
k'ezZ

As specific examples of A we define the discrete derivatives

1 1

(0] == E(fk—i—l — £, @ = _E(fk — fier) = =0} i1 (2.4)
with Neumann boundary conditions f,, := fn._1, f—1 := fo, that is, (8}”]’)0 =0=(07f)n—1 . By Lemma [2.1
we see that 8}” is not the adjoint of 97, given Neumann boundary conditions.
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Lemma 2.1. The Leibniz rule holds in the form

(07 (f9)x = (0] xgi+1 + [ (0] 9)x- (2.5)
Integration by parts holds in the form

<fv a?g> = —<8;]f, g-+1> - fOQO + ]‘Tnflgnfl

= (P f.9) — fogo + Fa-19n—1. (2.6)
Proof. We compute
@9 = 1 ()~ (F9))
= ;((fk+1 — )91 + il — 91)), (2.7)
which gives (2.5). Next, we note that
nnil(@?(fg))k = —fogo + fn—19n-1. (2.8)
On the other hand -
nri(ﬁ?(fg))k = (97 ), g.+1) + ([, (9]9))- (2.9)
Finally, we write -
n—1 n

(D7), 941) = D (O] igrr = (O] Phio—19w

k=0 k=1
n—1

= Z (a?f)k’—lgk’ = _<8-[r777f7 g>) (210)
k’=0

where in the third step we made use of Neumann boundary conditions. [

The Laplacian with Neumann boundary conditions in one dimension on the lattice I = n[0,1,2,...,n—1] has
the form

(AT = (D@1 F)—1 ) = —(@1)(@M f))y = L1 = fj} * fir

with the boundary conditions f, := fn—1, f-1 := fo. Although it is not manifest from the definition, (—A7)
is a positive operator:

Lemma 2.2. We have

(2.11)

(f.(=ADfy ={(-ADf. ) = 22|fk+1 Al (2.12)

Proof. We compute using
(f, (0101 f)-—1)) = (0] £,01f) — fo(O] F)=1 + fa—1(0] f)n—1. (2.13)

Noting that (8] f)-1 = (87 f)n—1 = 0 by the Neumann boundary conditions and dropping the last term in the
sum defining the scalar product we obtain the claim. [J

Next, let us recall the standard computation of the spectrum of the Laplacian on a finite latti(:{ﬂ This
will be needed in the proof of existence of lattice Green functions in (2.51)) below.

1See Wikipedia: Eigenvalues and eigenvectors of the second derivativel
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Lemma 2.3. The eigenvalues of A are
NG <7U) (2.14)
n

where j =0,...,n— 1.
Proof. The eigenvalue equation reads

—2 _
S J;k+fk1:Afk, k=0,...,n—1, (2.15)

Ui

f=1=fo, fn = fn—1. We immediately note that f = const and A = 0 is a solution, so we can restrict attention
to non-constant f. We make a change of variables

hg == fis1 — fx, k=-1,...n—1. (2.16)
This gives
hk+1 - hk = 772)\fk (2.17)
= * M1 + P A fut (2.18)
= n* A1 + (b — b)), (2.19)
M1 = 2+ 72N he — i1, (2.20)

where in (2.19) we applied (2.17) with k — k — 1. The Neumann boundary conditions now read h_; =
0, hn_1 = 0. Setting 2ac = 2 + n?\ we have the recurrence

hx+1 = 2ahx — hx—1, h_1 =0, hp_1 =0. (2.21)
Assuming hg = 1 (to exclude that f = const) we get
hy = Uk(a), (2.22)
where Uy is the k-th Chebyshev polynomial of the 2nd kind by Lemma below. Now h,_1 = 0 gives
Up_1(a) =0, (2.23)

which holds for a; = cos (%7‘(), 7=1,....,n—1by 1} below. This, together with 2o = 2 + 12\, gives the
remaining n — 1 eigenvalues. [J

Lemma 2.4. E| The Chebyshev polynomials of the 2nd kind, defined by the recurrence relation
Uo(a) =1, Ui(a) =2a, Uxti(a) =22U0x(a) — Uk—1(a), (2.24)

have the following property: Fach Uy, has n different simple roots in [—1,1] given by

ozj:cos(nilﬂ>, ji=1,...,n. (2.25)

2See Wikipedia: |Chebyshev polynomials.
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2.2 Laplacian on ) C nZ? with Neumann boundary conditions

Let Q := I*? be a hypercube in the lattice, where I = 5[0,1,2,...,n — 1] and write k = (ko,...,k¢_1) =
(ky)pu=o,....a—1 for integer parameters labelling elements x := nk of Q. The boundary 02 C €2 consists of 2d

faces
d—1 d—1
00 = [ JUIx - x{0}x-x DU JIx--x{n—1}x--xI)
P (N ©=0
p+1 p+1
d—1 d—1
= [ J(09),u | (0. (2.26)
n=0 n=0

We consider the Hilbert space £2(Q) = £2(I)®? whose scalar product, in accordance with (2.1)), has the form

9 =1"Y" fugk=n">_ f(x)g(x). (2.27)

nke e
A basis in this space is formed by the delta functions
Onik 1= Opkg @+ ® Oy - (2.28)

In terms of lattice points z := nk we denote 7 := &, For a linear map A : £2(Q) — £2(Q) we define its
kernel via

Az, 2') = Ay = (S, Aby) = (57, AS"). (2.29)

The Laplacian on £2(Q) with Neumann boundary conditions is defined by
A=Y 10 ®AT® - ®1. (2.30)

This is a trivial generalization of the one-dimensional case, because it is a sum of commuting operators. Next,
we note the following consequence of Lemma

Lemma 2.5. Let f € £L2(2). Then
1
(f, (A4, = > (of (2.31)
b

where the sum is over all the bonds in the lattice Q and (0f)(b) = f(b—) — f(b+).

Next, we study the behaviour of the Laplacian under scaling. Let O be some subset of 7Z¢ for 77 > 0.
(For future convenience we distinguish 7 from 7 which will be later set equal to L=%). For A\ > 0 we define a
scaling transformation S : £2(0) — £2(\O) by

SOF=X"2f  fi(z) = f(A"ta). (2.32)

It is easy to see that SQ is a unitary map and (S)(\))* = Sﬁ?l. In particular:

ST A3 20 = AT D ISLAH@IP = 7 1£E@)P = [I£150- (2.33)

z€A0 z'e0

We also note the semigroup property: SizloS/\O1 = S)(\)2 A, - For O = we will often skip the superscript of S)?.
We check the behaviour of the Laplacian under scaling;:

10



Lemma 2.6. We have, for A > 0,
* AN
A7 = N (SH* AL SL. (2.34)

Proof. We note the relation

d—1
(Aigf)\)()\x) _ Z Iz + e dn) = 2fa(Az) + fr(Az — e An) _ )\_Q(Agf)(:c), (2.35)

= (An)?

where {e,},—0,1,....d—1, are basis vectors. By rewriting this expression using Sy we obtain the formula. Clearly,
modifications at the boundaries of the region do not change the result. [J

2.3 Averaging operator on (2

Recall that the finite lattice in one dimension has the form I :=7[0,1,2,...,n — 1]. We fix an oddEI integer
L>1,setn= L% and n — 1 = L™ for some fixed m > k. Now we define the coarse lattice for 1 < j<k:

I;=('NNnI = (L'y)0,1,2,..., L™ Nn[0,1,2,...,L™]
= (L’n)[0,1,2,...,L™]. (2.36)

Next, consider the d-dimensional case with = I*?. The coarse finite lattice has the form
Q; =L'0NQ = (L7n)[0,1,2,..., L™ I]*%, (2.37)

For future reference, we note the following lemma, which checks that scaling is compatible with the procedure
of making the lattice coarser.

Lemma 2.7. With Q = L7%[0,1,2,...,L™]*?, we have for any { € Z,
(LfQ); = LY(Q;)). (2.38)
Proof. We note that L‘Q is obtained from Q by changing the lattice spacing n to Lfn. Thus
(LfQ); = LI(L'Q) N (L'Q) = (L7 Ly)[0,1,2, ..., L™ = LY(Q,) (2.39)

as claimed. O

We define the averaging operator @ : £2(2) — £2(Q1) by

1
@QHW) =75 D, f@), (2.40)
Yo <Te<ye+Ln
where the condition under the sum is an abbreviation for y, < :cL <y,+Ln, p=0,1,...,d 1. We can

iterate this procedure, remembering that upon second application () acts between different spaces, namely
Q: L2(Q1) — L%(Q2). We obtain

@) = @NHE == S (@HE)

T Id
ZOSZIIQ<ZO+L27]
1 1
=t D Y. f@=5m DL 1@ (241)
Ze<ye<ze+L?n yoe<we<ye+Ln ze<zo<ze+L%n

3The assumption that L is odd is used in Lemma It is consistent with [Dil3].

11



By iterating, we obtain Q; : £L2(Q) — L£3(Q;):

@NE =75 S @) (2.42)

2e<Th<ze+Lin

We denote the region of summation in (2.42) B;(z) and call z the label of this box. For j = k we have
L*n =1, hence A, := By(z) is a unit box. If there is a risk of confusion, we will denote @Q; by Qa,;-
It is easy to see that the adjoint Q7 : L£23(Q;) — L£2(2) has the form

(Qjh)(x) = h(yz), (2.43)

where y, , = [%](Ljn) is an element of the coarser lattice and [a] denotes the integer part of a € R.

(Equivalently, one can say that y, is the unique element of the coarser lattice Q; s.t. « € Bj(y,). That is y,
is the label of the box to which 2 belongs). To verify that (2.43) defines the adjoint of ; we compute

. _ 1 —
(h,Qif)e, = (Lm)* > W) D fE) =0T ) >, hwf)
ye(Lin)zd Yo <Toe<ye+Lin yE(Lin)Ze ye<z4<ye+Lin
=" Y W) f(@) = (Q5h, o (2.44)
z'enzZa

Thus we get for QQ; : L£2(Q) — L2(Q)

. 1 1
(Q;Q;f)(z) = Tid Z | f(@) = Tid | Z | f(@). (2.45)
Yo,0 <Te <Yu,e+Li7 [ I <ae <[ 1(Lin)+Lin

This operator is the main building block of the lattice Green functions in Subsection

Remark 2.8. Since Q;Q; = 1, the operator Q;Q; is an orthogonal projection, hence ||Q;l| = [|Q}|| = 1. Its
range is the subspace of ‘block-constant functions’, i.e., step functions which are constant on Bj(y), y € ;.
The statement remains true mutatis mutandis in the case of the infinite lattice studied in Subsection[3.4)

Now we note the behaviour of the averaging operators under the scaling transformations (2.32]).

Lemma 2.9. We have, for A= L%, { € Z,

Qr0, 52 = S Qa,. (2.46)

Proof. We compute the Lh.s. on f € £2(Q)

@oSENW =7 X (58N = o > N (247)

Yo <Te<Ye+ALIN A lye<A—lze< A lye+Lin

Now the r.h.s. gives

(S22 Qas ) = A 2(QufHA ) = A 2 7
A lye<zoe<A~lye+Ln
- I 2 AR, (2.48)

A71y0§A71x2<A71y0+Ljn

This concludes the proof. [J
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2.4 Green functions with Neumann boundary conditions

Now we define the propagator with Neumann boundary conditions as a map on £2(Q):

Gr(Q) = (—AD + fig + arQh Qo) ™t =: [ — A" + fig, + Q5 Q] o (2.49)

where 0 < ¢ < ay, < ¢ < 0o will be specified in (2.75) below. The mass parameters have the form fip, = L?*[ig
for fip > 0. As the mass parameter will play a minor role in our discussion, we abbreviate

— AL = —AD + fiy,. (2.50)
We first have to show that the inverse exists:
Lemma 2.10. [Dil3] The following holds:
1. For a unit cube /\, as operators on L>(/\)
—AN* 4 ap QA Qak = c(—A) +1), (2.51)
where A\ has Neumann boundary conditions on A.
2. For Q a union of disjoint unit cubes the following inequality holds as operators on L£*(Q)
AL 4 Qi Qe > oA} + 1), (2.52)
where ¢ > 0 is independent of n and of the size of the box.

Remark 2.11. The choice of Neumann boundary conditions is used in the proof of the independence of the
constant in of the size of the box €.

Proof. If f € £?(/\) is constant then —A'\ f =0 and

(f. arQh xQanf) = arllfll5 > cll f1I3- (2.53)

If f € £2(A) is orthogonal to constant functions, then —A'} is strictly positive with lowest eigenvalue given
by (2.14) and ([2.30)):

4 T 4 T
My Fgin2 (B) = Sgin2 (T
(=A%) n281n <2n) n281n <2(77+1)>7 (2.54)

where we used that we are in a unit box, so (n — 1)n = 1. We have (—A®)) > ¢ > 0 uniformly in n < 1.
Therefore,

(f, (A0 f) = el fI3 (2.55)
and since Q*A,kQAJﬂ is also positive and g > 0
(f, (AR + akQp xQa k) f) = €l f113. (2.56)

This proves ([2.51)).
Now let f € £2(2) and set fao = f|a. We choose as A the boxes By(y),y € Q, to ensure that Q5 Qfa

is supported in A. Since A C 2 is a unit box, we have

(f, (—AF"™ + akQixQan) ) = Y (fa, (= AR + arQh 1 Qo) fa) (2.57)
AcCQ
> Y |Ifald =clfll3. (2.58)
AcCQ
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Here in the first inequality we used Lemma and the Neumann boundary conditions to justify that we can
drop the bonds linking different unit boxes A. [

Now it is easy to obtain exponential decay of G (f2) in the £? sense by a Combes-Thomas [CT74] argument.
Our efforts in later sections will aim at improving this decay from £2 to L>. We recall that A, denotes the
unit box with label y.

Lemma 2.12. [Dil3] Let supp(f) C Ay, supp(f') C Ay with Ay, Ay C Q unit boxes with labels y,y'. Then

(£, GRS < ce™ W a1 f]]2 (2.59)
for some numerical constants ¢ and c; > 0. These constants are, in particular, independent of the size of 2.

Proof. See Appendix [A] O

As this proof is rather technical, let us explain the basics of the Combes-Thomas method in a simple example.
Consider a Schrédinger operator H = —A + V(x) on R%, where V is a measurable function s.t. V' > 1. Let
Ny, y € Z%, be unit boxes of a unit lattice, which we draw on R%. Then there exists § > 0 s.t.

[(fr, H L f2)| < ce 22| £ 1o fo 2, (2.60)

for all square-integrable fi, fo s.t. supp(fi) C Ay, supp(fa) C Ay,.
First, set H, = e He™ % and assume that ||Hq_1h\|2 < ¢||h||2 uniformly in |g| < 6< 1. Then, we immedi-

ately get (2.60) by computing

|(Fr H o) = (e o, Hy ' fo)| < ele™ fulalle™ fall < /e @742 2]l fo 2. (2.61)
q
and setting ¢ = 5%.
In order to justify our assumption, we note that H, = (p + ig)? + V(x), where p, = —i0,,. Hence
1"-[(1—171T:i2p~q—q2 and
I(—A+ 1)~ Y2(H, — H)(~A+1)"1?| < ¢q, (2.62)

since (—A +1)7"2p,(=A +1)7"/2 is a bounded operator. Consequently,

[ Ho ) 2 [ HE) = [(f, (Hy = H) )] 2 (f, (A +1)f) = ca{f, (A + 1) f) = || fII5. (2.63)
Setting ¢ small we get ¢ > 0. Now for f = Hq_lh
Rl Hy e = [ Hy th)| 2 el Hy Rl (2.64)

which gives ||[H; 'hll2 < c||h]2.

Coming back to the main course of our discussion, we note the following lemma for future reference in
2.82):

Lemma 2.13. For \; = LFi k>j5>1,

GO = (S G = [AL™ + ay(In) Qi Qe (2.65)
A * iM 5 aj * —
Giri(\Q) == A3(SY)GT L, ()(S))" = [—AVSH + 2L Q%0511 @) (2.66)
J L

Remark 2.14. The notation Gj11 corresponds to G, in [Di13].
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Proof. Formula is obtained from Lemmas and the following computation
G = (—AF™ + a;(L7n)7*Q6,;Qa,)
— 85, (AAYIY T L (L) 25, @),
= S5, (A ey a;Q%,0,@0,00) 5, = NS5 G5 (R 1Sy, (2.67)

where we used Lin = )\;1 and )\J-_Q/jk = [ij.

Now we consider ([2.66)): Since QQJH(S)%)* = (S/?jj“)

QN0 +1

SN G (@SR = SYI-AG™ + aja (L7 0) 72Q0 511 Qa7 (SK)

N2 j
2 A NITHA; T 1, \—2 -1
= [-XAV 7 T a7 ) P03 41 @0 ]

- N R | G _
- )\jz[_AAj-Q ! +722 Q,\jQ,jHQAjQ,jH] L (2.68)

This concludes the proof. [J

Now we note the following corollary of Lemma A variant of estimate ([2.69)) is stated without detailed
justification in [Dil3) formula (364)].

Lemma 2.15. Let f, f' € £2(Q) and Ay,Ay/ unit boxes in L~1Q. For supp(f;-1) C Ay and supp(f;_.) C

Ay/ we have

(s G () f)] < eLPe Y flaf| )12 (2.69)
for some numerical constants ¢ and ¢y > 0. These constants are, in particular, independent of the size of ().

Proof. By Lemma we can write G4 1(A\Q) as

Girt(A9) = (/A1) (S, ) Gy (M) SE (S

= LS5 G082, (2.70)

where \; := LF=J. By setting j = k, we get
Gt () = LA(S0 ) G (L1 Q) S (2.71)
Thus we can write

(£, Crnn (@] = PR(SE) S G (LIS )
= L™|(fr-1, Grepr (L' f1 1))
A [ B/

< eL?e W o]l ]2, (2.72)

IN

where in the third step we applied Theorem with (2,7, k, Ay) replaced with (L7, L=y, k+1, Ay) This
is legitimate, because (L~'n) = L=*+D supp(f.-1) C Ay and constants in Theorem are independent of
the lattice spacing and size of the lattice. In the last step we also exploited

Ifr-113 10 =LUPT N f(La)]? = L7 fII5.0, (2.73)
ze€L—1Q

which concludes the proof. [J
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2.5 Renormalization group formula

In this section we derive a key formula, stated in below, which allows us to conclude exponential decay
of the kernels of Green functions. We follow the discussion from [Ba82], where, however, the actual proof is
left to the reader. The proof below is adapted from [Di04] Section 1.2.3]. As before, we work on a finite lattice
Q with spacing 7 = L™* and Neumann boundary conditions and denote by (1; the coarse lattices.

We define the renormalization transformation which maps a measurable functiorﬁ po : L&(2) — C to a new

function p; : L&(€2;) — C. We set pp unspecified, only require that [ d¢ |po(@)] := [ [],cq do(2)|po(¢({z}zcn)]
is finite. We set for j =1,2,3,...

1921

b7\ 2 _1pm —(Qa 5 2
T2 1[0 o)) = p; () = (27r) [ o e, M @B ), (2.74)

where b? := aj(L/n)4=2. (We note that for j = 0 the r.h.s. of 1) is undefined, in particular it does not
reproduce pg). In the notation T: ;; the superscript 7 indicates the lattice spacing of 2, the subscript L
defines the size of the averaging box and we set for some a > 0

aa; 1—L2

ap = a, i1 = —F 5 = a; = am.

2.
al=2 +a; (2.75)

1951
The normalization constant (b; /(2m)) 2 ensures that

[ vostwr= [ domio). (2.76)
We note the following:

Lemma 2.16. We have T,,"T,! |, =T, ;. and similarly

Li~ty Lngm  _ qm
T T =T

(2.77)
Proof. See Appendix Bl O
Next, we choose pg as a function whose integral gives the generating functional of the free field theory:
() = e T AT  AOI(Q) = —AT 1 [y, (2.78)
where J € £2(Q). Here we set fir, > 0 to ensure that the integral of pJ is finite. This assumption will be
relaxed to fix > 0 in Theorem below.
We define p}J , 7 =1,2,3..., iteratively, using the renormalization transformation
Pl (W) == T, 1, 0] 1) = T | 15 19,081 (), (2.79)
where in the second step we made use of .
Lemma 2.17. The following identity holds for j =1,2,3...

P}'](W _ Z]T](Q)e—%<¢,A(f)’LJ"(Q)w>ei<Jﬂ;’(Q)w>e—%<JvG]"~(Q)J>, (2.80)
where
ADENQ) = a;(L7n) 72 — a3 (Ln) " Qq,;GH)Q4,;. (2.81)
G(Q) = (=AY + ik + a; (L) 7°Q% ;Qa;) (2.82)
n 9 n %
Hj(Q) = (Ljn)sz(Q)QQ’j (2.83)

and Z?(Q): \/(27T)|Q‘ det(G?(Q)) is determined by (2.76)).

“We identify here £&(Q) with R’ and assume that po is Borel measurable.
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Proof. See Appendix [C] O
Finally, we define the following map on £2(£);)

COLn(Q) .= (AD-Ln(Q) + WQ?%QQJ)_I' (2.84)

It governs the step from p}-’ to ,03-] 41 as we will see in the proof of the following theorem.
Theorem 2.18. The following relations hold for i > 0

G, (Q) = ?(Lﬂn>—4G"<Q>Q*,ch%W(Q)QQ,jG;?(Q)+G;?(Q>, (2.85)
k—1
=Y (L) GEUQ)Qh ;CIE Q) Qo GT(Q) + GY(9), (2.86)
7j=1

and the sum in should be skipped for k = 1.

Proof. We note that (2.86]) follows by iteration from (2.85)), so it suffices to prove the latter equation. By
Lemma [2.17] we can write

. i+1
pj+1(¢) _ Z?_H(Q)e*%w’A(HD’LJ n(Q)¢> <J7—LJ+1(Q)¢> (JGJH( )J}_ (2.87)
On the other hand, Lemma [2.16| gives
Li
Pl (W) =T, p1 (). (2.88)
Thus using (2.88)), (2.80) and definition (2.74]), we obtain

125411

J bfjn 2 7 *%bfj"z Q. W(y)*(QQ-JJ)(y)P Jr7
pla) = (=) T [ape T e M@ A0R )

_ Z o 2<JG (Q /dwe lbf/]nZyEﬂj.qq |w(y)7(QQjIZJ)(y)‘26_%<7Z;7A(j)’Ljn(Q)1L>ei<J7H?(Q)1;>7 (289)

LI n 192541
where Z; := (béﬂ ) 2 Z?(Q) is an inessential constant. Let us now diagonalize the quadratic form in the
exponent above. We define the function

FQ) o= 5" S [0ly) — (@a, D)) + 5 (@, AOH 1)) (2.90)

YR

and compute its derivatives as in (B.7)

- Lin ) )
31;@) F) = _%(w(yﬂ) - (QQJ¢)(yQ)) + (L)Y ADL 1)) (§)
Lin | )
— B (@0, VD) - (@4, Qe D) + T @D @DG). (29
LJ .
wF T " (L (L0)'Qh, Qa, + (L AP
= (LHCOT@) T §). (2.92)

We compute v at which the first derivative (2.91) vanishes:

¢ _cOLnQ)Qn . (2.93)

(LJ+1)(QQ¢ QQQQ¢O)+A(] MENQ) =0 = ¢0:W ;

17



Altogether, we can write for ¢ = v + 1
F(5) = F(do) + 3, COP1(Q) ), (2.94)

where the part linear in ; vanishes as F (1/;0) is a minimum. By substituting this to (2.89)), we obtain, referring

to (0),

Pl () = Zjem HICHO) =P G @) Jado) / iy o~ H1LCOT @) ) (O ) Th)

= 7} ()t (H @) il o= HU.CY @) M@ (@) ) (2.95)

€

where Z’(1) is independent of J. By comparing the expressions quadratic in J in and 1’ we arrive
at using the following fact: Suppose that j is the complex conjugation on £%(2) and A a bounded
operator on £2() s.t. jAj = A and (J,AJ) =0 for all J € LZ(£2). Then A = 0.

To check that this relation is valid also for ji;, = 0, we note that

G;?,ﬂk _ G??Mk _ Gn Bk G" “k( — ) (2.96)

is a Cauchy sequence in the operator norm by Lemma [2.10, thus G7’ HR=0 = limgy G’T7 P& exists in norm. [

Let us recall definitions (2.81]), (2.84) of the following mappings on £2(£2;):
AGHIN@) i= oy L) = (L) Q0 CHh

) 03, Qa,)

C(j):LjU(Q) = (A(j):LjTI(Q) + a(
We have the following scaling properties:
Lemma 2.19. Forn = L7*, Aj = LF=7 the following equalities hold,
—2 a8 N.LI Qi %
Aj(AQ) = )\j QS)\].]A(])7LJ77(Q)(S)\J.]) = (aj — a; Q)\ Qj (A Q)Q3, Q]) (2.97)
Qi (). L Q; _

C5(09Q) == MSTCOEQ)(ST) = [4,(00) + 75Q%,0,Q00,] 7 (2.98)
where the maps A;(\jQ), C;(N\;jQ) act on L2(X\;Q;).
Proof. We recall from (2.65) and ([2.46)) that

Q058 = 5\ Qo (2.99)
SLGT)(SL)" = 272G (\9). (2.100)
Hence
Sy ADEQ)(S)T = ()7 (a; = a5 (L) "28)) Q0 GH()Qh,(5)))")
= (L)% (a; — a3 (L7n)"*Qx, 0,95 GHQ)(S3)" Q3% 0,5)
= ('n)~2(aj — a3 (L) A %Qx,0,,G iNDQ3,0,)
= X} (a; — a5Qx,05G; (N0 Q3 0,)- (2.101)

Now we compute

Aj
= (A;(\) + ﬁQLQjQAij)‘l, (2.102)
18
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where we used that by (2.99) and (S9)* = Sj\\ilo

A€ A€
QQJ,I( ) Q)\ 1>\ Q; 15)\;_—13 = SA§1J+1Q)\J'QJ-,1- (2'103)
This concludes the proof. [J
We define the following objects:
H;(Q) = a;G;()Qq,, Cj(Q) = H;(Q)C;(N)H; ()" (2.104)

and prove a rescaled variant of the renormalization group formula (2.86]). Relation (2.105)) is stated without
proof in [Dil3) formula (373)], with unspecified j = 0 term. A proof is sketched in [Di04].

Theorem 2.20. Forn= L~ and Aj = LF=1, we have the following relation

B

-1

(G ) () = DA (CHN H,) Az) + AT (G (M) fr,) (M), (2.105)
1

[
Il

Remark 2.21. If we tried to estimate the kernel of G (2) by substztutmg f= 577 the first term on the r.h.s.
of m would stay reqular, while the last term would acquire n~%

Proof. As a preparation, we note that, by taking adjoints in l) using (S?) S/\ . and rescaling using
Lemma [2.7 we get

Q;

Q0 iSE = 5VQa; = S{Qh, = Qi) (2.106)
We also recall the defining relations (2.65)), (2.98))
G1(Q) = A2(SY) G (\Q) S, (2.107)
Ci(AQ) = A28 CDE Q) (539, (2.108)
Now we restate formula
Za2A4G” )Q4,,COE1(Q)Qq,;,G1(Q) + GT(Q) (2.109)
and note that G}(Q) = G(2). Thus, by (2.107), (2.108), (2.106]),
k—1 _
* * i), L7 *
L) = 3 @3S G (AR SL @ ,CP P IQ)Qa(S2) Gy (A ST, + GIR) (2.110)
j=1
— QO ()L Q
= 3 QS ) G (D@ S COE Q) (ST Qr 0, G (D SE + GUQ) (2.111)
j=1
k—1
= > @A (SY) G (DRS00 (A)Qx 0G5 (AR)SE, + AT (ST G M) ST, (2.112)
j=1

By evaluation on a function we obtain ([2.105f). [J
In the following lemma we use notation [...Jo which was introduced in ([2.49).
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Lemma 2.22. Let n= L%, Aj = LE=7. The following relation holds

C509) = N2A; + 32, 4;Q,G1 (N DQ A o (2.113)
where, G ¢ = aj(LEn)_2 and, as in ,
1 1 1
Ajq, = — ) Q4.Qq,, dj=a;(L'n) 2 2.114
4y a]] (dj,j +C~ll,jL_2 djo‘)QQjQQJ, it a; (L) ( )

Proof. We have, according to Lemma [2.19

Ci(\Q) 1= XSy COE Q) (857)", (2.115)

j
Now Lemma [D] gives

COLMQ) = [A) + a2, 4;Q,G7,1 Qi Aj]q, (2.116)
Furthermore, in Lemma [2.13] we defined

Gir1(AQ) = A3S{LGY

T (@)(S8) (2.117)

Moreover, we have by (S{)* = 529 and Qxq ;S{ = Sf\lj/QQle (cf. (2.46))

Qﬂj,l(SiJ) = (ng“) Qx50 (2.118)

Si?Qaj,lQQj,l(Sij) Q0,190,091 (2.119)
. o

QQJ(S)\;) = ( Aj) @05 (2.120)

Now we have all the information to compute (2.115)):

Ci(\Q) = )\25 A0, + a5 ;A0,Qq, Gl ()Q0 459,15,

= )‘2[*’4])\ 0, + 5 ;A1 0,000,095 G111 ()(SL) Q% 0,4).0,0;]
= N Ajne, + 5 5450,00002,G+1(NQQA o450, (2.121)

This concludes the proof. [J

2.6 Exponential decay of lattice Green functions

In Theorem [2.25] below we give a proof of exponential decay of Green functions. The main ingredients of the

proof are Lemmas 2.12] [2.15] formula (2.105)) and the estimate
[ Hi () (z,y)| <ce ¥ 2eQ, ye, >0, (2.122)

on the expression Hy(12) := apG(Q)Q; which appeared in (2.104)). It is the goal of Sections [3| and 4] to prove
@.129).
First, using Lemma [2.15] we obtain:

Lemma 2.23. The following bound holds for v,y € Q

Cu(Q)(y, y)| < L2l WV y 0 e . (2.123)
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Proof. By evaluating (2.113)) for j = k, we get

Cr(Q) = [Ar + 3 x ArQiGrr1 (V) Qi Ak, (2.124)

and we observe that 2 is a unit lattice. Writing ¢, := 5;, (cf. 1) and the line below) we want to compute

(0y, Cr(2)6,). First, we recall from (D.11])

apk 1 CLk+1 k 1 ak+1
A = [a 72 Q" Q]Qk [dk,k @2 L 5@ Qlo, [ak - 5 Q" Qlay, (2.125)

since Q*Q is a projection and a; ¢ := a; (L'n)~2, L*n = 1. Clearly, the kernel Ay (y, %) vanishes for |y—y/|oc > L
so we only have to consider the second term in (2.124]).

We note that y — (Aid,y)(y) is supported in an L-box Bjy1(2)NQ; with label z s.t. |z — ¢/|c < L.
Now g(z) := (Q}Ardy)(x) is a function in EQ(Q) supported in Bk+1( ) C Q. It has the property that
gr-1 € L2(L71Q) is supported in L' Byy1(z) = A1, € L'Qand |L7'2— L™'y/|oo < 1. Thus Lemma
and the triangle inequality give

~ * _ —1,_7—-1_ %

(6, ArQrGre1 (QQEARS,)| < eL?e el ==L o
< eL2e®re~ L W QF Ay (2.0l Qf Akdy 2.0

< L2 e T | Qr Agdy 0.0 Qf ARy 2.0 (2.126)

Now we estimate the norms on the r.h.s. of (2.126]). Let us first consider the 1/ag-contribution from Ay
in (2.125)). Then Q70, is a characteristic function of a unit block in 2, hence,

1Qkdyll2.0 = 1. (2.127)

Now we consider the @Q*Q contribution from Aj. Then Q*QJd, is a function of value 1/ L% on one L-box
Bi+1(2)N€Yy, of the unit lattice and zero everywhere else. The action of Q} creates a block-constant function
on 2. We have

1Q5Q" @3y ll2.0 = Q8 ll2.0,., = L™ < 1. (2.128)

The last inequality also follows from the fact that |Q| = ||Q*|| = 1, cf. Remark[2.8] This concludes the proof.
U

Now we recall from (2.104)) that C}(Q) := H(Q)Cr(Q)H;(2) and prove the following lemma.

Lemma 2.24. For ~y := iclLfl, c1 >0,
(CLQ) f)()] < eLPHH2emr0dmsmwpli)) p| (2.129)

where d(z,supp(f)) := infycqupp(f) |z — yl.
Proof. We have

(Cr(Q2 = Y Hi( Q)2 y)Ch( )y, v ) (Hi () ) (Y)- (2.130)

Y,y €Q

By we have |Hj () (z,y)| < ce~1l*=vl. Hence
(ML) <08 S [(HRQ)8,, 00 f(2)] < en| fllae™ 20 s 3™ =03l

e z€Zd
|| flsce d(y’,supp(f)) (2.131)

IN
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Recalling from (2.123)) that [Cy(Q)(y,v/)| < cL2e L4 we obtain

(CLQ)f)(2)] < cL? Z e—qd(ﬂfay)e—cw’ld(y,y’)e—%ld(y’,supp(f))Hf”oo
Y5y’ €,

By the triangle inequality

(oL supp()) < Jerld(e,y) +d(y, o) + Al supp(f))]
< Slead(,) + LA, y) + Serdyf, supp ()]

Thus we obtain

‘(CIQ(Q)]C)(‘T” < CL2e7iclL*2d(x,supp(f)) Z ef%cld(:t,y)ef%C1L*2d(yyy/)Hf”oo

Y,y €Z?
< L2 0d@swp(N)) £l o)

where the L-dependence is determined by summing up the geometric series:
21, 1 d

Z e72C1L [y’ < c<12) < cL2d.

y'ezd 1—e2at

This completes the proof. [J
Theorem 2.25. There is ¢} > 0 s.t. for all f € L2(Q),

(G()f)(@)] < cL e ad@ppD)| £l
Proof. The proof is based on formula , which has the form

-1

(Ge() F) (@) =D A2(CHAM ) (Ajz) + AT (G (MQ) fr,) (M),
1

e

<.
Il

where \; := Lk~ . Regarding the last term on the r.h.s. of 2.137 , we apply Lemma
MG f) )] = A% Y (0% G La,, f)l
y’E(/\lﬁ)

< A2 Y el sk lzaellla, a2
y'E(M Q1

We note that 5 Vs supported in Ay s.t. |y—Ai1z|e < 1. Furthermore, if 1Ay1 Iy # 0 then |y —supp(fia,)|oo <

1T
1. Consequently, by the inverse triangle inequality,

ly — '] > [Az — supp(fa,)| — ¢ = M|z — supp(f)| — c.
Now we estimate the norms on the r.h.s. of (2.138)):

d d
H(S)\lx H2 A1 =L Z 2d5>\1x33 = L7

x €/\19
1o, fullbae = L7 D 1a, (@) @)
z'eEXNQ
= Lid Z 1)\1—1Ay/ (x//)‘f(x//”z
z' e

IN

L™ fI3 # (AT 2y) < ellfIIZ
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(2.135)

(2.136)
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(2.138)

(2.139)
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(2.141)



where we noticed that if 2” € A['A, then [M\a” — /| < 1, ie, |27 — A"y |oo < AT, The latter set of
2" € Q contains (2L 4 1)% < cL? elements. (Here we used that )\1_1 = nL and the ball in supremum metric is
a cube). Making use of (2.138]), (2.139)), (2.140)), (2.141]) we get

IAT2(GLAMD) fr,)(Maz)| < edpZezedilomsuel N omgerlv=y/ I pd/2) 1))

y'eL—1zd
< AL fll e DL YT et
y"ezd
< cA;2L3d/2e‘%Cl““”‘S“pp(f)‘Hflloo (2.142)
< CL3d/2_2k+2e_%Cl‘x_suPp(f)‘||f||o<37 (2.143)

where in ([2.142)) we argued as in (2.135). We also note that L=2*2 < 1 since k € N.
Now we consider the sum in (2.137)). Recall from Lemma that

(CLQ) f)()| < cL?HH2emr0dlswppli)| £ . (2.144)
Hence,

‘(CJ/(A]Q)JCA])(A]x)‘ < CL2d+2e—70d(>\ja:,supp(f/\j))||f||oo < CL2d+2e—70>\jd(:c,supp(f))HfH

< CL20H-2e Yo Ld(z, supp(f ||f||o<37 (2‘145)
where we used that
d(Njz, supp(fy;)) = inf [Nz —yl= inf Nz —y| = N;d(z,supp(f)). (2.146)
yesupp(fx;) y'€supp(f)
Thus we obtain
k—
Z 2(CHNQ b)) (V)| < eLPeoldlmsuepli)] ¢, (2.147)

where we used

SA=L 2 (L2 (L <L (2.148)

Now the claim follows, recalling that vo = ¢;/4L. O

3 Green functions with free boundary conditions

The goal of this and the next section is to prove estimate (2.122)) which was used in the proof of Theorem

3.1 Laplacian on the infinite lattice nZ
Consider the Hilbert space £2(nZ) equipped with the scalar product
9 =1 Fug=n)_ fl)g(x). (3.1)
keZ reENZ

As before, we use the notation fx = f(nk), where k is an integer parameter corresponding to the point nk of
the lattice.
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Now we define the discrete derivatives
1 1
(0" = 1 fierr = fi) (O i = — o (ie= fic)) = =@ Pic-r. (3.2)

For a fixed 7 these are clearly bounded operators. By Lemma we obtain that 0" = (97)*. It is also easy
to see that 0" is normal, see (3.5) below. By analogy with Lemma we obtain the following:

Lemma 3.1. The Leibniz rule holds in the form

(0"(f9))k = (0" flxgr+1 + [ (9"9)x- (3.3)
Integration by parts holds in the form
(f,0"g) = —(0"f,g.41) = ("', 9). (3.4)

The one-dimensional Laplacian has the familiar form

_ e = 2/ 4 finr

(AT i = (=0"0™T f)y = (=019 f)ic 2 (3.5)
and is a bounded self-adjoint operator. We note the following:
Lemma 3.2. Let k, € %Z and P be the reflection operator
(Pfx = fox.—x- (3.6)
Then P? =1 and P = P*. Furthermore,
PA)_P=A]_,. (3.7)
(We note that P depends on k., although this is hidden in the notation).
Proof. P2 =1 is clear. To check P = P* we write
(£,Pg) =1 frgok. =1 Y fox—wgi = (Pf,9). (3.8)
k K
Next, we note that
1 1
(O"Pf)x = 5((Pf)k+1 —(Pfh) = 5(f2k*—k—1 — fak.—k)- (3.9)
Hence
1
(PO"Pf)y = E(f2k*—(2k*—k)—1 — fote,—(2ka—t) = (O™ ). (3.10)

Therefore PAl_ P = —(PJ"P)(PO™TP) = —g"1o"n = Al_,. O

Let us comment on the relation between the lattice Laplacians with free and Neumann boundary conditions
in one dimension.

Definition 3.3. We say that a function f € L2(nZ) satisfies Neumann boundary conditions on I, if the
following relations hold on the boundary

We denote the subspace of such functions Dy.



Clearly, we have the following:
Lemma 3.4. For any f € Dy
(AlfD(x) = (A" f)(z), =€l (3.13)
where fr € L2(I) is the restriction of f to I.

Now we formulate a sufficient condition for f € £2(nZ) to be an element of D;. Let P be a reflection
with k, = —1/2 and P with k, = n —1/2 (cf. ) Thus we obtain reflections w.r.t. lines passing in the
(1/2)n - distance to the boundary of I and denote the actions on the lattice points by the same symbols. The
d-dimensional counterpart of Lemma below (Lemma will be needed in the context of the method of
images (see Section 4] and Lemma |4.2]).

Lemma 3.5. Let f € L?(nZ) satisfy
(Pf)(@)=f(x), (Pf(x)=f(2), (3.14)
for x at the ends of the interval I. Then f € Dy.
Remark 3.6. This is analogous to the fact that a symmetric function has a vanishing derivative at zero.
Proof. Let us check for demonstration. We write for z = 0
fo=(Pfo=f=, (3.15)
which amounts to (8" f)(0) = 0. O

3.2 Laplacian on the infinite lattice nZ¢

Now we work on £2(nZ%) = £2(nZ)®? and write k = (ko,...,kq_1) = (ky)pu=o,....a—1 for elements of z4
parametrizing points z := 7k of 7Z%. The scalar product in this space is given, accordingly, by

(f,9)=n">" o (3.16)
kezd

In the d-dimensional context the derivatives are denoted

N=1 @0 el, I=1e -0 L (3.17)
Now the Laplacian is given by
d—1
A== (apT o). (3.18)
pn=0

We have the following corollary of Lemma [3.2
Lemma 3.7. Let P be a reflection w.r.t. ky € Z as in Lemma[3.4 and denote by
P=1® - ®P® @1, (3.19)
—_—
pt1

the corresponding reflections w.r.t. the hyperplanes

(&b, key oo K )| K €297, (3.20)
pt1
The following relation holds:
P,A"P, =A" pn=0,1,...,d—-1. (3.21)

(We note that P, depends on ki, although this is hidden in the notation).
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We note as an aside that for any bounded Borel function F' : R — C we can define the operator F(A")
whose kernel satisfies

F(A")(Pyz, Pyy) = F(A")(z,y), p=0,1,...d—1. (3.22)

Here we denoted the action of reflection on a lattice point x also by P, so that P,d; = 5;7% , and used ,
(13.21)).

Like in Subsection [3.1], we comment on the relation between the lattice Laplacians with free and Neumann
boundary conditions in d dimensions.

Definition 3.8. We say that a function f € L£L>(nZ?) satisfies Neumann boundary conditions on Q, if the
following relations hold on the respective subsets of the boundary .'

OFif)a) =0 for x€,, (3.23)
@0if)(x) =0 for xe€0QH, (3.24)
uw=0,1,...,d—1. We denote the subspace of such functions Dq,.
Clearly, we have the following:
Lemma 3.9. For any f € Dq we have
(Al fo)(@) = (ATf)(@), zeQ, (3.25)
where fo € L2(Q) is the restriction of f € £2(nZ%) to Q.

Now we formulate a sufficient condition for f € £2(nZ%) to be an element of Dg. We fix y and let P be
a reflection with k, = —1/2 and P with k, = n — 1/2 (cf. Lemma . Thus we obtain reflections w.r.t.
hyperplanes passing in the (1/2)n-distance to the boundary of €

P,=1® - @P®---®1l, P,=1® - @P®---®1 (3.26)
put1 w1
and denote their actions on the lattice points by the same symbols. We have:
Lemma 3.10. Let f € £2(nZY) satisfy
f(z), x€0Qy, (3.27)
(Puf)(x) = f(z), =xe€dQ, (3.28)
w=0,1,....d—1. Then f € Dq.
Proof. Let us check (3.23]) for demonstration. We fix p and write for v =nk € (I x --- x {0} x--- x I)

pt1

Fkors0rka 1) = (Puf ) (koyns0rka 1) = Jhor—1y kg1 (3.29)
which amounts to (91 f)(z) = 0. O
Finally, we define the lattice translation operators
(Ti [ = fre—r- (3.30)

which form a unitary representation of Z% acting on £2(nZ¢). We will also use the notation 7'(z) for 2’ = nk’.
Since

(Tiog, f) =n" Y Twgefc=1" D Guowho =n" Y Gufirw = (9. Tw f) (3.31)

kezd kezd kezd
we also have T) = T_y. By obvious computations using the definitions of ;) and 8Z’T we have
T AT = A", (3.32)
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3.3 Fourier transform

We define the Fourier transform and inverse Fourier transform on £2(nZ%) by

(FHP) = fp) = @m) > Y nle ™ f(z), flz)= (QW)_d/Q/ __”" f(p) dp, (3.33)

d
zenzd penZ

where 77/Z\d is the torus [~ /n, m/n[*¢. We recall that the sum in 1) should not be taken literally: F is
defined first on £'(nZ%) and then extended to £2(nZ?) using the isometry property checked below.

Lemma 3.11. The Fourier transform is a unitary L?(nZ%) — 52(17/2\‘1).

Proof. We check here only the isometry property to verify normalization. We recall the formula
/ dpe™ = (27)%6m0, m e Z% (3.34)
[_71—77T[Xd
Now we compute

(f1.fo) = (27T)d/[ ) /[dep > e E (1) o)
—m/n,T/n

x1,02€0Z4

= (2m)™* dpn~® > PP tMImE (nmy) fo (nmy)
[_71—771-[><d

m1,m2€Zd
= D n%myme 1 (mma) fa(ma) = (f1, fa). O (3.35)
mip,moEZ4
Lemma 3.12. The following relations hold
A 1 .
N(p) — —ip-y
_ 1
f@ZF 1 _ {5<e Mu 1)}})@7/237 (3.37)
_ 1,
f@Z,T}- 1 _ {_E(e P _ 1)}p€77/2\d’ (3.38)
9 d—1
-1 -
F(=ANHF1 = {? ZO (1 — cos(pun))}penzd, (3.39)
:LL:
where the r.h.s. in f denote multiplication operators on £2(77/Z\d).
Proof. Relation (3.36|) is clear. To prove (3.37), we get for x =7k, e, = (0,...,1,...0)
1
pt

FOOE) = ()2 3 e (e, = i)
kezd

1 . )
= (@m) 7y ndﬁ(e_mp.(k_e“)fk — e PR
kezd

- j}(é% ~)(EFN ). (3.40)

Relation 1} follows from 1) by taking adjoints and 1} follows from A" = — ZZ;O aﬁﬁaﬂ via 1 ,

B3%). O
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3.4 Averaging operators on nZ¢

The averaging operators on nZ% are defined analogously to the averaging operators on a finite lattice. Thus we
will denote them by the same symbol @Q; and the discussion (2.40)—(2.45) can be repeated mutatis mutandis.
The operator Q; : £2(nZ%) — L£L2(L/nZ?) is given by the familiar formula

Qi f)(z) = >, f@) (3.41)

Ze le. <Ze +L'777

Lid
and has norm equal to one, cf. Remark Its adjoint has the form

(Qjh) (%) = h(yz), (3.42)

where y, is determined by x € B;(y.).
As a preparation, let us now write for g € £2(Z%)

f(x) = (Qrg)(x) = 9(ya), (3.43)
where y, was defined below ([2.43). The Fourier transform has the form

fp) = @m) 92 3" e og([wa])

zenZd
Lk—1 _
_ (27r)_d/2 Z Z nde—lp,,([acanZu)g([x.D
[m.]EZ Le=0
= (2m)Pu(p) Y e g(f]) = u(p)a(p), (3.44)
x.]GZ

where u, the Fourier kernel of Q*, has the form

We note that f is a function on [—7/n, 7 /n[*¢ after extending § from [—, 7[*% to [—x /n, 7 /n[*? by periodicity.
Furthermore, Q7Q; L£23(nz4) — £2(nZ?) is given by

@Nw =72 Y f@)=14 ) f@). (3.46)

Yo, 0 <Te<yx 0+ L7 [ (LI m <ze <[P 1(LIm)+Lin

We want to compute the Fourier transform of this expression, cf. (3.33). In the following lemma it is used
that L is odd and L¥n = 1.

Lemma 3.13. For j = k the Fourier transform of has the form

@QiQef)) = ulp) Y ulp+2nl")f(p+2rl"), (3.47)
g'./:,b

2

where u was defined in .
Remark 3.14. This agrees with formula (2.45) of [Ba83].

Proof. See Appendix [E] O
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3.5 Green functions with free boundary conditions

This subsection serves to decipher the discussion [Ba83| (2.44)-(2.51)]: The propagators with free boundary
conditions are operators on £2(nZ%) given by

Gy = (=A™ + a4, Q5 Qr) " (3.48)

The existence of the inverse is visible in the Fourier space and will follow from the discussion below (see
Lemma [3.15). We consider the following equation for some v, f € £2(nZ%)

(=A™ 4 4, QrQr)v = f. (3.49)

We take the Fourier transform, using (3.47)) and (3.39)

k1
2

A"(p)o(p) + aru(p) Y ulp+27l)i(p+ 2xl") = f(p), (3.50)

p__ Lk—1
te=—"5%—

where A"(p) := n% Zi;é(l — cos(pun)) + fix, u(p) :== n? HZ;%) 11:ee;;p:n (cf. (3.45))) and we deliberately hide
[ir; in our notation as it will play a minor role in the following.
To solve equation (3.50]), we set

(w, o)) = > ulp+27M)d(p+27L"). (3.51)

n__ Lk—1
to=—"%—

We note that ((u,0)) depends on k although this is hidden in the notation. By Lemma below we have for
any ¢ € Z%

((u, 2) (p) = ((u, 0)) (p + 2L). (3.52)

Now we obtain from (3.50) using notation (3.51) and ua(p) := Auy(’[))), falp) == Afygz)

o(p) + agua(p)(u, ) (p) = fa(p). (3.53)

Using (3.52), we obtain

{(u, 0} (p) + ar{u, ua)) (p) (u, 0) (p) = (u, fa) (p), (3.54)
{(u, 2) (p) (1 + ar{u, ua) (p)) = (u, fa)(p), (3.55)
(u, 0)(p) = (1 + ar(u, ua)(p)) ™ (u. fa)(p)- (3.56)
Now we substitute ([3.56) to , which gives a solution
80) = GiNm) = falp) - —2BC g 7)) (3.57)

1+ a(u,ua))(p)

From this solution we can conclude that Gy, is a bounded operator. (The norm may depend on parameters of
the problem s.t. n, ik, L).

Lemma 3.15. Gy, is a bounded operator on L£2(nZ%) for any fi, > 0.
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Proof. Suppose first that fi, > 0. Then A"(p) > fir, > 0 and the first term on the r.h.s. of (3.57) satisfies
I Fallz < ,uk1||f||2 As for the second term, we first note that <<u ua)(p) > 0. Next, regardlng that uis a
bounded function (actually uniformly in 7 for p € [—7/n, 7/n[*¢), we note that

1w, Fadlle < e 'l flle- (3.58)

This concludes the analysis of the case of fix > 0.

Now suppose that j; = 0 In this case the only possible obstruction to boundedness are non-square-
integrable singularities in Let us justify that such smgularltles can only appear at p = 0 for p €
[—7/n, 7 /n[*¢. This is 0bV1ous for the term fa(p) on the r.h.s. of As for the second term, we first

note that the denominator 1 + ay{(u,ua))(p) is irrelevant, since <<u,uA>> (p) > 0. The remaining expression
LF—1

<

2 _—

ua(p){(u, fa)(p) might potentially also have non-square-integrable singularities for p + 270" = 0, —
v < %, " #£ 0, resulting from A"(p) = n%zz;%) le=#un — 1|2 appearing in fa. These are, however,
cancelled by the factors 1 — e=Pn = 1 — e 7i(Pe+2760) aphearing in ua(p).

Let us now exclude a non-square-integrable singularity at p = 0. For this purpose, we reformulate (3.57))
as follows

TR f(p) agua(p) :
(ka)(p) (p) - 1+ ar <<u7 UA>> (p) <<u7 fA>>é”=0(p) (359)
UUAE) o), (3.60)

1t arfu ua))(p)

where the subscripts ¢/ = 0,¢” # 0 pertain to the sum in (3.51)). We note that (3.60) is square-integrable in
the interval p € [—, 7]*%: First, since [—7,7]*? 3 p = A"(p + 2m¢") has no zeros for £” # 0, we obtain

1w, fadersollz < Clfl2, (3.61)

where C' may depend on 7. Furthermore, we have

ua)l [u(p)| |
T+ an(u, un) @) A1) + [up) + axfen, uaferzolp) — [u(@)]’ (3.62)

where |u(p)| > ¢ > 0. Now we consider (3.59)). We rewrite it as follows:

o aluua)e—o(p)\ flp)
€3 - (1-F s )
_ ( 1+ ag{u, ua))er20(p) ) f(p)
1+ ap{(u, ua ) er—o(p) + ar(u, ua)e+o(p) ) A7(p)
_ 1+ ag{(u, un))er20(p) ;
= (A”(p) 4 (Ik;|u(p)’2 + ag((u, UA>>5//¢0(p)AW(p)>f(p)’ (3.63)

where the expression in bracket in (3.63]) is manifestly regular near p = 0, since |u(p)| > ¢ > 0. O

Now we state a rough estimate for the decay of the kernel of Gy. Its weakness is the dependence of the
constants on k, hence on the lattice spacing n = L™*. But it suffices to write formula (4.4)) below.

Lemma 3.16. The integral kernel of Gy satisfies
|Gr(z,y)| < cpe kb, (3.64)

where the constants ci, and ¢ > 0 may depend on k.

30



Proof. We have

1 ip':c/\
D& = gayan | e G (3.65)

Now we set f(z) = 6 (z), hence f(p) = (2r)~#2e7 ¥ by (3.36). Thus we can write, using (3.57),

z) = L ol [ F _ arua(p) u. f
N0 =gy [ o (Ja) - s ) 66
We have
) . efip.y ) L]'CQ_1 _ e—i(p+27r€”)-y
fl./:_L 2—1
Consequently
(Grf)(z) = (27r1)d/2 /[ . [depeip'@*y)g(p), (3.68)
—m/n,m/n

where g is real analytic (cf. the proof of Lemma [3.15) and periodic with period 27 /n. Hence it remains
periodic in the real direction after analytic continuation to S, . = {z=p+ige Cl|peR,|q| <k}, where

0 < c¥ < 1. (Such c¥ exists, but may depend on k). Thus, by the Cauchy theorem for a rectangular contour
C, we have for a fixed p,

O :%C'eizu(x_y)ugu(zu) dz“

7|—/77 ) Gst,p | .
_ / elpu(zfy)ugu(pu)dpu + 1/0 el(ﬂ/nJrlq“)(xiy)#gu(ﬂ'/n + iQ)dq

-/
-/ 0 .
+ / el(pllf“’»lqshl—b)(x*y)ugu(pu + iqSt,M)dp/L + 1/ el(fﬂ-/n+1qﬂ)(x7y)#g'u(_ﬂ-/n + 1q)dq7 (369)
7T/TI Ast,p
where g,,(2,) = (20, ..., 2, - - -, 2a—1) and gs; 1= 3¢k (@:Z‘) We note that the second and fourth term on the

r.h.s. of (3.69) cancel by periodicity and the remaining terms give

T/ T B .
[ o= [ e, (3.10)
—7/n —7/n

By iterating this argument, we obtain

/ P (" Vg(p)dp = / ol PHi) (=) g (p + igy) dp,, (3.71)
(=7 /n,m/n[*¢ [=m/n,m/n[*?
which gives (3.64]). O

Now we will study the kernel of GQj. Now we substitute (3.44) to (3.57)):

o —

(GrQ39)(P) = ua(P)d(p) — arua(®) (1 + ax(u, ua)) ()~ (u, uad)) (p)

= (1= (1 + arlu, ua)(®)) ™ arlu, ual) (p))ua(p)g(p)
1
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where we used that ¢ has period 27 to pull it out of the bracket ((-,-)). Next, we write

. 1
(61Q9)(@) = (2) 2 [ dpe?” us()a) (373)
’ [ /nm/m[x 1+ ar((u, ua))(p)
Now we set g = 5;, which gives
- 1
GrQy)(z,y) = 27r)_d/ dp e (@Y ua(p). (3.74
(rant ( [ /nm /<4 1+ a(u, ua)) (p) )
We note that = € nZ%, whereas y € (L¥Fn)Z? = Z¢. Since 1/n = L¥, we can write
(CAESY
2
: y 1
GrQb)(z,y) = (2m) ¢ / dp el (P t2ml’)-(z—y) un(p + 270, 3.75
( k k)( ) ( ) X ) Z(;kl) 1 +ak<<U,UA>>(p) ( ) ( )
=5
where we used (3.52)). The main result of this subsection is:
Lemma 3.17. There exist numerical constants ¢ and cs; > 0, s.t.
|(GrQ) (a,y)| < cem 2l (3.76)
Proof. The expression (3.75)) has the form
N IO (377)
(k-1
2
) , 1
f(p oi(pt2ml’)-(z—y) ua(p + 270)). 3.78
w2 Tt anfuua) @) 27+ 7
=" 5 =

We know from Lemma that f has an analytic continuation to Sg, := {z = p +ig € C?|

p € R, |q| < ¢t }, where 0 < ¢y < 1, and is bounded in this region as in (3.85)). Thus, by the Cauchy theorem
for a rectangular contour C', we have for a fixed p
0= e dzy =
C

_l’_

T

Gst,p
Ju(pp)dpy + i/o Ju(m +iq)dq

-7 0
fu(p,u + iQSt,u)dp,u +1 f(_7r + iQ)an (3'79)
s Qst,pu
where f,(24) == f(20,--, 2, - -, 24-1) and Gs; 1= et (li:;) We note that the second and fourth term on the
r.h.s. of (3.79) cancel due to Lemma Thus, by iteration, we obtain

| e[ e (3.80)
Thus we can write
QD) = 0m) [ o tiga)dy
Lk271 o / X
= (2m)"! /[M[Xd &__ZLZI i (pHigue +270)- () R TR un(p + igst + 270)dp.  (3.81)

Now, making use of Lemma we obtain (3.76]). O
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Lemma 3.18. Suppose f : R? — C satisfies f(p + 2w LF) = f(p), p € R. Then
k1

F(p):= > f(p+2nl) (3.82)

k
y__LF—-1
= 2

satisfies F(p+ 2m) = F(p), p € R. If, in addition, f is analytic in a strip Sec, = {2z :=p+ig € C|p €
R |q| < cst } then f(z +27LF) = f(2) and F(z +271) = F(2) for all z € Soo ey, -

Proof. We note the following

Flp+2m)= > flp+2r(l +1)), (3.83)

thus the shift amounts to relabelling the series, apart from the boundaries of summation. Hence, we have

(k- 1) (LF - 1)

F(p+2m) — F(p) = flp+ 2m(— 5

+1)) — f(p+2n(— )) =0, (3.84)

where the last equality follows from the periodicity of f with period 27 LF. Regarding the last statement, it
suffices to note that z — f(z) and z — f(z+27L*) are two analytic functions on Sy, which, by assumption,
coincide on the real line. The same argument applies to F'. [J

,Cst

Lemma 3.19. Let 0 < ¢ < ap < 1. We have for —(LICT_I) </ < WT_U, p € [—m,7[*4,

! 2| < ¢ 3.85
T uan ) A0 2O S g g e (8.85)

The bound remains true also for the analytic continuation of the function under the modulus on the L.h.s. of
to the strip Sp e, = {2z =p+ig€ C¥|p €] —m, 7|, |q| < cst}, where 0 < ¢y < 1 is a constant depending
only on d.

Proof. See Appendix [F] O

The most tedious part of the proof is to ensure that cs can be chosen uniformly in the lattice spacing (and
other parameters). This aspect is left to the reader in [Ba83l (2.44)-(2.51)]. Some hints can be found in
[BOS8Y| in a different context. We give a lengthy but self-contained proof in Appendix [F} Here we explain
only the basic idea in the case figp = 0. To start with, we write
! una(p + 27l = ! A'(p)
U+ ag(u, ua))(p) Al(p) + ar(u, ua)) (p) A" (p) A (p + 2mt’)

This regularizes A"(p + 27¢") for ¢/ = 0 at p = 0. More importantly, it facilitates the analysis of the first
denominator, which we call D. We have

D(p) == A"(p) + ap(u, ua))(p)A(p) = A"(p) + ar{(u, ua) er20(p) A" (p) + arlu(p)?, (3.87)
‘2

u(p + 2ml’). (3.86)

where ((u,ua)) g0 denotes the omission of ¢” = 0 term. It appears explicitly as aj|u(p)|* and we note that
for p € [—m, w[ we have the bound ag|u(p)| > ¢ > 0. By positivity of the remaining terms, we conclude that
D(p) > ak|u( )|2 > ¢ > 0. Thus, by the Taylor theorem

|D(p +1iq)| = |D(p) +ig- VD(p+iq")|>c — |q|[VD(p +iq)]. (3.88)

So it suffices to show that |[VD(z)| < ¢, for z in a strip as in the statement of Lemma to ensure that
the denominator does not vanish there. The dependence of the r.h.s. of (3.85) on ¢ requires a more careful
analysis.
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4 The method of images

In this section we decode formula (2.43) of [Ba83|] and prove estimate (2.122)). We will relate the propagator
Gr(2) with Neumann boundary conditions to the propagator Gy with free boundary conditions using the
method of images. To this end, we need some information about the behaviour of the averaging operators
under projections:

Lemma 4.1. The following properties hold
PuQiQkPy = QiQr,  PuQiQrPu = QiQr, T(2)QiQkT(2)" = Q4Qk, z€Z, 4.1)

where the reflections PH,FW w=1....,d—1, are defined in (@, and translations T(z) in .
Consequently,

Gr(Pux, Pyy) = Gr(Pux, Puy) = Gr(z + 2,y + 2) = Gr(z,y), p=0,...,d—1. (4.2)

Proof. We recall that € is a union of unit boxes A, y € €1, since we set n —1 = L™, m > k. Thus P, PM,
defined in , , preserve the pattern of unit boxes Ay, y € Z%. We recall from Remark that Q7 Qx
is the orthogonal projection on the subspace of functions in £2(nZ%) which are block-constant (i.e. constant
on blocks Ay, y € Z%). By assumption, the reflections P, and F# leave this subspace invariant. Since they
are self-adjoint, they also leave the orthogonal complement invariant. Thus we can write

PuQiQrPuf = PuQiQuPu(foc + foz) = PuPpufoc = foe = Qi Qk/, (4.3)

where we decomposed f into the block-constant part and its orthogonal complement. The argument regarding
P and T'(z) is analogous. [J

Define a set of image points Img := {y; }jen, by the following two requirements (cf. [G.J]|[Section 7.4])
e y c Img,
e The set Img is invariant under the reflections P, and P, defined in (3.26]).

This set is depicted in Figure [l The following relation between the Green functions with free and Neumann
boundary conditions holds true:

Lemma 4.2. For z,y € Q the following identity holds

G @) (z,y) = Y Gulx,y)). (4.4)

yj€lmg

Proof. Given Lemma and the distribution of points y;, as in the figure, we obtain that the sum in (4.4)
is convergent. It suffices to check that

(A + arQq Qo) (rhs. of ) =1. (4.5)

Let [ :=n[-1,0,...,n—1,n] and Q := I*¢ be a slightly larger box than Q. We will check that for each y € Q
and = € nZ% the expression

Fy(x) = xg(x) > Glz,y;) (4.6)

yj€lmg

is an element of Dg C . £2(nz4) (cf. Deﬁnition. We will use the criterion from Lemma Let P, denote
the reflections P, or P,. We consider = € 0Q, so xq() = xg5(Pex) = 1. (We need xg in 1) only to ensure
that = — F,(z) is in £2(nZ%)). Then

Fy(Pz)= Y Gp(Pz,y;)= Y  Gp(Pz,Py))= >  Gila,y;) = Fy(x), (4.7)

yj €lmg yj€lmg yj€lmg
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where in the second step we used the invariance of the set Img under the reflections and then we used
Gr(Pzx, Py) = Gi(z,y), from Lemma Thus F, € Dg and we obtain from Lemma and consistency of
the free and Neumann averaging operators that, for x € Q, F, o := Fy|q,

(A + arQq kQak) Fy0)(x) = (A7 + arQfQk) Fy) (x)

1
= n —An x 7]/ 77, 77_ = KN ) ° 4.
> O AT+ QRN SRR y}elmgwx,éyﬁ oy(z).  (4.8)

y;j€lmg,z' €nzd

Here in the second step we used that for z € Q we have (37, (—A” + axQLQ%)d",) = 0 unless 2’ € Q (so we
could get rid of the function xg) and in the last step we made use of the fact that y is the only element
of Img inside Q. Since (y,x) — dy(z) is the kernel of the identity operator on £2(Q), we conclude that

Fya(@) = G)(,y). O
Now we can state and prove the main theorem of this section which confirms ([2.122)).

Theorem 4.3. For x € Q2 and y € Qk we have the following bound

(Gr( Q) (. y)| < ce 7, (4.9)

where ¢, c1, c1 > 0, are constants depending only on d, in particular independent of the size of €.

Proof. We compute the kernel we are interested in using Lemma . We first note that, for any g € £L2(9),

(Gr(© = Z Z Gi(z,wj)g(w), (4.10)

j we

where the first sum is over the image points and we remember that each w; is a function of w. Now suppose
that g = Q& . f, [ € L2(Q). That is

g(w) = (Qaif)(w) = f(zw), (4.11)
where z,, 6 Qk is the element of the coarse lattice defined by w € By(zy) (cf. -

Thus , give
(Gr()9)(x) = (Ge( Qb L) (@) = 1YY Grlw, w;) f(2w)- (4.12)

j we

Now the kernel has the form

(GL(M)Qa k) (z,y) = (Gr(2)Qg, k51 = Udz Z Gre(@, w;)6,(20)

j we

— dZZkaw] ey = dz Z Gr(z, w;), (4.13)

i we J weByg(y)

where By(y) is the unit box with label y. We observe that, with § = (jo, ..., ja—1) € Z%, wip = (L") (. +
1) —w,, for j, odd and wj, = (L™n)j, +w, for j, even, p=0,1,...,d—1 (cf. figure and recall that L™ is
the linear size of Q). We can thus write, using Lemma

GCr@Qa) @ y) =D > Gl L™+ 1) = @y = (L™ )y w),  (4.14)

J weBk(y)

where j, is odd and j, is even in (4.14).
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Now we compute the kernel

(Gr@Qi)(,y) = 1" > Grla, w)Q}dy (w)

wenZd
= Z G2, w)d5, .4 = 1% Z Gr(z,w), (4.15)
wenZe we By (y)

whose exponential decay we know from Lemma (In the last step we used x € Q,y € Q). Hence, (4.14)
gives

(GrQQbu)(:y) = Y (GRQD((-- -, (L™ G+ 1) = s o2 = (L™0)fis ), 1) (4.16)
J
From this formula and Lemma the statement of the theorem is relatively clear. Thus we postpone further
details to Appendix [G] O

A Proof of Lemma 2.12

In the proof we will write 9, := 8279’ AP = ABP* and Qy := Qp.q for brevity. Let us start with some
preparations. Define an operator e, by its action on functions f € L£2(Q) as

(eqf)(x) = T f(x), (A1)

where ¢ € R? is a vector s.t. |¢| < 1. Then we compute, using Lemma,

(O of) (@) = e T feg) Hx) = e_q(@)(@LF)(@)eq(x +nep) + e _g()(@leg)(x) f(2)
- eq”"n‘ L i) + e (011 (@)

= quEy, f(x) + " (9] f)(x), (A.2)

where E,, := fol ds e®*¥" is independent of z. Since |q| < 1, we have [E,, | < e. (We note that it is helpful for
estimate (A.10|) below to have the shift (- +7e,) in e, and not in f). Recall that for y € €

QN = > fl@) (A3)
€ By (y)
Define
(Qeaf) ) = (e 4Quea§)) = 757 3 V) f(a). (A1)
€ By (y)

We will also need that (Q;f)(x) = f(y) if x € By(y), hence

(Qk —g/)(@) = (e—gQiegf) (@) = "V f(y), (A-5)

where in the second line we use (A.4).
After this preparation we move on to the proof of Lemma [2.12] Let

D, :=e_, [ — ATFE akQZQk] eq. (A.6)
We claim that there exists a constant ¢ such that for f € £2(€)

|(f.[Dg — Dol f)| < clgl{f. (AT +1)f). (A7)
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First consider the term (f, [e_,Q;Qreq— Q5 Qx| f). From 1) and lj this can be written as (f, [QZ,—qQk,q_
QrQk)f). We estimate

[(@uq— QOB = X 155 3 e —1]j(@)P

YEQ, meBk( )
< cf? Z T Z 5 Y, (@’ + @)%
yEQk z€B(y x'€By(y)
< cg? W Z f(@)? < || fl3, (A.8)
e

where the sum over y and the sums over the boxes combined to the sum over the entire lattice. We used that
|z — y| < V/d, if 2 in the unit box with label y. Estimate (A.8) gives

(/. [e—gQiQreq — QEQKIN| < clalllf13, (A.9)

where we applied the Cauchy-Schwarz inequality.
The remaining part is estimated as follows

|(fs [e—q(=AT)eq — (=AT)] £)|
= ]<eq(9"(e af); e—qan(eqf» - <8Zf7 aZfH
= [{(=qu) E(—gf +e M (O1f), quEq, [ + "% (0]Lf)) — (9, f, 0. 1)
< clg|(f, (=A"+ 1) f)], (A.10)

where summation over p is understood We used here (2.13 ., A.2), |g*> < |q| and [(O1f, £)| < 3(f, (—A"+1) )]

. Using (A.10) and (A.9) we check (A.7).
Recall from Lemma [2.10| that <f, Dof) > co(f, (A" 4+ 1) f), where Do := (—A""* 4+ a;,Q%Qy). Thus we

can write, choosing g s.t. d|q| < ¢o/2, where ¢ appeared in ,
[(f;Dgf)] > (f;Dof) — [{f,(Dyq —Do)f>|
> co [(f, (AT+ 1)) — — < (=A"T+1)f)]

= Seollf, (~AT 4 1)) > chufH%. (A1)

We note that D, is invertible as a composition of invertible mappings. Substituting f = D;lh to 1} we
get

1 _ _ _ _ _
00lIDg "hll5 < (D A h) < IAll2lDg hlls = IDg hll2 < 2657 (12| (A.12)
Since D! = e_;G(Q)e, this reads
le—qGr(2)eghll2 < cl[]2. (A.13)

Now let ¢ := min{%(c’)*lco,l}. Then, for |q] < co/(2¢) as specified above li and supp(f) C Ay,
supp(f’) C Ay

[(f, G )] = [egfs (e—qGr(Q)eg)e—q )]
cllegfll2 ”e—qf/HQ
eV la]| £]]2. (A.14)

ININ

Taking ¢ = 1 _‘(y |) gives the result.
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B Proof of Lemma [2.16

The computation is analogous as in the proof of [Dil3, Lemma 2]. The statement follows from the fact that

Li
a convolution of two Gaussian functions is again a Gaussian. It suffices to check T 77T -

- follows by iteration. We write

L 7lbLj”I , FladY_ ) ’
(T () = ( ) / dpe T ey WO QR )

i
2T

1921
b'r] VAL 1 _ )
><<2;> 3 /d¢e B Tyea, W~ Qa0 o)

12 ]+1‘
2

/dlﬁ e_%bfjn 2yeaiy ¥/ (6)=(Qa; V) (¥

The problem boils down to computing the integral

/ dpe b S yea,, [V 0)=(Qa, )P 3V Eyea, W@ —(Qa )W)

We denote the expression in the exponential by

1 i
F) =507 3 W) — @a, )P + 56 Y [4() — (Qas0)w)
y’GQj+1 yEQ
We will find the minimum ¢ and then expand ¢ = g + 1; Since the linear terms vanish, we get
1 - -
F($) = F(¥o) + 5 > F" (o) @ #)@P@),  F"@0)(@:5) = 0y O F (@) ly=vo-
9,9’

Then we will obtain, referring to (D.1]),

B.2) = /dl/JeF(w) = eF(ﬂJO)/dl;e_éziy F//(wo)(ﬂ,g’)l/](g)d;(g) F(wo) ( ()|QJ;
det

provided that F” (1) is invertible. (The latter property can can be read off from (B.8) below).
We compute the derivative of F

@) = gt Y W =g Y = el ()

W) L Yo <ze<ye+L(Lin) Yo<ze<ye+L(LIin)

W( )

where 1p. () is the characteristic function of the L-box Bj1(y’) in the lattice ;. Hence,

J 1o ’ 1
P) = =b" > (') = (Qa0)W) - Talsmwn @+ Y (¥() = Qo 0)w) -0
Y EQ;41 yeEQ;
b

= L (V) — (Qa,¥)(wp) + B (4(5) — (Qad)(7))-

Thus at the minimum 1y we have, using ([2.43)),

e
_#(Q*W — Q" Qvo) + o — Q¢ =0,
bLJ " pEm (pmy—1
(1+ LQ *Q)tho = gQ W+ Q.

Ld
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(B.9)



We note that for any projection P we have, for |b| < 1,

Ty ((1+b)‘1_1)P+1:—1b+bP+L
O
cf. (D.10) below. (In our case b := 74 < 1 holds, because L > 1). Thus we get
b2
¢0:(—1+b )Q¢—mQQg+1¢+Qg¢
= m@ P — m@ Qj+10+ Q;d.
We compute
/ 2 / b
19" = Quollzg,,, = V' — 1+b¢ 1+be+1¢ Qj10l30,.,
= (1+b)2”¢ Qj+19l30,,,:
b? b?
10 — Qidll50, = (1+b)2”Q V= Q Qjdl50, = (1+b)2”¢ Qjr1¢l30,,,-
Now we write, using , ,

L i, _ 1 o
F(to) = 500" "(L7 )¢ — Quol3q,.,, + 507 (L)~ lvo - Qsoll50,

1 1 C o aLin
= 5@(””) d(b1 L+ b?bz) [ Qj+1¢H%,Qj+1
1 1 L
= §m(b1 THLWI) Y W) - Qi)
y'eQjp
. b (bn) Lin 1, \d—2 37 . 3py)d—2
We have that, with b := ——7—, b)"" == a1 (L7"1n)72%, b] := a;(L n)?

1

1 L 1 1 Lin
- B4 b) = - ———— b
s A0

Lin g 1
bl 4 o
J

1 alaj(Lj-i-ln)d—Q(L] )d 2

Lin ding2\ _
2(1+b)2(b1 + L bjb) =

2a (Ljn)d72 + a1(Lj+177)d72/Ld
1 aia; 1, .

_ L(piHL,)d-2 J — (a2,
5 (L) o+ a1 /L7 5 (L) a4

This, together with (B.14)), (B.5|) concludes the proof.

C Proof of Lemma [2.17.
We write

pi(¥) = T 15[ pol(¥)

1251
b1\ 2 .
_ <2;> 2 / d e~ 2 Tuen, WW-Qa )0 o)

1251
_ ( b > 2 / i e~ 3 Tuea, WO~ Qa0 16,40 1@)9) Git16),

2T
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(B.11)

(B.12)

(B.13)

(B.14)

(B.15)
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We define the function

fb"Zw — (Qa;0)W)* + nd2¢ 0)¢)(z)

yeQ; zeN

and compute the derivatives (cf. (B.7))

9 _p(g) = - b Qi) (@) — (Q%,;Q,;9)(@)) + 1 (AD1(Q)$)(7)
8(;5(56) L]d Q.5 Q,5% Q5 n )
o 0 b - i

903 WF(@ = [an" @0, Qo + A&, ) = (G () )@, &),

where we made use of (2.2)). Thus the first derivative of F' vanishes at

bﬂ

%0 = el (DQa 0 =

We can write ¢ = ¢g + ¢, which gives

( L‘j;)zG;?(mQajw = H(Q).

so that, referring to (D.I)),
/ e FOiI6) _ o=F(60)itIen) / o= 3(C@)718) (1)

— o F(d0)oi{J¢0) \/(27r)\9| det(G;?(Q))e_%u’G?(Q)‘]).

Now to determine A@-L1(Q) it suffices to compute for ¢y = (;;#G;’(Q)QEJLZJ

F(é0) = (L) 2~ @ éolia, + 5(60 AOT(@)o)a

1 .
= iaj(L] n” 2H¢—( )QQQJGn( )QQ,jWb,Qj
2
5 T (CHOIQh . A GHQ )

2101, ~ (5 ) Q0@ e,
= (a;(L70)72)* [ Qay GlQh ¥ 3 0,

N = w\v—*

) 2
- ((1:??7)2) (GQ)Qa v, APDG] (R0 )0,

where we refer to (]2.78[) and (]2.82D for definitions of A(97(Q) and G’?(Q)
Now in the last expression we write A©)1(Q) = G;?(Q)*l — a; (LjT])72Q57jQQ7]' which leads to

a;

F(go) = ga;(L7) 211, - 1((” E ) (1, QoG ), = 5 AP,

which concludes the proof.
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D A formula for CO-1(Q)

We repeat here the discussion from [Dil3l Appendix C] slightly adapted to our situation. We start by recalling
the standard Gaussian integral formula

“Lgonrie _ [ COM LG e
/RM dpe 2 et O e2 (D.1)

valid for any positive definite M x M matrix C' and a complex-valued vector J. We use the short-hand
notations valid only for this appendix

G1:=GNQ), CYV.=cWnQ) Q;:=Qq,; AUV :=AUDLNQ) a;,:=a;(Ln2 (D2
We recall that
AV =g, — aijngQ;]Qj, Gl = [-A" + i, + a;;Q5Q5]5" (D.3)

Lemma [D.] below gives a formula for

. L . a 71 o -
c) .= [AU) + lo, = a;,; — ”Qj ] (D.4)
which is used in the proof of Theorem [2.18]
Lemma D.1. We have
cU) = Aj+a A iQiGT Q5 A;, (D.5)

where

-1

~ ~ _ — _ 1,9
Aj = [am + CLLJ‘L QQ*Q]Qj, G;?_H = [— A’? + Mk + ]2—2 J *+1Qj+1]

Proof. Using definition (D.4) and the Gaussian integration formula (D.1)), we obtain for a suitable normal-
ization constant Z;:

(D.6)

exp ( (f,C J)f>> 2 [ 4o exp <<<I>,f) o 3 5@ A@q»)). (D.7)
Apart from this, we checked in Lemma that
exp(—5(®.808)) = 2; [ avess (= 20 - Quol} ~ (6. (-2 + )9 ). D3

(We note that this expression is proportional to p}»] =0(®)). Inserting this in 1) we obtain

e (50.C91))

—2; [[avav exp (@) - 521QEIE - %10 - Quoll - (6. (-a% + 7))

= Zj /d¢ dd exp ((q), f + &j’ij¢> — %((b’ ((Nlj’j + d17jL_2Q*Q)<I>>

CY

Qo3 ~ (6. (-2 + )

=2 [[averp (500 +835Qu0), AT + 35,000 - QoI - 5024+ ) ). (D9
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where Z]’- is a new normalization constant. Let us now compute A; := (a;; + a1, L 2Q*Q)~*. We note that
if P is a projection, a,b > 0, a~'b < 1, then

(@a+bP)' =a'1+a '0P)  =a > (a7 'D)'P
=0
—aUta | ————-1|P=a"'(I- P)+LP (D.10)
a+b

For a = a;j, b= a; ;L~% we have a='b = ajj}al,jL—Q < 1by (D.2), (2.75). Thus (D.10) gives

A=t (1_ )QQ— - Gpgh “oo. (D.11)

iy T2
aj,;j ajj+ay;L aj,;j aj,;j a“

Consequently
o (50,0
=2 [[do e (5105 + 1500 AF +315Q0) ~ “1Qs01E ~ 50 (A4 + o))
= Zjexp <;<f, Ajf>> /d¢ oxp <;<aj,ijAjf, ¢>> exp ( -

2

(¢, (AL + fur, + ”“’] QJHQJH)@)

N |

1 *
= Z]// exXp (2<f) A]f> ’] (f, A Q] IQJA]f>> R (D]_Q)
where we noted that, given (D.11])),
(= AL+ ik + a;,;Q5Q5 — a7 ;QTA;Q5) = (= Ad + fir + JH LQ511Qj+1) = (G, )71 (D.13)

Setting f = 0 in (D.12)), we obtain Z; = 1. Then (D.5) follows. O

E Proof of Lemma [3.13

We compute the Fourier transform of (2.45)) first for f € £!(nZ9):

(Q/Z@cf)@) = Wl/ngd Z nle— P Z f(ml)

menZd [To]<zh<[To]+
1 —ip-x
= (27‘[’ d/?Lk‘d Z Z 7] € s f([x.] =+ 6077)
Le=0 zcnzd
LF—-1LF-1

" (2m) d/szd Do > e P A p([g] + tan)

Le=0 0,=0 [xe]€Z
Lk—1L0%-1

~ (2m) d/ZLkd Do Do > e LD f(m o)

Le=0 04,=0 mezd

Lk—1LF-1
o 27.(_ d/QLk;d Z Z e lp,, ;ﬂ) Z ,'7 e lpumuf Hl—i—fT])
le=0 Z’.—O mGZd
d d —ip,
= il 1-e 1pum1/
- (27T)d/2Lk’d<H 1pu"7> Z Z © f(m+ fn). (E.1)
v=0 Le=0 mezd
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Thus, by Lemma below, we obtain

k1
d—1 _ = d—1 ; "
_— 1 1 — e~ iPu 1— el(Pu+27"€y) N "
(@RQN®) = J2ra ( II+= ) > ( I o= ei(png)n)ﬂp +2nt"). (B.2)
=0 p—_Lk-1 “v=0

2

Finally, this formula is extended to all f € £2(nZ%) using unitarity of the Fourier transform, boundedness of
Q% Qk, and boundedness of the multiplication operators and shifts by 2m¢” on the r.h.s. of (E.2)).

Lemma E.1. The following relation holds for f € L£LY(nZ?)

LF—1 Lkz_l d—1 1— el(pu+27l'€ 2 .
(@m) 2y e ) = Y (H 1<p+w> flp+2m"), (E-3)
le=0 mezd p—_Lk=1 “v=0

2
where we extended f from [—7/n, 7 /n[*¢ to a function on R? by periodicity.

Proof. We note that for any z € nZ¢,

k1

3 Lk-1 . d
1 Z 67127%”36 _ flﬂ(Lk 1z Z —i2nlz 1 ifrez (E 4)
Lkd Lkd 0 otherw1se '
E/./:_ Lk—1 ZN—O

2

where we used that L is odd. Thus we can write

Lk—1
‘ 1 2 , "
(2m)~9/? Z e P f(m+4n) = TH Z (2m) =92 Z eI £ (0 4 ppy)
meZzZd o= _LF-1 xeNZ4
. 2
Lk_1
2
_ % S @m) 2 Y et g
L w:7L24 zenZd
k1
2
= Y ERTIfp gone) (E:5)
Z/./: Lszl
Now the summation over ¢ gives the claim. [
F Proof of Lemma
Recall that
1 & ) 9 d—1 4 * Pun
= IS e 2y = 23 (1 = cos(pun)) + ik = > 0ohsin? (1), (R
n° = Uir. n 2



where the star over the sum means addition of % fix = 7ito- Now we list other relevant definitions:
= g 1—e v\ ddfl e 2 sin(%) Fo
u(p) = H 1 e Zipom =1 H e_i% Sin(p"n) ) ( . )
d+2 d—1 —jba d—1 . Pv
n e 2 1 sin(%)
= — - —== ], F.3
ua(p) 4 ( 1:[ _lpcm> x ) (lH sin(221) (F.3)

d+2 ,d—1 _ika d—1 22
n e "2 1 sin(%y) >
U +2rl) = L — v , F.4
alp ) 1 (H l(pa+22weam>i ., )<E[Sm(p§"+7r€§,n) (F.4)

U 0|2
(wua)(p) == m

n__ Lk—1
ty=—L"71

k1

LA d—1 y
_ n2d+2 2 1 H SIHQ(pZ ) (F 5)
4 sinQ(% + ')’ )

o= L’C 1 Z OSII] (pgn =+ 7T£ZT]) v=0

where we used in |D that po — e 15" sin(%) has period 27 and in the last line that p, — sin®(p,/2) has
period 2.
The function appearing under the modulus in (3.85)) has the form (where we set a := ay, for brevity)

H(p) = T al »( ) ua(p + 27l")

<
d+2
_ < (pw% . ) (F.6)

1
x PRI PRy (F.7)
1 n 2 _ 1 — : 55
e zf’-’:—iLk{l S0 sin? (L mpyy) U S
d—1
1 sin(&)
X d ) <H sin (M + 7]) : (F8)
-0 sin? (% + WEL?]) v=0 2 v

In the following two subsections we will study the case of large mass and of small mass, respectively. For this
purpose We fix a constant ¢, > 0 depending only on d and estabhsh Lemma 9| first under the assumption
i L7io > ¢.n? and then under the complementary assumption 1 Lo < cun?.

F.1 The case of large mass: 1jip > c.7?, ¢, > 0

The function in the bracket in (F.6)) is clearly entire analytic, thus bounded in any compact set. By its
definition, for any such set the bound can be chosen uniformly in n < 1/2. In other words, the function

d+2 ,d-1 —iZa
N e 2
Hi(2) == (H e )n> (F.9)
a=0 €

2

satisfies |Hy(z)| < cnd*? for z in the closure of S, 1 := {p+ig € C¥|p €] — 7, 7[,|qg| < 1}. Let us now analyse
the function Hy defined by (F.8):
d—1

5 1 sin(%) )
Fal) e 2 ) F.10
32) Zd %)Sln (% + wéim) 4“0 < H sin ( =+ Wﬁfﬂ?) ( |
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First, we note that for ¢ = 0 we have by Lemmas and the bound % flo > cxn?

~ c
Now let us assume ¢ £ 0. We have, by Lemmas
- ¢ 1 1
[Hs(2)| < =5 = a1
TSm0 e+ 2l 2 TTZo (1 + 16,])
< 1 1
TP e 0L+ G T8+ 16)
1
c (F.12)

<
S oFd -1 ’
T 2o (1 + 16, )12/

where in the last step we used that the geometric mean is smaller than the arithmetic mean. Considering

(F.11)), we see that (F.12) holds for all ¢’ € Z¢.

The function in the middle factor 1} will be called Hy = 1/F. We will find a strip Srew ={p+ig|pe
| — 7,7, |q| < cst} s.t. I has no zeros there. We have

Lk—1
~ 2d+2 2 1 d—1 sin2 (2
F(z) = 1+a” . . I1 sinZ(M(f;w ;- (F.13)
s 3o sind (357 wem) voo L2 T
By the Taylor theorem, we can write
F(p+iq) = Fp) +iq- (VF)(p +isq), (F.14)

for some 0 < s < 1. (Due to this restriction, possible dependence of s on parameters of the problem does not
cause any complications). Using Lemma below, we obtain

|F(p+iq)| > [F(p)| — lall(VE)(p +1isq)| > 1 - |q|ca (F.15)

for some ¢ > 0. Thus there exists a numerical constant ¢y > 0 s.t. the function H satisfies in the strip
p € [—m,7[*% |q| < cst the bound

H(z)] < ‘

< . (F.16)
TT=o(1 + |6 [)12/

Thus we have proven Lemma under the assumption %ﬁo > 1%, ¢ > 0. In the next subsection we will
treat the case iﬂo < cym?.

Lemma F.1. For F defined in , there holds, for p € [—m,7]*%, |qe| < 1/d,

)= (F.17)
IVE(p+iq)| < ca. s,
Proof. Inequality (F.17) is obvious from (F.13). Now we write
d -y d—1 9
~ 2d+-2 2 ] 3 .
F(z) = 1+a . - M(Q )e// | 1)
=Lkt ZZ;%) sin? (% + 7%77) o Sin (? )
P§ﬁ>(z) Eﬁg (2)
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To estimate VF, we first consider ¢/ = 0. We have, by Lemma and the assumption 1/ip > c.n?,

. 1 1
F o(2)] = ] <L (.20)
d-bsin? (3g)| o1
ﬂ 2
10:0 FinLo(2)] = ’ QSm (zan) < oL (F.21)
(Sichsin (3512
Furthermore, Lemma [F.3] gives,
[Fprlo(2)], 0= Flirlo(2)] < (F.22)
01"'=0 Zo E" 0 T]2d .
Hence,
1 2 c
020 (Fylo Firlo) (] £ s (F.23)
Now let us now assume £ # 0. We have, by Lemma
V)] < |- 1 < wa —
SO sin? (267 4 pemp) | o+l
1 1
<< < (F.24)

S D) 9
oL+ D2~ TIZG (1 + [en))2/

where in the third step we used Lemma and in the last step the fact that the geometric mean is smaller
than the arithmetic mean. Regarding the derivative, we write

Zsin (zan + 27€n)

0, FV(2)] = ‘ ‘ < o dlzn+ 2nti
( - %)st (%4—77%17))2 (Z ’ w+ g” ‘ )
P+l e Tasp(+ 1)
N (Sperpo 1+ 162)%)° ~ 1 TTo(L+ €)1/
c d—1 1—4/d
< S(Tavien) (F.25)
o’=0

where in the second step we used Lemmas in the third step |zo| < ¢ and Lemma and in the
fourth step the fact that the geometric mean is smaller than the arithmetic mean.
On the other hand, Lemma gives

(2) 2) 1
|Fg// (Z)|’ |aZo<Fé// ( )| < WHd:(l](]_ + |£Z|)2 (F26)

Thus, altogether,
c 1
PRI+ gD

which holds for all ¢/ € Z? by (F.23). Substituting (F.27) to (F.19) and extending the region of summation
(F.18). O

in ¢ to whole Z% we obtain

10-, (Fy) F3)(2)] < (F.27)
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F.2 The case of small mass: iﬂo < cun?

We obtain from ([F.6)—(F.8))

H(p) := up(p+ 2nl')

d+2 ,d-1 —ibo

n e 2
= <H_i<w2%)n> (F.28)

2

a=0¢€
1
X z — (F.29)
k_ d—1 _. .
. d 1 sin2 (P /7]) + an2d+2 z% Zu’zo sin? (“T> d—1 sin?(22)
=0 2 4 Lk_— * v=0 in2(Prn 1"
Oy=—L1= 1 ZZ;%) in2 (%ereﬁﬂ) sin® (P¥L +melyn)

>, (F.30)

d/ 10 San (Pu;?) <d1 Sln(p;)
0 Sln(

- %bln2 (% + 71'(’#77) Z% + 7r€§/77)

where we divided and multiplied by Zd, 10 sin? (p”2 ) The function appearing in (F.28|) we treated already
in . Now we consider the function appearing in . We will show that it is bounded in the closure of
Sx.1, and thus (by inspection) analytic in Sy ;. We rewrite it as follows:

Hy(e) o= S (357) + fo/4 (ﬁ e ) (F.31)
2) = . .
’ ZZ § sin? (%2 4+ ml),n) + fio/4 sin (%1 + 7))

For ¢’ # 0, we have, by Lemmas
Z |Z‘M|2 +can?
H <
c
DV !Z“ e, 12(H % +7r€’ )

d—1
* ()
n4 Zu,zL;éo(l +4,)? oo (L 14,1)
< £ 1
> d(1+’€/|)1+2/d (1+|g/d_1|)1+2/d7

IN

IN
o
—_

o

(F.32)

where in the second step we used the fact that z, belong to compact sets, in the third step we applied
Lemmas and in the last step we use that the geometric mean is always smaller that the arithmetic
mean. By Lemma the bound remains true for ¢ = 0.

The function in the middle factor will be called Hy = 1/F. We will find a strip Sy, = {p+ig|p €
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| =7, 7%, |q| < cst} s.t. F has no zeros there. We have

k1 s
% = d—1 _: 2 (Zu7 d—1
F(z) ==Y 1 sin (72“'77) +an2d+2 . =051 ) sin® (%)
= =0 2(2v1 "
2 4 o= Lk 1 Zd—(] sin (M + 776”77) v=0 Sl ( 2 + 7T£VT])
d—1 2/ 2y
_ T ) (F.33)
4 sin?(21) '
v=0 2
2d+2 # A1 2 (20 d—1 020 2
+a77 =0 S ( 2 ) sin® (%) (F.34)
4 d— zun 1 - SiIlz(M + ﬂ'f”?]) '
£1/¢07£N L —1 Z _0 Sln ( g + 71'6#77) v=0 2 v
* Z ,
+Y i sin (A, (.35)
where ([F.33)) is the ¢/ = 0 term. By the Taylor theorem, we can write
F(p+iq) = F(p) +iq- (VF)(p +isq), (F.36)
for some 0 < s < 1. Using Lemma below, we obtain
[F(p+iq)| > |F(p)| — lqll(VF)(p+isq)| > cran® — |q|caan’ (F.37)

for some cq1,co > 0.
Thus there exists a numerical constant cg > 0 s.t. the function H satisfies in the strip p € [—7, 7|
lg| < cst the bound

xXd
)

Cc
H(z) < . F.38
| ()’_Hﬁ;é(lﬂ%\)l“/d (F.38)

We used that 742 coming from , is cancelled by n¢t? appearing in . This completes the
proof of Lemma [3.19]
Lemma F.2. For F defined in , there holds, for p € [—m,7]*%, |qe| < 1/d,
F(p) > can® > 0, (F.39)
|VF(p +iq)| < can®. (F.40)

Proof. We denote the three terms in (F.33)), (F.34), (F.35) by F, Fy, F3, respectively. We recall the notation
sinc(z) = Sm(z) . We start with the lower bound in (F.39)): We have, by Lemma

2d+2 d=1 o 2/py 2d+2 d=1 . 2Py
n sin® (%) n sinc* (%) 9
Fi(p) =a =a - > acyn”, (F.41)
) 4 sin? (257) 42 s sinc? (251)
where ¢y > 0. Since Fy(p), F5(p) > 0, we obtain (F.39).
Now we compute and estimate the derivatives: By Lemma [F.3]
2d+2 d—1 /2wy \ 2
an sin(%) 9
102, F1(2)] = =0, (Sm(an) | < can’. (F.42)
Now we consider, for ¢/ # 0
* d— . Z,.,mM _
P2 S sin® () T sin(
Fym(z)=a 1 T ET— (F.43)
- %)st (247 + mlim) v=0 sme(Tg T e

F(1> (2) 2(22)//(3)



We first estimate the auxiliary functions F2( g),,, fol e)// and their derivatives. We have by Lemma

ZZ'_:lo |2 ? + e < c 1

1)
1P, (2)] < = < < e—r ,
2 S Lzt 2wl f2 T 2 (L G2 T TG (1 + [e))2/4

(F.44)

where we made use in the second step of ZZ,_:lo |2,0|> < ¢, of Lemma and in the last step of the fact that
the geometric mean is smaller than the arithmetic mean. Furthermore, setting z¥ := z, 4+ 27//, and applying
Lemma [F-3] we get

(2) c 1
F () < — . F.45
o0 O < e e

Next, we consider the derivatives. We compute:

10 PO (2)] = |02, = jmosin” ()
OSIHQ (z;ﬂ)
o ) cosC Sz (1) — (S s (557) s (571) cos( 3
o (o (2
C|za\<zz;arz#r2+c*>+(zzfzorzmucmzar o1 o
B (o0 |2m2)” T O(Sash ) (g 1)
<c ! 5 t+c (1+]fa) <c ! <c ! , (F.46)

T 2oL+ G (zw#oaﬂzm)zf 2oL+ D2~ TTOZ0(1 + [en])2/d

where, in the next to the last line we used Lemmas [F.5] [F.4 and in the last line Lemma and the fact that

the geometric mean is smaller that the arithmetic mean. Now we move on to the derivative of F. F! e)" and use
Lemma [F.3]

1

‘8ZaF2(25”( )| S | : (F.47)
’ U Hu:O(l +165])?
Thus, altogether, we get
0., Fagn(2)] < ! (F.48)
o 76// ca .
- T G
Similarly for
Lk_1
2
Fy(z) = Z Fyp(z)  wehave 0., Fa(2)| < can? (F.49)
120, ¢ =— L1
by extending the region of summation over ¢ to Z.
Finally, we note the obvious relation regarding F3(z) = ZZ,;IO Sinz(z“zl OF
02, F3(2)] = In(Z5 )sine(“57) cos(Z51)| < erp, (.50)

where we used Lemma [E.5l [J
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F.3 Technical lemmas

Lemma F.3. For z = p+iq, p € [-m,7]*%, |q| < 1

o sin?(%) 1
o < , 2 >‘ . Jal=0,1. (F.51)
@l%ﬁ@%ﬁm P
Proof. We set z” := z, + 27/}, and recall that |¢])] < =D 4 ]Re(%ﬂ < 5. We compute
— 27z d—1 .
sin“ (% 1 sinc”(22) 1
H : 2(2371) — 2d H 2 E2 = n2d ’ (F.52)
S0 ST () | ] sine” (551)(2)? 77 H o1+ 16))2

where we applied Lemmas Now we move on to the derivative:

=0 5 = =)/ =
- ‘( sinc(%) 2, )0 < sin(%) ) < sinc(%) 2z, )2
sinc(Z57) nzt ) \ sin(Z52) i sine(%51) 271

_ ¢ 1 %008(7“) sm(Z;”) — gcos(zuT”)sm(%“)
= _ . 123

2= (L4 D) T, (1 + [€0])2 sin?(%51)
o 1 %cos(j“)smc(%)% — gcos(z%”) sm(%“)
C P (U ) T, (1 + 1€2])2 sinc?(%51)(251)2

c 1

<< , (F.53)
PP TTEb(L + )2

where in the third step we used Lemmas -,- and in the last step Lemmas . n provided that ZZ #0

as required in this latter lemma. In the case £, = 0 we have, trivially, (1+[£;]) = (1+[¢ 2 and the numerator

,u
under the absolute value above can be rewntten and estimated as follows
|%Hcos(%)smc( ;77) — cos( gn)smc(zz )| < clzuln (F.54)

by inspection of Taylor expansions of cos and sinc. This compensates (‘ZIT")2 in the denominator (up to one

inverse power of 7 which is taken into account) and concludes the proof. [

Lemma F.4. The following bounds hold true for £ # 0, ze = pe + iqe, Pe € [—7, 7|, |qe] < 1/d and any § > 0

d—1
Z‘%—i—ﬂé#nf < C‘ZSIH +7T€u77) —|—(5‘ (F.55)
=0
5 < cf Zsm2 (&7 + ) + 9. (F.56)
n=0

20



Proof. Let us compute for arbitrary w =z +iy € C

sin? (%) = 2 (1~ cos( + 1))
- %(1 — cos(z) cos(iy) + sin(z) sin(iy))
- %(1 — cos()ch(y) + isin(z)sh(y))
- %(1 ~ ch(y) + ch(y) — cos(x)ch(y) + isin(z)sh(y))
= (1~ ch(y)) + Seh(y)(1 ~ cos(x)) + Ssh(y) sin(x)
- —sh2(g) + ch(y) sin? (g) + %Sh(y) sin(z). (F.57)

Hence, setting 2/ := 2, + 27l

d—1 d—1
2,4 .2 PP
(5’ > — g_ sh (7)+ E:Och(q,m) sin (7)—#5

v

dzl qun dzl P
2/4p s 2
_NZOSh (7) "‘HZO S1n (7) + (5 (F58)

By assumption, there is an index fi for which £; # 0 and suppose, for definiteness, £; > 0. For ph = pa+2mly
and p; € [—m, 7] we have

pin p'n
S 22Ty

= sin 7Tn).

> 2
sm(2

(F.59)

In fact, since k € N, L > 1, we have n < 1/2. Thus %" € [~mp/2,7n/2]. By shifting this interval by
) < wlpn < %, we stay away of zeros of sin?(-). (We used here that £; < (L* —1)/2 and n = L~F). Now for
z € [0,1/2] we can write

sh(z/d)

sin(mx)

L shel@/d) ooy < %sin(ﬂw), (F.60)

shiw/d) = md sinc(mx) T

sin(rzx) =

where she(z) = %,sinc(aﬁ) = % and we used that sinc(rz) > 1/2 and she(z/d) < 3/2 for z € [0,1/2]
as can be read off from their graphs. (We also stress for future reference that 3/7 < 1). Hence, using (F.59)),
(F-60)

2 2 2 Y
alaud)ny _ 1 (3\" o (qud)ny _ 1 (3\" o m_ 1 (3\" o p'n
sh®( ¥ ) < 2\ ) sin (7 5 ) < 2\ ) sin (7r§) < 2\ ) sin (7) (F.61)
Consequently,
d— 9 )
1/3 H
Z d< ) sinQ(Z%). (F.62)
Thus coming back to , we can write for some constant ¢ > 0 depending only on d
d—1 2
Zsm +5’ >chm +(5>cz il + 0, (F.63)
©n=0
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which proves (F.56]). Finally, arguing like in (F.59)) and using |q,| < 1/d,

d—1 2
(pa+2mta)n|* _ (7 qun
_— | > > = F.64
eI () = (%) (F 61
©n=0
hence
(pp + 2ml)n 2 (p“+27T€ 2 gt qun 2
> 1 crtan - 1 (F.65)
2 2 2 2
p=0
which, combined with (F.63)), gives (F.55)). O
Lemma F.5. We have, for Re(z) € [-n/2,7/2], Im(z)| <1
sin(z)
0<ec_ < | <eq, (F.66)
z
sin(z
0. ( Z( ))! < co, (F.67)

where cg,c_, cy are independent of z within the above restrictions.

Proof. Except for the lower bound in (F.66|), all the bounds simply follow from the fact that entire analytic
functions are bounded on compact sets. Regarding the lower bound, we compute

sin(z) | B |elPe™1 — e*ipeq‘2 e P o2 4 o2
2| p*+ ¢ a P+ ¢
_ J#)Q + (W)2 _ 4sir12(p) + sinh?(q)
p*+¢? p*+q?
sin (p) P2 smh2( ) 2
+ q
— 47 i . (F.68)
p*+ ¢

The last expression can be estimated by

sin (p) 4 sinh? ( ) 9 42

0<e <4-P < ¢, F.69
1< 2 +q < (F.69)

212
where we used that 0 < ¢ < SH; (p), Smg#

in the relevant region. [

Lemma F.6. The following bound holds true for z € [—m,w| +i[—1,1] and £ € Z, £ # 0,
|z —27l| > e (14 |4)) (F.70)
for some ¢ > 0.
Proof. We write
|z —2ml| > |p — 27l| > 27|l] — 7 > ( +14). O (F.71)
Lemma F.7. The following bound holds true for z € [—m,w[+i]—1,1] and ¢ € Z

2t
z

>1+|€\_
- 6
52

‘1 ; (F.72)




Proof. We write

o
’1+7r
z

1 for £ =0,
> 27 |¢| (F73)
|| '

It is clear that the claimed bound holds for £ = 0. As for the remaining case, we note that |z| <7+ 1 < %7['
hence

27T—|£’—1> |£\—1>

2|

1+wy

. (F.74)

which concludes the proof. [J

G Completion of the proof of Theorem
Making use of Lemma we obtain from (4.16)

(Ge()QE) (z,y)| < CZ( H e—%cy@—%-(ﬂﬂﬁ)jﬂ)( H e—éCst|(Lmq7)(ju+1)—yu—CEu|>7 (G.1)

J Ju even Jv odd

= > Cﬁ( > haa,ja(wa,ya)>, (G.2)

00y...04—1€{even/odd} a=0 *jn€Zs,

heven,ju(xu;y,u) = e_%csdIy,_y,u,_(LmT])jy,l’ hOdd,jy(xl/’yl/) = QCth(L n)(]u+l) yu_IVI (GS)

and Z,, denotes the set of even or odd integers, respectively. Since the sum over ¢ has 2¢ terms, it suffices
to control the sums over j,.

e Let us first analyse the sum over j, even. To simplify notation in the analysis below we write x := x,,y := y,
and j := j,. Suppose first that j > 2. Then

[z —y = (L"n)jl = L"n) (G —2) +2(L"n) — (x —y) = (L"N)(F = 2) + [z —yl. (G.4)

Here the last inequality boils down for x > y (resp. = < y) to L"n > (x — y) (resp. L™n > 0) which hold
true since L™n is the linear size of . For j = 0 we obviously have

[z —y— (L™n)j| = |z —yl. (G.5)
Now for j < —2 we can write
[ —y— (L")l = (L") (=j) +az—y = (L"n(—j—2)+2(L"n) +z —y
= (L) (= —2) + |z —yl. (G.6)

Here the last inequality boils down to for z >y (resp. = < y) to L"n >0 (resp. L™n >y — x).
Coming back to (G.2)), we have

S combenlemum (Uil < comdeslivl 4§ comdel WM MG-DHa )

j even j>2, jeven

N Z com et (EM(=i=D+a=3) < po=zealo—yl (G.7)

7<—2, jeven

where we used that L™n > 1 (since n = L™, m > k) to avoid any dependence of constants on 7 and then
summed up the geometric series.
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e Let us now analyse the sum in (G.2) over odd j,. To simplify notation in the analysis below we write
T :=xy,,y =1y, and j := j,. Suppose first that j > 3. Then
(L") +1) —y—al = L") +1) —y—=

= L") -)+2L"y—y—z= (L") (G- 1)+ |y —zl, (G.8)

where the last equality boils down for y > z (resp. y < z) to L™n >y (resp. L"n > x). Let us now consider
7 = 1. We have

2(L™n) —y — x| =2(L"n) —y —x = |y — | (G.9)

In fact, for y > x (resp. y < x) this inequality boils down to y < L™ (resp. = < L™n).
Next, we take 7 = —1. Then

(LG +1) —y—a|=]-y—al=y+z=ly—zl (G.10)
where we used that z,y > 0. Now suppose j < —3. Then

(L™(G+1) —y—z[=-L")G+D)+y+ax=—L"n([G +3)+2(L"n) +y+=
> (L)) + 3|+ |y — z|. (G.11)

where we used again that x,y > 0.
Coming back to (G.2|), we can write

Z co— zestl(Lm )G+ —y—z| < Z co— 3t (L) (j=1)+|y—z])
>0, j odd >0, j odd
— ¢ j{: e—é@dLmnxj—De—%%dy—z
>0, j odd
¢ Z o 3Cst(I=1) o=z Cstly—al
>0, j odd

— e zostly—al (G.12)

IN

where we noted that L"n > 1. The sum of j < 0 is treated analogously, using (G.11)).
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