Operator-algebraic construction of integrable QFT

Yoh Tanimoto

JSPS SPD fellow, Tokyo

August 19th 2015, Kyoto RIMS

Haag-Kastler nets

In the operator-algebraic approach, a model of **Quantum Field Theory** is a **family of von Neumann algebras** $\{\mathcal{A}(O)\}$ parametrized by open regions $\{O\}$ in the spacetime \mathbb{R}^d , which satisfies **locality**, covariance,...

- Not so many examples: Constructive QFT in d = 2, 3 (Glimm-Jaffe), Conformal QFT in d = 1, 2 (Kawahigashi, Longo, Rehren,...). No nontrivial example in d = 4.
- Traditional construction: take a "quantum field" φ (operator-valued distribution) and define A(O) := {e^{iφ(f)} : supp f ⊂ O}".

Recent construction methods

No local quantum field. Essential use of the Tomita-Takesaki theory.

- "integrable" models in d = 2 (Schroer, Lechner, T.,...)
- Models on the de Sitter spacetime $d \ge 2$? (Barata-Jäkel-Mund)

- $\mathcal{N} \subset \mathcal{M}$: von Neumann algebras,
- $\Omega:$ cyclic and separating for \mathcal{M}, \mathcal{N}
- Δ^{it} : the modular group of \mathcal{M} with respect to Ω .

 $\mathcal{N} \subset \mathcal{M}$ is a Half-sided modular inclusion if $\operatorname{Ad} \Delta^{it}(\mathcal{N}) \subset \mathcal{N}$ for $t \geq 0$.

Theorem (Wiesbrock, Araki-Zsido)

If $\mathcal{N} \subset \mathcal{M}$ is a half-sided modular inclusion with respect to Ω , then

$$P := rac{1}{2\pi} (\log \Delta_{\mathcal{N}} - \log \Delta)$$

is self-adjoint and positive, where $\Delta_{\mathcal{N}}$ is the modular operator of \mathcal{N} . If we set $U(s) = e^{isP}$, then it holds that $\operatorname{Ad} \Delta^{it}(U(s)) = U(e^{-2\pi t}s)$ and $\operatorname{Ad} U(1)(\mathcal{M}) = \mathcal{N}$.

- \mathcal{M} : von Neumann algebras,
- Ω : cyclic and separating for \mathcal{M}
- Δ^{it} : the modular group of \mathcal{M} with respect to Ω .

Theorem (Borchers)

Let U(s) be a one-parameter group of unitaries with a positive generator such that $\operatorname{Ad} U(s)(\mathcal{M}) \subset \mathcal{M}$ for $s \geq 0$. Then it holds that $\operatorname{Ad} \Delta^{it} U(s) = U(e^{-2\pi t}s)$

Half-sided modular inclusion and conformal nets (d = 1)

Conformal net in d = 1: a family of von Neumann algebras $\{\mathcal{A}(I)\}$ associated with intervals $\{I\}$ of the circle $S^1 = \mathbb{R} \cup \{\infty\}$. Locality: $\mathcal{A}(I_1)$ and $\mathcal{A}(I_2)$ commute if $I_1 \cap I_2 = \emptyset$.

Theorem (Guido-Longo-Wiesbrock)

If Ω is cyclic for $\mathcal{M} \cap \mathcal{N}'$ (standardness), then there is a conformal (Möbius-covariant) net \mathcal{A} on S^1 such that $\mathcal{M} = \mathcal{A}(\mathbb{R}_+), \mathcal{N} = \mathcal{A}(\mathbb{R}_+ + 1), \mathcal{M} \cap \mathcal{N}' = \mathcal{A}(0, 1).$ There is a **one-to-one correspondence** between standard half-sided modular inclusions and conformal nets which are "strongly additive" $(\mathcal{A}(I_1) \lor \mathcal{A}(I_2) = \mathcal{A}(I), \text{ where } I \setminus \{p\} = I_1 \cup I_2).$

Some problems:

- Can one construct half-sided modular inclusions "algebraically"?
- Is there half-sided modular inclusions which satisfy $\mathcal{M} \cap \mathcal{N}' = \mathbb{Cl}$?

5 / 16

• Find handy criteria which give standardness.

Wedge inclusion in d = 2

Goal: construct two-dimensional d = 2 nets $\{\mathcal{A}(O)\}$. Idea: start with a **single** von Neumann algebra $\mathcal{A}(W_{\rm R})$, $W_{\rm R} = \{(a_0, a_1) \in \mathbb{R}^2 : a_1 > |a_0|\}$.

A Borchers triple is a triple (\mathcal{M}, U, Ω) such that

- \mathcal{M} : von Neumann algebra.
- U: unitary representation of \mathbb{R}^2 with "positive energy", Ad $U(a)(\mathcal{M}) \subset \mathcal{M}$ for $a \in W_R$.
- Ω : cyclic and separating for \mathcal{M} , $U(a)\Omega = \Omega$.

Lemma

For a Borchers triple (\mathcal{M}, U, Ω) such that Ω is cyclic for $\mathcal{M} \cap \operatorname{Ad} U(a)(\mathcal{M}')$, $a \in W_{\mathrm{R}}$ (strict locality), one can define a net by $\mathcal{A}(D_{a,b}) := \operatorname{Ad} U(a)(\mathcal{M}) \cap \operatorname{Ad} U(b)(\mathcal{M}')$, $D_{a,b} = (W_{\mathrm{R}} + a) \cap (W_{\mathrm{L}} + b)$.

Problem: Are there handy criteria for the cyclicity of Ω for the relative commutant $\mathcal{M} \cap \operatorname{Ad} U(a)(\mathcal{M}')$?

Standard wedge and double cone

Modular nuclearity

- *N* ⊂ *M*: inclusion of type III factors, Ω: cyclic and separating for both, Δ: the modular operator for *M*.
- Modular nuclearity (Buchholz-D'antoni-Longo): if the map

$$\mathcal{N} \ni A \longmapsto \Delta^{\frac{1}{4}} A \Omega \in \mathcal{H}$$

is nuclear, then there is a type I factor \mathcal{R} s.t. $\mathcal{N} \subset \mathcal{R} \subset \mathcal{M}$ (split). • Sketch of proof: By assumption, the map

$$\mathcal{N} \ni \mathcal{A} \longmapsto \langle \textit{JA}\Omega, \cdot \, \Omega \rangle = \langle \Delta^{\frac{1}{2}} \mathcal{A}^*\Omega, \cdot \, \Omega \rangle \in \mathcal{M}_*$$

is nuclear. $\langle JBJ\Omega, A\Omega \rangle = \sum \varphi_{1,n}(A)\varphi_{2,n}(B)$ and one may assume that $\varphi_{k,n}$ are normal. This defines a normal state on $\mathcal{N} \otimes \mathcal{M}'$ which is equivalent to $\mathcal{N} \vee \mathcal{M}'$.

Bisognano-Wichmann property: for *M* = *A*(*W*_R) in a net *A*, Δ^{it} is very often the Lorentz boost.

Internal symmetry

An **internal symmetry** on a Borchers triple (\mathcal{M}, U, Ω) is a unitary representation V of a group G such that $\operatorname{Ad} V(g)(\mathcal{M}) = \mathcal{M}$, [V(g), U(a)] = 0 and $V(g)\Omega = \Omega$. We take an action V of S^1 . $V(t) = e^{itQ}$. $\widetilde{V}(t) = e^{itQ\otimes Q}$.

Theorem (T.)

Let $\widetilde{\mathcal{M}}_t = (\mathcal{M} \otimes \mathbb{1}) \vee \operatorname{Ad} \widetilde{V}(t) (\mathbb{1} \otimes \mathcal{M}), \ \widetilde{U}(a) = U(a) \otimes U(a),$ $\widetilde{\Omega} = \Omega \otimes \Omega$. Then $(\widetilde{\mathcal{M}}_t, \widetilde{U}, \widetilde{\Omega})$ is a Borchers triple inequivalent to the tensor product (**interacting**). If the starting triple satisfies modular nuclearity, so does also the new triple for $t \in 2\pi\mathbb{Q}$ (\Longrightarrow new nets).

$$\frac{\text{Proof:}}{\widetilde{\mathcal{M}}'_t} = \operatorname{Ad} \widetilde{V}(t) = \sum_k V(kt) \otimes dE(k).$$
$$\widetilde{\mathcal{M}}'_t = \operatorname{Ad} \widetilde{V}(t) (\mathcal{M}' \otimes 1) \vee (1 \otimes \mathcal{M}').$$

Lemma (Lechner): If there is a type I factor between $\operatorname{Ad} \widetilde{U}(a)(\widetilde{\mathcal{M}}_t)$ and $\overline{\widetilde{\mathcal{M}}_t}$, $a \in W_{\mathrm{R}}$ (wedge-split inclusion), then strict locality follows.

Factorizing S-matrix models: Hilbert space

- Input: analytic function $S : \mathbb{R} + i(0, \pi) \to \mathbb{C}$, $\overline{S(\theta)} = S(\theta)^{-1} = S(-\theta) = S(\theta + \pi i), \quad \theta \in \mathbb{R}.$ e.g. $S(\theta) = \frac{\sinh \theta - i \sin b}{\sinh \theta + i \sin b}$
- S-symmetric Fock space: $\mathcal{H} = \bigoplus \mathcal{H}_n, \mathcal{H}_0 = \mathbb{C}\Omega, \mathcal{H}_1 = L^2(\mathbb{R}, d\theta), \mathcal{H}_n = P_n \mathcal{H}_1^{\otimes n}$, where P_n is the projection onto S-symmetric functions:

$$\Psi_n(\theta_1,\cdots,\theta_n)=S(\theta_{k+1}-\theta_k)\Psi_n(\theta_1,\cdots,\theta_{k+1},\theta_k,\cdots,\theta_n).$$

- Zamolodchikov-Faddeev algebra (deformed CCR): S-symmetrized creator/annihilator $z^{\dagger}(\xi) = Pa^{\dagger}(\xi)P, z(\xi) = Pa(\xi)P, P = \bigoplus_{n} P_{n}, (a(\xi)\Psi_{n})(\theta_{1}, \cdot, \theta_{n}) = \int d\theta \overline{\xi(\theta)}\Psi_{n+1}(\theta, \theta_{1}, \cdots, \theta_{n}).$
- Wedge-local field: $\phi(f) = z^{\dagger}(f^+) + z(J_1f^-)$,

$$f^{\pm}(\theta) = \int dx e^{ix \cdot p(\theta)} f(x), \ \ p(\theta) = (m \cosh \theta, m \cosh \theta),$$

 $(J_1\xi)(\theta) = \overline{\xi(\theta)}.$

Factorizing S-matrix models: operators

$$\begin{array}{l} \phi'(g) = J\phi(g_j)J, \ g_j(x) = \overline{g(-x)}, \\ J = \sum J_n, (J_n\Psi_n)(\theta_1, \cdots, \theta_n) = \overline{\Psi_n(\theta_n, \cdots, \theta_1)}. \\ \text{If supp } f \subset W_L, \text{supp } g \subset W_R, \text{ then} \end{array}$$

$$[e^{i\phi(f)},e^{i\phi'(g)}]=0.$$

•
$$\mathcal{M} := \{ e^{i\phi'(g)} : \operatorname{supp} g \subset W_{\mathrm{R}} \}''.$$

•
$$(U(a)\Psi)_n(\theta_1,\cdots,\theta_n)=e^{i\sum_k p(\theta_k)\cdot a}\Psi_n(\theta_1,\cdots,\theta_n)$$

• $\Omega \in \mathcal{H}_0$.

Theorem (Lechner)

 (\mathcal{M}, U, Ω) is a Borchers triple. The modular group of \mathcal{M} with respect to Ω is the Lorentz boost: $\Delta^{it}\Psi_n(\theta_1, \cdots, \theta_n) = \Psi_n(\theta_1 + 2\pi t, \cdots, \theta_n + 2\pi t)$.

Factorizing S-matrix models: modular nuclearity

Modular nuclearity for Ad $U(a)(\mathcal{M}) \subset \mathcal{M}$: $\mathcal{M} \ni A \mapsto \Delta^{\frac{1}{4}} U(a) A \Omega \in \mathcal{H}$, $(\Delta^{\frac{1}{4}} U(a) A \Omega)_n(\theta_1, \cdots, \theta_n) =$ $e^{-ima_1 \sum_k \sinh(\theta_k - \frac{\pi i}{2})} (A \Omega)_n \left(\theta_1 - \frac{\pi i}{2}, \cdots, \theta_n - \frac{\pi i}{2}\right)$,

which contains a strongly damping factor $e^{-c\sum_k \cosh \theta_k}$.

• (1) Bounded analytic extension. (2) Cauchy integral.

 $A \in \mathcal{M} \Longrightarrow \langle [\phi(f), A] \Phi, \Psi \rangle$ is supported in $\mathbb{R}_{-} \Longrightarrow$ analyticity of the Fourier transform of $\langle \Phi_n, A\Omega \rangle$ in each θ_k . \Longrightarrow represent the value at $(\theta_1 - \frac{\pi i}{2}, \cdots, \theta_n - \frac{\pi i}{2})$ as a Cauchy integral \Longrightarrow nuclearity at n. For the whole map: need the condition S(0) = -1.

Theorem (Lechner)

For the Borchers triple (\mathcal{M}, U, Ω) associated to an S-matrix with a certain regularity condition, the inclusion $\operatorname{Ad} U(a)(\mathcal{M}) \subset \mathcal{M}$ satisfies the modular nuclearity for $a \in W_{\mathrm{R}}$ sufficiently large.

Factorizing S-matrix models: matrix-valued S

Models may have several species of particles. $\mathcal{H}_1 = L^2(\mathbb{R})^{\oplus D}$, S becomes a matrix-valued function and should satisfy the **Yang-Baxter equation**

$$S(\theta)_{12}S(\theta + \theta')_{23}S(\theta')_{12} = S(\theta')_{23}S(\theta + \theta')_{12}S(\theta)_{23},$$

to define a **representation** D_n of \mathfrak{S}_n on $\mathcal{H}_1^{\otimes n}$. For $\tau_k = (k, k+1)$,

 $(D_n(\tau_k)\Psi_n)(\theta_1,\cdots,\theta_n)=S(\theta_{k+1}-\theta_k)\Psi_n(\theta_1,\cdots,\theta_{k+1},\theta_k,\cdots,\theta_n).$

Theorem (Lechner-Schützenhofer)

One can construct a Borchers triple as before.

Lemma (Alazzawi-Lechner)

The representation D_n is unitarily equivalent to the ferminionic representation $D_n^-(\tau_k)(\xi_1 \otimes \cdots \otimes \xi_n) = (-1)\xi_1 \otimes \cdots \otimes \xi_{k+1} \otimes \xi_k \otimes \cdots \otimes \xi_n$, intertwined by a multiplication operator in $L^{\infty}(\mathbb{R}^n, M_{D^{2n}}(\mathbb{C}))$.

Problem: bounded analytic intertwiner? $(\Longrightarrow modular nuclearity)$

イロト 不得 トイヨト イヨト 二日

S-matrix with poles

S: scalar S-matrix with poles at $\theta = \frac{\pi i}{3}, \frac{2\pi i}{3}, S(\theta) = S(\theta + \frac{\pi i}{3})S(\theta - \frac{\pi i}{3}),$ $R = \operatorname{Res}_{\theta = \frac{2\pi i}{3}}S(\theta). P_n:$ S-symmetrization, $\mathcal{H} = \bigoplus P_n \mathcal{H}_1^{\otimes n}, \mathcal{H}_1 = L^2(\mathbb{R}),$

$$Dom(\chi_1(f)) := H^2\left(-\frac{\pi}{3}, 0\right)$$
$$(\chi_1(f))\xi(\theta) := \sqrt{2\pi|R|}f^+\left(\theta + \frac{\pi i}{3}\right)\xi\left(\theta - \frac{\pi i}{3}\right),$$

where $H^2(\alpha, \beta)$ is the space of analytic functions in $\mathbb{R} + i(\alpha, \beta)$ such that $\xi(\cdot - \gamma i)$ is uniformly bounded in L^2 -norm, $\gamma \in (\alpha, \beta)$, and f^+ is analytic.

$$\begin{split} \chi_n(f) &= n P_n \left(\chi_1(f) \otimes I \otimes \cdots \otimes I \right) P_n, \\ \chi(f) &:= \bigoplus \chi_n(f), \\ (\chi_1'(g)\xi)(\theta) &:= (J_1\chi_1(g_j)J_1)(\theta) = \sqrt{2\pi |R|} g^+ \left(\theta - \frac{\pi i}{3} \right) \xi \left(\theta + \frac{\pi i}{3} \right), \\ \chi_n'(g) &:= J_n \chi_n(g_j) J_n, \ \chi'(g) &:= J \chi(g_j) J. \end{split}$$

Wedge-local fields and weak commutativity

New field:

$$\begin{split} \widetilde{\phi}(f) &:= \phi(f) + \chi(f) = z^{\dagger}(f^{+}) + \chi(f) + z(J_{1}f^{-}), \\ \widetilde{\phi}'(g) &:= J\widetilde{\phi}(g_{j})J, \ \chi'(g) = J\chi(g_{j})J. \end{split}$$

Theorem (Cadamuro-T.)

For real $f, g, \operatorname{supp} f \subset W_L, \operatorname{supp} g \subset W_R$, then

 $\langle \widetilde{\phi}(f) \Phi, \widetilde{\phi}'(g) \Psi
angle = \langle \widetilde{\phi}'(g) \Phi, \widetilde{\phi}(f) \Psi
angle, \ \ \Phi, \Psi \in \mathrm{Dom}(\widetilde{\phi}(f)) \cap \mathrm{Dom}(\widetilde{\phi}'(g)).$

Remark: $\chi_1(f)$ has a natural self-adjoint extension for nice f. Problems:

- Is the operator $\chi_n(f) = nP_n(\chi_1(f) \otimes I \otimes \cdots \otimes I) P_n$ self-adjoint?
- Do the fields $\widetilde{\phi}(f), \widetilde{\phi}'(g)$ strongly commute? (\Longrightarrow new nets)

- Operator algebras play a crucial role in QFT, not only in the classical analysis (Araki-Haag scattering theory, Doplicher-Haag-Roberts superselection theory), but in construction of models.
- Tomita-Takesaki theory is essential for covariance and locality.

Open problems

- Half-sided modular inclusions
- criteria for standard inclusion
- Yang-Baxter equation, analytic intertwiners
- strong commutativity of the fields for *S* with poles