Towards Haag-Kastler nets for integrable QFT with bound states

Yoh Tanimoto

(partly with D. Cadamuro, Comm. Math. Phys. (2015), arXiv:1502.01313 and arXiv:1508.06402) University of Tokyo, JSPS SPD fellow

October 5th 2015, Kyoto RIMS

Introduction

Mathematical formulations of **relativistic** quantum field theory:

- Wightman fields, Osterwalder-Schrader axioms
- operator-algebraic approach (Haag-Kastler nets)

Recent progress and construction of 2d Haag-Kastler nets:

- relations with Tomita-Takesaki theory (Bisognano-Wichmann '75, Borchers '92): Lorentz boosts = modular group
- factorizing scalar S-matrix models without bound states (Lechner '08)
- twisting by inner symmetry (T. '14)
- models on de Sitter spacetime (Barata-Jäkel-Mund, in progress)

Principal idea

- Construction of Haag-Kastler nets **not through** Wightman fields.
- Observables in certain extended regions are simpler. Compact regions can be obtained by intersection.

05/10/2015, Kyoto RIMS

Quantum fields

Wightman axioms

- ϕ : operator-valued distribution on \mathbb{R}^d , $[\phi(x), \phi(y)] = 0$ if $x \perp y$ (observable at x)
- U: the spacetime symmetry, $U(g)\phi(x)U(g)^* = \phi(gx)$
- ullet Ω the vacuum vector

Equivalently, one considers n-point functions (Wightman functions)

$$W(x_1,t_1,x_2,t_2,\cdots,x_n,t_n)=\langle \Omega,\phi(x_1,t_1)\phi(x_2,t_2)\cdots\phi(x_n,t_n)\Omega\rangle.$$

or their Wick-rotations $S(\cdots x_k, t_k \cdots) := W(\cdots x_k, it_k \cdots)$ (Schwinger functions, Osterwalder-Schrader axioms).

- examples in 2 and 3 dimensions: constructive QFT (Glimm, Jaffe, ...), conformal field theories.
- $\phi(f) = \int dx f(x)\phi(x)$ is an unbounded operator.

Net of observables

Haag-Kastler net

 $\mathcal{A}(O)$: von Neumann algebras (weakly closed *-algebras of bounded operators on a Hilbert space \mathcal{H}) parametrized by open regions $O \subset \mathbb{R}^d$

- isotony: $O_1 \subset O_2 \Rightarrow \mathcal{A}(O_1) \subset \mathcal{A}(O_2)$
- locality: $O_1 \perp O_2 \Rightarrow [\mathcal{A}(O_1), \mathcal{A}(O_2)] = 0$
- Poincaré covariance: $\exists U$: positive energy rep of \mathcal{P}_+^{\uparrow} such that $U(g)\mathcal{A}(O)U(g)^* = \mathcal{A}(gO)$
- ullet vacuum: $\exists \Omega$ such that $U(g)\Omega = \Omega$ and cyclic for $\mathcal{A}(O)$

Correspondence: $\mathcal{A}(O) = \{e^{i\phi(f)} : \operatorname{supp} f \subset O\}''$ (observables measurable in O, $\mathcal{M}' = \{x : [x, y] = 0, y \in \mathcal{M}\}$)

One can extract **S-matrix** from a net (Araki-Haag scattering theory)

 \Longrightarrow Haag-Kastler net contains all the physical information of the model.

Observables in wedges

Interacting quantum fields are difficult to construct (c.f. form factor program: expand Wightman functions by matrix elements of the field. The problem of convergence remains for almost all models).

In terms of Haag-Kastler net: **Infinitely many** von Neumann algebras with consistency conditions \implies difficult to construct nets **directly**.

Consider observables in wedge-region

$$W_{\rm R} := \{a = (a_0, a_1) : |a_0| < a_1\}.$$

Extended regions contain more observables, hence more **tractable** ones.

In **two-dimensional** space time, the whole net \mathcal{A} can be recovered from wedges (Borchers '92):

$$\mathcal{A}(D_{a,b}) = (U(a)\mathcal{A}(W_{\mathbf{R}})U(a)^*) \cap (U(b)\mathcal{A}(W_{\mathbf{R}})'U(b)^*).$$

Standard wedge and double cone

Borchers triples

Definition

 $(\mathcal{M}, \mathcal{T}, \Omega)$, where \mathcal{M} : vN algebra, \mathcal{T} : positive-energy rep of \mathbb{R}^2 , Ω : vector, is a Borchers triple if Ω is cyclic and separating for \mathcal{M} and

• $\operatorname{Ad} T(a)(\mathcal{M}) \subset \mathcal{M}$ for $a \in W_{\mathbb{R}}$, $T(a)\Omega = \Omega$

Borchers triple \Longrightarrow net

If one defines a "net" by $\mathcal{A}(D_{a,b}) := (U(a)\mathcal{M}U(a)^*) \cap (U(b)\mathcal{M}'U(b)^*)$, then T can be extended to a rep U of Poincaré group and (A, U, Ω) satisfies all the axioms of local net except the cyclicity of vacuum.

General construction scheme

- to construct new Borchers triples (wedge-local QFT)
- to show the cyclicity of vacuum (strict locality)

An example of wedge-construction

An **internal symmetry** on a Borchers triple $(\mathcal{M}, \mathcal{T}, \Omega)$ is a unitary representation W of a group G such that $\operatorname{Ad} V(g)\mathcal{M} = \mathcal{M}$, $[V(g), \mathcal{T}(a)] = 0$ and $V(g)\Omega = \Omega$. We take an action V of S^1 . $V(t) = e^{itQ}$. $\widetilde{V}(t) = e^{itQ\otimes Q}$.

Theorem (T. '14, arXiv:1301.6090, Forum of Mathematics, Sigma)

Let
$$\widetilde{\mathcal{M}}_t = (\mathcal{M} \otimes \mathbb{1}) \vee \operatorname{Ad} \widetilde{V}(t) (\mathbb{1} \otimes \mathcal{M}), \ \widetilde{T}(a) = T(a) \otimes T(a), \ \widetilde{\Omega} = \Omega \otimes \Omega.$$
 Then $(\widetilde{\mathcal{M}}_t, \widetilde{T}, \widetilde{\Omega})$ is a Borchers triple.

$$\frac{\text{Proof:}}{\widetilde{\mathcal{M}}'_t} V(t) = \sum_k V(kt) \otimes dE(k).$$

Strict locality holds if the starting triple satisfies wedge-split property \Longrightarrow new Haag-Kastler nets with **nontrivial S-matrix** $e^{itQ\otimes Q}$. (complex free field \Longrightarrow Federbush model? Wedge-split in $P(\phi)_2$ models?)

Free field

• Symmetric Fock space: $\mathcal{H}_1 = L^2(\mathbb{R}, d\theta)$, $\mathcal{H}_n = P_n \mathcal{H}_1^{\otimes n}$, where P_n is the projection onto **symmetric** functions:

$$\Psi_n(\theta_1,\cdots,\theta_n)=\Psi_n(\theta_1,\cdots,\theta_{k+1},\theta_k,\cdots,\theta_n).$$

• Unsymmetrized annihilation operator:

$$(a(\xi)\Psi)_n(\theta_1,\cdots,\theta_n)=\int d\theta \,\overline{\xi(\theta)}\Psi_{n+1}(\theta,\theta_1,\cdots,\theta_n),$$

and symmetrized annihilation and creation operators:

$$z^{\dagger}(\xi) = Pa^{\dagger}(\xi)P, z(\xi) = Pa(\xi)P, P = \bigoplus_{n} P_{n}.$$

• Free field: $\phi(f) = z^{\dagger}(f^{+}) + z(J_{1}f^{-}),$

$$f^{\pm}(\theta) = \int dx e^{ix \cdot p(\theta)} f(x), \quad p(\theta) = (m \cosh \theta, m \cosh \theta),$$

If supp $f \perp \text{supp} g$, then $[e^{i\phi(f)}, e^{i\phi(g)}] = 0$.

Factorizing S-matrix models (Lechner, Schroer)

• **Input**: analytic function $S : \mathbb{R} + i(0, \pi) \to \mathbb{C}$,

$$\overline{S(\theta)} = S(\theta)^{-1} = S(-\theta) = S(\theta + \pi i), \ \theta \in \mathbb{R}.$$

• S-symmetric Fock space: $\mathcal{H}_1 = L^2(\mathbb{R}, d\theta)$, $\mathcal{H}_n = P_n \mathcal{H}_1^{\otimes n}$, where P_n is the projection onto S-symmetric functions:

$$\Psi_n(\theta_1,\cdots,\theta_n)=S(\theta_{k+1}-\theta_k)\Psi_n(\theta_1,\cdots,\theta_{k+1},\theta_k,\cdots,\theta_n).$$

- Zamolodchikov-Faddeev algebra: S-symmetrized creation and annihilation operators $z^{\dagger}(\xi) = Pa^{\dagger}(\xi)P, z(\xi) = Pa(\xi)P, P = \bigoplus_{n} P_{n}$.
- Wedge-local field: $\phi(f) = z^{\dagger}(f^+) + z(J_1f^-)$,

$$f^{\pm}(\theta) = \int dx e^{ix \cdot p(\theta)} f(x), \quad p(\theta) = (m \cosh \theta, m \cosh \theta),$$

 J_1 is the one-particle CPT operator, $\phi'(g) = J\phi(g_j)J$, $g_j(x) = g(-x)$. If $\operatorname{supp} f \subset W_L$, $\operatorname{supp} g \subset W_R$, then $[e^{i\phi(f)}, e^{i\phi'(g)}] = 0$.

Observables in wedges and double cones

One defines

$$\mathcal{M} = \{e^{\phi'(g)} : \operatorname{supp} g \subset W_{\mathbf{R}}\}''$$
$$(U(a)\Psi_n)(\theta_1, \cdots, \theta_n) = e^{ip(\theta) \cdot a}\Psi_n(\theta_1, \cdots, \theta_n),$$

then (\mathcal{M}, U, Ω) is a Borchers triple. U can be extended to the Poincaré group: the Lorentz boosts are given by the modular group Δ^{it} : $J\Delta^{\frac{1}{2}}x\Omega := x^*\Omega$.

One defines a "net" by $\mathcal{A}(D_{a,b}):=(\mathit{U}(a)\mathcal{M}\mathit{U}(a)^*)\cap(\mathit{U}(b)\mathcal{M}'\mathit{U}(b)^*)$

One can prove that $\mathcal{A}(D_{0,a})$ is sufficiently large by checking the **modular** nuclearity condition: let Δ^{it} be the Lorentz boosts (the modular group). The map

$$\mathcal{M}\ni x\longmapsto \Delta^{\frac{1}{4}}U(a)x\Omega$$

is nuclear \Longrightarrow Haag-Kastler net with two-particle S-matrix S (Lechner '08).

S-matrix with poles

If S has a pole:

$$\begin{split} &[\phi(f),\phi'(g)]\Psi_1(\theta_1) = \\ &-\int d\theta \, (f^+(\theta)g^-(\theta)S(\theta_1-\theta) - f^+(\theta+\pi i)g^-(\theta+\pi i)S(\theta_1-\theta+\pi i)) \\ &\times \Psi_1(\theta_1) \end{split}$$

obtains the **residues** of *S* and does not vanish.

• Example (Bullough-Dodd models): poles at $\theta = \frac{\pi i}{3}, \frac{2\pi i}{3}$, residues -R, R

$$S_B(\theta) = \frac{\tanh\frac{1}{2}\left(\theta + \frac{2\pi i}{3}\right)}{\tanh\frac{1}{2}\left(\theta - \frac{2\pi i}{3}\right)} \cdot \frac{\tanh\frac{1}{2}\left(\theta + \frac{(B-2)\pi i}{3}\right)}{\tanh\frac{1}{2}\left(\theta - \frac{B\pi i}{3}\right)} \frac{\tanh\frac{1}{2}\left(\theta - \frac{B\pi i}{3}\right)}{\tanh\frac{1}{2}\left(\theta + \frac{B\pi i}{3}\right)},$$

where
$$0 < B < 2, B \neq 1$$
. $S(\theta) = S\left(\theta + \frac{\pi i}{3}\right)S\left(\theta - \frac{\pi i}{3}\right)$.

The bound state operator

S: two-particle S-matrix, P_n : S-symmetrization, $\mathcal{H} = \bigoplus P_n \mathcal{H}_1^{\otimes n}, \ \mathcal{H}_1 = L^2(\mathbb{R}),$

$$Dom(\chi_1(f)) := H^2\left(-\frac{\pi}{3}, 0\right)$$
$$(\chi_1(f))\xi(\theta) := \sqrt{2\pi|R|}f^+\left(\theta + \frac{\pi i}{3}\right)\xi\left(\theta - \frac{\pi i}{3}\right),$$

 $\chi_n(f) = nP_n(\chi_1(f) \otimes I \otimes \cdots \otimes I)P_n$

where $H^2(\alpha, \beta)$ is the space of analytic functions in $\mathbb{R} + i(\alpha, \beta)$ such that $\xi(\cdot + \gamma i)$ is uniformly bounded in L^2 -norm, $\gamma \in (\alpha, \beta)$, and f^+ is analytic.

$$\chi(f) := \bigoplus \chi_n(f),$$

$$(\chi'_1(g)\xi)(\theta) := (J_1\chi(g_j)J_1)(\theta) = \sqrt{2\pi|R|}g^+\left(\theta - \frac{\pi i}{3}\right)\xi\left(\theta + \frac{\pi i}{3}\right),$$

$$\chi'_n(g) := J_n\chi_n(g_i)J_n, \quad \chi'(g) := J\chi(g_i)J.$$

Wedge-local fields and weak commutativity

New field:

$$\begin{split} \widetilde{\phi}(f) &:= \phi(f) + \chi(f) = z^{\dagger}(f^{+}) + \chi(f) + z(J_{1}f^{-}), \\ \widetilde{\phi}'(g) &:= J\widetilde{\phi}(g_{j})J, \quad \chi'(g) = J\chi(g_{j})J. \end{split}$$

Theorem (Cadamuro-T. arXiv:1502.01313, CMP '15)

For real $f, g, \operatorname{supp} f \subset W_L, \operatorname{supp} g \subset W_R$, then

$$\langle \widetilde{\phi}(f)\Phi, \widetilde{\phi}'(g)\Psi \rangle = \langle \widetilde{\phi}'(g)\Phi, \widetilde{\phi}(f)\Psi \rangle, \ \ \Phi, \Psi \in \mathrm{Dom}(\widetilde{\phi}(f)) \cap \mathrm{Dom}(\widetilde{\phi}'(g)).$$

Proof)

$$\begin{split} \langle \chi(f)\Phi_1, \chi'(g)\Psi_1 \rangle &= 2\pi i R \int d\theta \, f^+ \left(\theta + \frac{\pi i}{3}\right) g^+ \left(\theta - \frac{2\pi i}{3}\right) \overline{\Phi(\theta)} \Psi_1(\theta) \\ &= 2\pi i R \int d\theta \, f^+ \left(\theta + \frac{\pi i}{3}\right) g^- \left(\theta + \frac{\pi i}{3}\right) \overline{\Phi(\theta)} \Psi_1(\theta) \dots \end{split}$$

Some features of the models

 No Reeh-Schlieder property for polynomials, but for the von Neumann algebra.

$$\widetilde{\phi}(f)\Omega=f^+$$
 is not in the domain of $\widetilde{\phi}(f)$.

• No energy bound for $\widetilde{\phi}$ (\Rightarrow no pointlike field?).

$$\widetilde{\phi}(f) = \phi(f) + \chi(f), \quad \chi_1(f) = M_{f^+(\cdot + \frac{\pi i}{3})} \Delta_1^{\frac{1}{6}}.$$

 Non-temperate polarization-free generator (c.f. Borchers-Buchholz-Schroer '01).

$$(\chi_1(f)U_1(a)\Psi_1)(\theta) = \sqrt{2\pi|R|}f^+\left(\theta + \frac{\pi i}{3}\right)e^{ia\cdot p\left(\theta - \frac{\pi i}{3}\right)}\Psi_1\left(\theta - \frac{\pi i}{3}\right),$$

which grows exponentially.

Bound states?

Open problems

- $\chi_1(f)$ is already unbounded and **not self-adjoint** on the domain $H^2(-\frac{\pi}{3},0)$. There is a nice self-adjoint extension of $\chi_1(f)$ (arXiv:1508.06402): the deficiency indices of $\chi_1(f)=\frac{1}{2}$ (the number of zeros of f^+).
- self-adjointness of $\chi(f) + \chi'(g) + cN$?? \Longrightarrow strong commutativity of $\widetilde{\phi}(f)$ and $\widetilde{\phi}'(g)$. \Longrightarrow interacting Haag-Kastler net.
- extension to more complicated models (sine-Gordon model, Toda field theories,...): work in progress
- relation to conformal field theory