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VOA and conformal nets (and quantum algebras)

Two formulations of chiral components of two-dimensional conformal
field theory: vertex operator algebras (VOA, algebraic), conformal net
(analytic). For most examples there is a direct relation between them,
Carpi-Kawahigashi-Longo-Weiner.
Such a relation exists only if unitary.
Representation theory. Cf. talk by Runkel,
Kazhdan-Lusztig-Finkelberg, Carpi-Ciamprone-Giannone-Pinzari, Gui,
Tener.

Main results
The W3-algebra: a VOA extension of the Virasoro algebra (the
stress-energy tensor)
Unitarity of certain lowest weight representations, including the
vacuum representation.
Construction of the corresponding conformal nets (new chiral CFT)
and some representations.

Yoh Tanimoto (Tor Vergata) TheW3-algebra with c ≥ 2 IWOTA 2020, 18/08/2021 2 / 11



Vertex Operator Algebras
Formal definition: vector space V , field Y (a, z) ∈ End(V )[[z±1]], where
a ∈ V , the vacuum vector Ω ∈ V satisfying certain axioms...

One can take “primary fields” φj(z) = Y (aj , z), and these are
diffeomorphism covariant local fields on S1, that is, φj(z) are
operator-valued distributions and φj(z) and φk(w) commute for z 6= w in
the sense of distributions: chiral components of a two-dimensional
conformal field theory.

Conversely, from a family of diffeomorphism covariant local fields
satisfying technical conditions, one can construct a VOA
(Carpi-Kawahigashi-Longo-Weiner ‘18, cf. Frenkel-Kac-Radul-Wang ‘95
“the existence theorem”)

Examples: Heisenberg algebra (the U(1)-current
[a(z), a(w)] = ∂wδ(z − w)), the Virasoro algebra (the stress-energy
tensor), the WZW models...
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The Virasoro algebra

The Virasoro algebra is generated by {Ln : n ∈ Z,C} with

[Lm, Ln] = (m − n)Lm+n + C
12m(m2 − 1)δm+n,0,

where C is a central element.

This is an infinite-dimensional Lie algebra, the central extension of the
polynomial vector fields on S1. One can construct lowest weight
representations (modules) parametrized by c, h ∈ R, where there is a
vector Ω such that LnΩ = 0 for n > 0, L0Ω = hΩ,CΩ = cΩ, and spanned
by vectors of the form L−n1 · · · L−nk Ω, nj > 0. This is equipped with an
invariant sesquilinear form 〈·, ·〉, with respect to which L∗n = L−n.

One considers the field L(z) =
∑

n Lnz−n−2 in the “vacuum
representation” h = 0, c ∈ R. Then this generates a VOA (modulo a
certain quotient).
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The Virasoro algebra: question of unitarity
Unitarity: the invariant sesquilinear form is positive semi-definite.

Unitary lowest weight representations are
discrete series c = 1− 6

m(m+1) ,m = 2, 3, 4, · · · ,
h = ((m+1)r−ms)2−1

4m(m+1) , r = 1, 2, · · · ,m − 1, s = 1, 2, · · · , r
continuous region c ≥ 1, h ≥ 0.

This is proven by
constructing concrete unitary representations, by embedding the
Virasoro algebra into some larger algebra (Goddard-Kent-Olive)
computing the determinant of the Gram matrix on each subspace
spanned by L−n1 · · · L−nk Ω with fixed n =

∑
nj , (Kac determinant

formula, Feigin-Fuchs)
for c ≥ 1, h ≥ 0, it is enough that there is one unitary representation
proving that other values of c, h give non-unitary representations
(Friedan-Qiu-Shenker)
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The W3-algebra

A non-Lie algebraic extension of the Virasoro algebra:

[Lm, Ln] = (m − n)Lm+n + C
12m(m2 − 1)δm+n,0,

[Lm,Wn] = (2m − n)Wm+n,

[Wm,Wn] = C
3 · 5!(m2 − 4)(m2 − 1)mδm+n,0

+ b2(m − n)Λm+n + 1
20(m − n)(2m2 −mn + 2n2 − 8)Lm+n,

where Λn =
∑

k>−2 Ln−kLk +
∑

k≤−2 LkLn−k − 3
10(n + 2)(n + 3)Ln and

b2 = 16
22+5C .

The lowest weight representations (LnΩ = WnΩ = 0 for n > 0,
L0Ω = hΩ,W0Ω = wΩ,CΩ = cΩ) are parametrized by (c, h,w) ∈ R. If
h = w = 0, a VOA can be constructed from L(z) =

∑
n Lnz−n−2 and

W (z) =
∑

n Wnz−n−3.
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The W3-field

As fields, they satisfy

[L(z), L(ζ)] = δ(z − ζ)∂ζL(ζ) + 2∂ζδ(z − ζ)L(ζ) + c
12∂

3
ζ δ(z − ζ),

[L(z),W (ζ)] = 3∂ζδ(z − ζ)W (ζ) + δ(z − ζ)∂ζW (ζ),

[W (z),W (ζ)] = c
3 · 5!∂

5
ζ δ(z − ζ) + 1

3∂
3
ζ δ(z − ζ)L(ζ) + 1

2∂
2
ζ δ(z − ζ)∂L(ζ)

+ ∂ζδ(z − ζ)
( 3

10∂
2
ζL(ζ) + 2b2Λ(ζ)

)
+ δ(z − ζ)

( 1
15∂

3
ζL(ζ) + b2∂ζΛ(ζ)

)
where b2 = 16

22+5c and Λ(z) = : L(z)2 : − 3
10∂

2
z L(z).
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The W3-algebra: unitarity of the vacuum representations

For c ≥ 2, the W3-algebra can be realized in the tensor product of
two free fields, but unitary only for α0 = 0 (Fateev-Zamolodchikov):

L̃(z ;α0) = 1
2 : a[1](z)2 : +1

2 : a[2](z)2 : +
√

2α0∂a[1](z),

W̃ (z ;α0) = b
12i
[
i2
√

2 : a[2](z)3 : −i6
√

2 : a[1](z)2 : a[2](z)

− i6α0∂a[1](z)a[2](z)− i18α0a[1](z)∂a[2](z)
− i6
√

2α2
0∂

2a[2](z)
]
,

where :: represents the normal product.
It is not obvious that the lowest weight representations exist for all
values (the W3-algebra is not a Lie algebra), but they do. Even if
some lowest weight representations are unitary, one cannot consider
their tensor product.
An analogue of Kac determinant formula has been computed
(Mizoguchi, Afkhami=Jeddi-Colville-Hartman-Maloney-Perlmutter).
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The W3-algebra: restoring the unitarity

The Fateev-Zamolodchikov representation is not unitary for α0 6= 0:

(z3W̃ (z ;α0))∗ = z3W̃ (z ;α0), (z2L̃(z ;α0))∗ = z2L̃(z ;α0)

with respect to the scalar product coming from the Heisenberg
algebra a[1](z), a[2](z).
Consider the automorphism
a[1](z) 7→ a[1](z) + i α0(z−1)√

2z(z+1) + iα0√
2z , a[2](z) 7→ a[2](z)

(cf. Buchholz-Schulz=Mirbach).
By composition, for α0 ∈ R we restore unitarity except the point
z = −1.
On the subspace generated from Ω[1] ⊗ Ω[2], unitarity holds.
(unitarity is a purely algebraic property, but this is proven for the first
time for c = 2 + 24α2

0 ≥ 2 by these techniques inspired by QFT)
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The W3-algebra: restoring the unitarity

Theorem (Carpi-T.-Weiner arXiv:1910.08334, to appear in Transform.
Groups)
The lowest weight representations of the W3-algebra associated with the
values c ≥ 2, h = w = 0 are unitary.

By composing this with further automorphisms that preserve unitarity, and
using the Kac determinant formula, we also have

Theorem
Let c ≥ 2. By the above construction, the irreducible lowest weight
representation of the W3-algebra VW3

c,h,w is unitary for

h ≥ c − 2
24 , |w | ≤

√
8

198 + 45c

(
2h − c − 2

12

) 3
2

(h,w ∈ R).
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The W3-conformal net
A conformal net is associated to a uitary VOA if the generating fields
commute strongly (strong locality, Carpi-Kawahigashi-Longo-Weiner ‘18)
A(I) = {W (f ), L(f ) : supp f ⊂ I}′′, the von Neumann algebra
generated by the polar decomposition, where W (f ) =

∑
n f̄nWn.

W -field has conformal dimension 3, and does not satisfy the linear
energy bound.
W satisfies a local energy bound

W (f 2)(L(f ) + (r(f ) + ε)I)−2

for some r(f ) > 0, where f is a test function ⇒ strong locality.

Theorem (Carpi-T.-Weiner arXiv:2103.16475)
The W3-algebra for c ≥ 2 has an associated unitary simple VOA which is
strongly local. One can construct the corresponding conformal
Haag-Kastler net on S1.
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