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Abstract: We continue the analysis of the set of locally normal KMS states w.r.t. the
translation group for a local conformal net A of von Neumann algebras on R. In the
first part we have proved the uniqueness of the KMS state on every completely rational
net. In this second part, we exhibit several (non-rational) conformal nets which admit
continuously many primary KMS states. We give a complete classification of the KMS
states on the U (1)-current net and on the Virasoro net Vir1 with the central charge c = 1,
whilst for the Virasoro net Virc with c > 1 we exhibit a (possibly incomplete) list of
continuously many primary KMS states. To this end, we provide a variation of the Araki-
Haag-Kastler-Takesaki theorem within the locally normal system framework: if there is
an inclusion of split nets A ⊂ B and A is the fixed point of B w.r.t. a compact gauge
group, then any locally normal, primary KMS state on A extends to a locally normal,
primary state on B, KMS w.r.t. a perturbed translation. Concerning the non-local case,
we show that the free Fermi model admits a unique KMS state.

1. Introduction

We continue here our study of the thermal state structure in Conformal Quantum Field
Theory, namely we study the set of locally normal KMS states on a local conformal net
of von Neumann algebras on the real line with respect to the translation automorphism
group.

As is known, local conformal nets may be divided in two classes [28] that reflect
the sector (equivalence class of representations on the circle) structure. For a local con-
formal net A, to be completely rational (this condition is characterized intrinsically by
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the finiteness of the global index [22]) is equivalent to the requirement that A has only
finitely many inequivalent irreducible sectors and all of them have finite index. If A is
not completely rational then either A has uncountably many inequivalent irreducible
sectors or A has at least one irreducible sector with infinite index.

Faithful KMS states of A w.r.t. translations are locally normal on the real line (assum-
ing the general split property) and are associated with locally normal GNS representa-
tions of the restriction of the net A to the real line. One may wonder whether the
structure of these representations, i.e. of the KMS states, also strikingly depends on the
rational/non-rational alternative.

In the first part of our work [7] we have indeed shown the general result that, if A is a
completely rational local conformal net, then there exists only one locally normal KMS
state with respect to translations on A at any fixed inverse temperature β > 0. This state
is the geometric KMS state ϕgeo which is canonically constructed for any (rational or
non-rational) local conformal (diffeomorphism covariant) net.

In this paper we examine the situation when A is not completely rational. In con-
trast to the completely rational case, we shall see that there are non-rational nets with
continuously many KMS states.

We shall focus our attention on two important models. The first one is the free field,
i.e. the net generated by the U (1)-current. In this model we manage to classify all KMS
states. We shall show that the primary (locally normal) KMS states of the U (1)-cur-
rent net are in one-to-one correspondence with real numbers q ∈ R; as we shall see,
each state ϕq is uniquely and explicitly determined by its value on the current. The
geometric KMS state is ϕgeo = ϕ0 and any other primary KMS state is obtained by
composition of the geometric one with the automorphisms γq of the net (see Sect. 4.2):
ϕq = ϕgeo ◦ γq .

The second model we study is the Virasoro net Virc, the net generated by the stress-
energy tensor with a given central charge c. This net is fundamental and is contained
in any local conformal net [21]. If c is in the discrete series, thus c < 1, the net
Virc is completely rational, so there exists a unique KMS state by the first part of our
work [7].

In the case c = 1 we are able to classify all the KMS states. The primary (locally
normal) KMS states of the Vir1 net w.r.t. translations are in one-to-one correspondence
with positive real numbers |q| ∈ R

+; each state ϕ|q| is uniquely determined by its value
on the stress-energy tensor T :

ϕ|q| (T ( f )) =
(

π

12β2 +
q2

2

) ∫
f dx .

The geometric KMS state corresponds to q = 0, because it is the restriction of the geo-
metric KMS state on the U (1)-current net, and the corresponding value of the ‘energy

density’ π
12β2 + q2

2 is the lowest in the set of the KMS states. We construct these KMS
states by composing the geometric state with automorphisms on the larger U (1)-current
net.

We mention that, as a tool here, we adapt the Araki-Haag-Kastler-Takesaki theorem
to locally normal systems with the help of split property. We show that, if we have an
inclusion of split nets with a conditional expectation, then any extremal invariant state
on the smaller net extends to the larger net. The original theorem will be discussed in
detail, since we need an extension of a KMS state on the fixed point subnet to the whole
net. Furthermore, we warn the reader that the original proof of the theorem appears to
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be incomplete (see Appendix A), yet we are able to give a complete proof for the case
of split nets (Corollary 3.11), which suffices for our purpose.

Then we consider the case c > 1. In this case we produce a continuous family which
is probably exhaustive. While we leave open the problem of the completeness of this
family, we mention that the formulae on polynomials of fields should be useful. There is
a set of primary (locally normal) KMS states of the Virc net with c > 1 w.r.t. translations
in one-to-one correspondence with positive real numbers |q| ∈ R

+; each state ϕ|q| can
be evaluated on the stress-energy tensor

ϕ|q| (T ( f )) =
(

π

12β2 +
q2

2

) ∫
f dx

and the geometric KMS state corresponds to q = 1
β

√
π(c−1)

6 and energy density πc
12β2 .

It is even possible to evaluate ϕ|q| on polynomials of the stress-energy tensor and these
values are already determined by the value above on T ( f ), hence by the number |q|.
This should give important information for the complete classification.

We shall also consider a non-local rational model. We will see that there is only one
KMS state at each temperature in the free Fermi model. This model contains the Virasoro
net Virc with c = 1

2 , which is completely rational [21]. Then by a direct application of
the results in Part I, we obtain the existence and the uniqueness of KMS state in this
case.

We end this Introduction by pointing out that our results are relevant for the construc-
tion of Boundary Quantum Field Theory nets on the interior of the Lorentz hyperboloid.
As shown in particular in [27], one gets such a net from any translation KMS state on a
conformal net on the real line, so our results directly apply.

2. Preliminaries

Here we collect basic notions and technical devices regarding nets of observables and
thermal states. Although our main result in this paper is the classification of KMS states
on certain conformal nets on S1, we need to adapt standard results on C∗-dynamical sys-
tems to our locally normal systems. Since these materials can be stated for more general
nets of von Neumann algebras, we first formulate the problems without referring to the
circle.

2.1. Net of von Neumann algebras on a directed set.

2.1.1. Axioms and further properties. Let I be a directed set. We always assume that
there is a countable subset {Ii }i∈N ⊂ I with Ii ≺ Ii+1 of indices such that for any index
I there is some i such that I ≺ Ii . A net (of von Neumann algebras) A on I assigns a
von Neumann algebra A(I ) to each element I of I and satisfies the following conditions:

• (Isotony) If I ≺ J then A(I ) ⊂ A(J ).
• (Covariance) There is a strongly-continuous unitary representation U of R and an

order-preserving action of R on I such that

U (t)A(I )U (t)∗ = A(t · I ),

and for any index I and for any compact set C � R, there is another index IC such
that t · I ≺ IC for t ∈ C .
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Since the net A is directed, it is natural to consider the norm-closed union of {A(I )}I∈I.
We simply denote

A =
⋃
I∈I

A(I )
‖·‖

and call it the quasilocal algebra. Each algebra A(I ) is referred to as a local algebra. If
each local algebra is a factor, then we call A a net of factors. The adjoint action AdU (t)
naturally extends to an automorphism of the quasilocal algebra A. We denote by τt this
action of R and call it translation (note that in this article τt is a one-parameter family
of automorphisms, although in Part I [7, Sect. 2.3], where we assumed diffeomorphism
covariance, we denoted it by AdU (τt ) to unify the notation).

An automorphism of the net A (not just of A) is a family {γI } of automorphisms
of local algebras {A(I )} such that if I ≺ J then γJ |A(I ) = γI . Such an automorphism
extends by norm continuity to an automorphism of the quasilocal algebra A which pre-
serves all the local algebras. Conversely, any automorphism of A which preserves each
local algebra can be described as an automorphism of the net A.

A net A is said to be asymptotically γ -abelian if there is an automorphism γ of the
quasilocal C∗-algebra A implemented by a unitary operator U (γ ) such that

• γ is normal on each local algebra A(I ) and maps it into another local algebra A(γ · I ),
where we consider that the automorphism acts also on the set I of indices by a little
abuse of notation.

• for any pair of indices I, J there is a sufficiently large n such thatA(I ) andA(γ n ·J ) =
U (γ )nA(J )(U (γ )∗)n commute,

• γ and τt commute.

It is also possible (and in many cases more natural) to consider a one-parameter
group {γs} of automorphisms for the notion of asymptotic γ -abelianness (and weakly
γ -clustering, see below). In that case, we assume that {γs} is implemented by a strongly-
continuous family {U (γs)} and the corresponding conditions above can be naturally
translated.

We say that a net A is split if, for the countable set {Ii } in the definition of the net,
there are type I factors {Fi } such that A(Ii ) ⊂ Fi ⊂ A(Ii+1). Note that in this case the
argument in the appendix of [22] applies.

2.1.2. Examples of nets. The definition of nets looks quite general, but we have princi-
pally two types of examples in mind.

The first comes from the nets on the circle S1 which we have studied in Part I. For
the readers’ convenience, we recall the axioms. A conformal net A on S1 is a map from
the family of intervals I of S1 to the family of von Neumann algebras on H such that:

(1) Isotony. If I1 ⊂ I2, then A(I1) ⊂ A(I2).
(2) Locality. If I1 ∩ I2 = ∅, then [A(I1),A(I2)] = 0.
(3) Möbius covariance. There exists a strongly continuous unitary representation U

of the Möbius group PSL(2,R) such that for any interval I it holds that

U (g)A(I )U (g)∗ = A(gI ), for g ∈ PSL(2,R).

(4) Positivity of energy. The generator of the one-parameter subgroup of rotations in
the representation U is positive.



Thermal States in Conformal QFT. II

(5) Existence of vacuum. There is a unique (up to a phase) unit vector � in H which
is invariant under the action of U , and cyclic for

∨
I∈I A(I ).

(6) Conformal covariance. The representation U extends to a projective unitary rep-
resentation of Diff(S1) such that for any interval I and x ∈ A(I ) it holds that

U (g)A(I )U (g)∗ = A(gI ), for g ∈ Diff(S1),

U (g)xU (g)∗ = x, if supp(g) ⊂ I ′.

Strictly speaking, a net is a pair (A,U ) of a family of von Neumann algebras A and a
group representation U , yet for simplicity we denote it simply by A.

We identify S1 and the one-point compactification R∪{∞} by the Cayley transform.
If A is a conformal net on S1, we consider the restriction A|R with the family of all finite
intervals in R as the index set. The translations in the present setting are the ordinary
translations. If we take a finite translation as γ , this system is asymptotically γ -abe-
lian. To consider split property, we can take the sequence of intervals In = (−n, n). It is
known [17] that each local algebra of a conformal net is a (type III1) factor. This property
is exploited when we extend a KMS state on a smaller net to a larger net.

The second type is a net of observables on Minkowski space R
d (see [18] for a general

account). In this case the index set is the family of bounded open sets in R
d . The group of

translations in some fixed timelike direction plays the role of “translations”, while a fixed
spacelike translation plays the role of γ . The net satisfies asymptotic γ -abelianness.

In both cases, it is natural to consider the continuous group γs of (space-)translations
for the notion of γ -abelianness.

2.2. States on a net. For a C∗-algebra A and a one-parameter automorphism group {τt },
it is possible to consider KMS states on A with respect to τ . Since our local algebras are
von Neumann algebras, it is natural to consider locally normal objects. Let ϕ be a state
on the quasilocal algebra A. It is said to be locally normal if each restriction of ϕ to a
local algebra A(I ) is normal. A β-KMS state ϕ on A with respect to τ is a state with
the following properties: for any x, y ∈ A, there is an analytic function f in the interior
of Dβ := {0 ≤ �z ≤ β}, where � means the imaginary part, continuous on Dβ , such
that

f (t) = ϕ(xτt (y)), f (t + iβ) = ϕ(τt (y)x). (1)

The parameter 1
β

is called the temperature. In Part I we considered only the case β = 1
since our main subject was the conformal nets, in which case the phase structure is
uniform with respect to β. Furthermore, we studied completely rational models and
proved that they admit only one KMS state at each temperature. Also in this Part II
the main examples are conformal, but these models admit continuously many different
KMS states and it should be useful to give concrete formulae which involve also the
temperature.

A KMS state ϕ is said to be primary if the GNS representation of A with respect to
ϕ is factorial, i.e., πϕ(A)′′ is a factor. Any KMS states can be decomposed into primary
states [39, Thm. 4.5] in many practical situation, for example if the net is split or if each
local algebra is a factor. Hence, to classify KMS states of a given system, it is enough
to consider the primary ones.

If the net A comes from a conformal net on S1, namely if we assume the diffeomor-
phism covariance, we saw in Part I that there is at least one KMS state, the geometric
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stateϕgeo [7, Sect. 2.8]. It is easy to obtain a formula forϕgeo with general temperature 1
β

.
We exhibit it for later use: let ω := 〈�, ·�〉 be the vacuum state, then ϕgeo := ω ◦ Expβ ,
where, for any I � R, Expβ |A(I ) = AdU (gβ,I )|A(I ) and gβ,I is a diffeomorphism of

R with compact support such that for t ∈ I it holds that gβ,I (t) = e
2π t
β .

Ifϕ is γ -invariant (invariant under an automorphism γ or a one-parameter group {γs})
and cannot be written as a linear combination of different locally normal γ -invariant
states, then it is said to be extremal γ -invariant.

We denote the GNS representation of A with respect to ϕ by πϕ , the Hilbert space by
Hϕ and the vector which implements the stateϕ by�ϕ . Ifϕ is invariant under the action of
an automorphism τt (respectively γ, γs), we denote by Uϕ(t) (resp. Uϕ(γ ), Uϕ(γs)) the
canonical unitary operator which implements τt (resp.γ, γs) and leaves�ϕ invariant. Ifϕ
is locally normal, the GNS representationπϕ is locally normal as well, namely the restric-
tion of πϕ to each A(I ) is normal. Indeed, let us denote the restriction ϕi := ϕ|A(Ii ).
The representation πϕi is normal on A(Ii ). The Hilbert space is the increasing union of
Hϕi and the restriction of πϕ to A(Ii ) on Hϕ j (i ≤ j) is πϕ j , hence is normal. Then
πϕ |A(Ii ) is normal.

Furthermore, the map t �→ Uϕ(t) is weakly (and hence strongly) continuous, since
the one-parameter automorphism τt is weakly (or even *-strongly) continuous and Uϕ(t)
is defined as the closure of the map

πϕ(x)�ϕ �−→ πϕ(τt (x))�ϕ.

Thus the weak continuity of t �→ Uϕ(t) follows from the local normality of πϕ and
boundedness of Uϕ(t), which follows from the invariance of ϕ. By the same reasoning,
if there is a one-parameter family γs , the GNS implementation Uϕ(γs) is weakly con-
tinuous.

If for any locally normal γ -invariant state ϕ the algebra E0πϕ(A)E0 is abelian, where
E0 is the projection onto the space of Uϕ(γ )-invariant (resp. {Uϕ(γs)}) vectors, then the
net A is said to be γ -abelian.

A locally normal state ϕ on A is said to be weakly γ -clustering if it is γ -invariant
and

lim
N→∞

1

N

N∑
n=1

ϕ(γ n(x)y) = ϕ(x)ϕ(y)

for any pair of x, y ∈ A. For a one parameter group {γs}, we define γ -clustering by

lim
N→∞

1

N

∫ N

0
ϕ(γs(x)y)ds = ϕ(x)ϕ(y).

At the end of this subsection, we remark that, in our principal examples coming from
conformal nets on S1, KMS states are automatically locally normal by the following
general result [39, Thm. 1].

Theorem 2.1 (Takesaki-Winnink). Let A be a net such that A(Ii ) are σ -finite properly
infinite von Neumann algebras. Then any KMS-state on A is locally normal.

If A is a conformal net on S1 defined on a separable Hilbert space, then each local
algebra A(I ) is a type III1 factor, in particular it is properly infinite, and obviously
σ -finite, hence Theorem 2.1 applies.
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2.3. Subnets and group actions. Let A and B be two nets with the same index set I
acting on the same Hilbert space. If for each index I it holds A(I ) ⊂ B(I ), then we say
that A is a subnet of B and write simply A ⊂ B. We always assume that each inclusion
of algebras has a normal conditional expectation EI : B(I ) → A(I ) such that

• (Compatibility) For I ≺ J it holds that E J |B(I ) = EI .
• (Covariance) τt ◦ EI = Et ·I ◦ τt , and

see [26] for a general theory on nets with a conditional expectation.
Principal examples come again from nets of observables on S1. As remarked in Part

I [7, Sect. 2.2], if we have an inclusion of nets on S1 there is always a compatible and
covariant family of expectations.

Another case has a direct relation with one of our main results. Let A be a net on I and
assume that there is a family of *-strongly continuous actionsαI,g of a compact Lie group
G on A(I ) such that if I ⊂ J then αJ,g|A(I ) = αI,g and τt ◦ αI,g = αt ·I,g ◦ τt . By the
first condition (compatibility of α) we can extend α to an automorphism of the quasilocal
C∗-algebra A, and by the second condition (covariance of α) α and τ commute. Then for
each index I we can consider the fixed point subalgebra A(I )G =: AG(I ). Then AG is
again a net on I. Furthermore, since the group is compact, there is a unique normalized
invariant mean dg on G. Then it is easy to see that the map E(x) := ∫

G αg(x)dg is
a locally normal conditional expectation A → AG . The group G is referred to as the
gauge group of the inclusion AG ⊂ A.

The *-strong continuity of the group action is valid, for example, when the group
action is implemented by weakly (hence strongly) continuous unitary representation of
G. In fact, if gn → g, then Ugn → Ug strongly, henceαgn (x) = AdUgn (x) → AdUg(x)
and αgn (x

∗) = AdUgn (x
∗) → AdUg(x∗) strongly since {Ugn } is bounded. This is the

case, as are our principal examples, when the net is defined in the vacuum representation
(see [7, Sect. 2.1]) and the vacuum state is invariant under the action of G.

If the net A is asymptotically γ -abelian, then we always assume that γ commutes
with αg .

2.4. C∗-dynamical systems. A pair of a C∗-algebra A and a pointwise norm-continuous
one-parameter automorphism group αt is called a C∗-dynamical system. The require-
ment of pointwise norm-continuity is strong enough to allow extensive general results.
Although our main objects are not C∗-dynamical systems, we recall here a standard
result.

All notions defined for nets, namely compact (gauge) group action, asymptotic
γ -abelianness, γ -abelianness, weakly γ -clustering of states and inclusion of systems,
and corresponding results in Sect. 3, except Corollary 3.6, have variations for C∗-dynam-
ical system ([20], see also [3]). Among them, important is the theorem of Araki-Haag-
Kastler-Takesaki [1]: for a C∗-dynamical system with the fixed point subalgebra with
respect to a gauge group, any KMS state on the smaller algebra extends to a KMS state
with respect to a slightly different one-parameter group. In fact, to obtain the full exten-
sion, it is necessary to assume that the state ϕ is faithful and that there is the net structure.
A detailed discussion is collected in Appendix A.

2.5. Regularization. To classify the KMS states on Vir1, we need to extend a KMS
state on Vir1 to ASU (2)1 (explained below). Since Vir1 is the fixed point subnet of
ASU (2)1 with respect to the action of SU (2) [35], one would like to apply Theorem A.1.
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The trouble is, however, that the theorem applies only to C∗-dynamical systems where
the actions of the translation group and the gauge group are pointwise continuous in
norm. The pointwise norm-continuity seems essential in the proof and it is not straight-
forward to modify it for locally normal systems; we instead aim to reduce our cases to
C∗-dynamical systems.

More precisely, we assume that the net A has a locally *-strongly continuous action
τ of translations (covariance, in Subsect. 2.1.1) and α of a gauge group G (Subsect. 2.3),
has an automorphism γ (Subsect. 2.1.1) and they commute, then we construct a C∗-
dynamical system (Ar, τ ) with the regular subalgebra Ar *-strongly dense in A.

Proposition 2.2. For any net A with locally *-strongly continuous action τ×α of R×G
and an automorphism γ commuting with τ × α, the set Ar of elements of the quasilocal
algebra A on which τ × α act pointwise continuously in norm is a (τ × α, γ )-glob-
ally invariant *-strongly dense C∗-subalgebra. Any local element x ∈ A(I ) can be
approximated *-strongly by a bounded sequence from Ar ∩ A(IC ) for some IC � I .

If we consider a continuous action γs , then we can take Ar such that Ar is {γs}-invari-
ant and the action of γ is pointwise continuous in norm.

Proof. Let Ar be the set of elements of A on which R × G acts pointwise continuously
in norm; Ar is clearly a ∗-algebra and is norm-closed, hence is a C∗-subalgebra of A.
Global invariance follows since τ, γ and α commute.

Let x be an element of some local algebra A(I ). We consider the smearing of x with
a smooth function f on R × G with compact support

x f :=
∫

R×G
f (t, g)αg(τt (x))dtdg.

By the definition of net and the compactness of the support of f , the integrand belongs
to another local algebra A(IC ) and the actions α and τ are normal on A(IC ), hence the
weak integral can be defined. Smoothness of the actions on x f is easily seen from the
smoothness of f , thus x f ∈ Ar.

Take a sequence of functions approximating the Dirac distribution, i.e. a sequence
of fn with

∫
R×G fn(x, g)dxdg = 1 and whose supports shrink to the unit element

in the group R × G, then x fn converges *-strongly to x , since group actions α and τ
are *-strongly continuous by assumption. Thus, any element x in a local algebra A(I )
can be approximated by a bounded sequence of smeared elements in a slightly larger
local algebra A(IC ). As any element in A can be approximated in norm (and a fortiori
*-strongly) by local elements, Ar is *-strongly dense in A.

Moreover, as the actions are norm continuous on Ar, if x ∈ Ar then x fn converges
in norm to x . This means that the norm closure of the linear space generated by the
smeared elements {x f } is an algebra and coincides with Ar.

For a continuous action γs , it is enough to consider a smearing on R × G × R with
respect to the action of τ × α × γ . ��
Remark 2.3. If A is the fixed point subnet of B in the sense of Sect. 2.3 (A = BG),
then Ar = Br

G . Indeed, from Ar ⊂ Br ⊂ B it follows that Ar ⊂ Br
G ⊂ BG = A,

since the elements of A are G-invariant; on the other side, from Br
G ⊂ A it follows

that Br
G ⊂ Ar, since the elements of Br

G are regular. Thus we obtain an inclusion of
C∗-dynamical systems Ar ⊂ Br.

Lemma 2.4. If a state ϕ on the net A is weakly γ -clustering, then the restriction of ϕ to
the regular system (Ar, τ ) is again weakly γ -clustering.
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Proof. The definition of weakly γ -clustering of a smaller algebra Ar refers only to
elements in Ar, hence it is weaker than the counterpart for A. ��
Lemma 2.5. Let ϕ be a locally normal state on A which is a KMS state on Ar. Then ϕ
is a KMS state on A.

Proof. We only have to confirm the KMS condition for A. Let x, y ∈ A and take bounded
sequences {xn}, {yn} from Ar which approximate x, y *-strongly. Since ϕ is a KMS state
on Ar, there is an analytic function fn such that

fn(t) = ϕ(xnτt (yn)),

fn(t + i) = ϕ(τt (yn)xn).

In terms of GNS representation with respect to ϕ, these functions can be written as

ϕ(xnτt (yn)) = 〈πϕ(x∗
n )�ϕ,Uϕ(t)πϕ(yn)�ϕ〉,

ϕ(τt (yn)xn) = 〈Uϕ(t)πϕ(y∗
n )�ϕ, πξ (xn)�ϕ〉.

Note that πϕ(xn) (respectively πϕ(yn)) is *-strongly convergent to πϕ(x) (resp. πϕ(y))
since the sequence {xn} (resp. {yn}) is bounded. Let us denote a common bound of norms
by M . We can estimate the difference as follows:

|ϕ(xτt (y))− ϕ(xnτt (yn))|
=

∣∣∣〈πϕ(x∗)�ϕ,Uϕ(t)πϕ(y)�ϕ〉 − 〈πϕ(x∗
n )�ϕ,Uϕ(t)πϕ(yn)�ϕ〉

∣∣∣
≤ M

∥∥πϕ(x∗)− πϕ(x
∗
n )�ϕ

∥∥ + M
∥∥πϕ(y)− πϕ(yn)�ϕ

∥∥
and this converges to 0 uniformly with respect to t . Analogously we see that ϕ(τt (yn)xn)

converges to ϕ(τt (yn)xn) uniformly. Then by the three-line theorem (which can be
applied because fn are bounded: see [3, Prop. 5.3.7]) fn(z) is uniformly convergent on
the strip 0 ≤ �z ≤ 1 and the limit f is an analytic function. Obviously f connects
ϕ(xτt (y)) and ϕ(tt (y)x), hence ϕ satisfies the KMS condition for A. ��
Lemma 2.6. Let ϕ be a locally normal state on A which is a KMS state on Ar. If each
local algebra A(I ) is a factor, then ϕ is faithful on A.

Proof. By Lemma 2.5, ϕ is a KMS state on A. The GNS representation πϕ is locally
normal and hence locally faithful since each local algebra is a factor, then it is faithful
also on the norm closure A. On the other hand, [3, Cor. 5.3.9] (which applies also to
locally normal systems) tells us that the GNS vector �ϕ is separating for πϕ(A)′′, thus
ϕ(·) = 〈�ϕ, πϕ(·)�ϕ〉 is faithful. ��

3. Extension Results

3.1. Extension of clustering states. In this section we provide variations of standard
results on C∗-dynamical systems. Parts of the proofs of Lemma 3.7 and Proposition
3.8 are adaptations of [20] for the locally normal case, as we shall see. In particular,
when we consider the one-parameter group {γs}, we need local normality to assure the
weak-continuity of the GNS implementation {Uϕ(γs)}. For some propositions we need
the split property in connection with local normality.
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Remark 3.1. If we treat the one-parameter group {γs}, in the following propositions
(except for Proposition 3.5, where the corresponding modification shall be explicitly
indicated) it is enough to take just the von Neumann algebra (πϕ(A)∪{Uϕ(γs)})′′ and to
consider invariance under {γs} or {Uϕ(γs)} and the corresponding notion of the γ -clus-
tering property of states. Since {Uϕ(γs)} is weakly continuous, we can utilize the mean
ergodic theorem in this case as well.

The following proposition is known (see e.g. [3,20]).

Proposition 3.2. A state ϕ is extremal γ -invariant if and only if (πϕ(A)∪ {Uϕ(γ )})′′ =
B(Hϕ).

Note that any finite convex decomposition of a locally normal state consists of locally
normal states, because a state dominated by a normal state is normal, too.

The following is essential to our argument of extension for locally normal systems.

Theorem 3.3 ([14], A 86). Let H = ∫ ⊕
X Hλdμ(λ) be a direct integral Hilbert space,

Ti = ∫ ⊕
X Ti,λμ(λ) be a sequence of decomposable operators, M be the von Neumann

algebra generated by {Ti }, and Mλ be the von Neumann algebra generated by {Ti,λ}.
Then the algebra Z of diagonalizable operators is maximally commutative in M′ if and
only if Mλ = B(Hλ) for almost all λ.

Since we assume the split property of the net A, there is a sequence of indices Ii and
type I factors Fi . Let Ki be the ideal of compact operators of Fi , and K be the C∗-algebra
generated by {Ki }. With a slight modification about the index set, the following applies
to our situation.

Theorem 3.4 ([22], Prop. 56). Let π be a locally normal representation of a split net A
on a separable Hilbert space and denote by πK the restriction to the algebra K. If we
have a disintegration

πK =
∫ ⊕

X
πλdμ(λ),

then πλ extends to a locally normal representation π̃λ of A for almost all λ.

We need further a variation of a standard result. The next proposition would follow
from a general decomposition of an invariant state into extremal invariant states and
[39, Cor. 5.3] which affirms that any decomposition is locally normal. In the present
article we take another way through decomposition of representation.

Proposition 3.5. Let ϕ be a locally normal γ -invariant state of the C∗-algebra A and
πϕ be the corresponding GNS representation, then ϕ decomposes into an integral of
locally normal extremal γ -invariant states.

Proof. We take a separable subalgebra K as above analogously as in [22]. We fix a maxi-
mally abelian subalgebra m in the commutant (πK(K)∪{Uϕ(γ )})′. Since K is separable,
we can apply [13, Sect. II.3.1 Cor. 1] to obtain a measurable space X , a standard mea-
sure μ on X , a field of Hilbert spaces Hλ and a field of representations πλ such that the
original restricted representation πK is unitarily equivalent to the integral representation:

πK =
∫ ⊕

X
πλdμ(λ)



Thermal States in Conformal QFT. II

and m = L∞(X, μ). Now, by Theorem 3.4 (note that the representation space Hϕ of
the GNS representation with respect to a locally normal state ϕ is separable since we
assume that the original net A is represented on a separable Hilbert space H), we may
assume that πλ is locally normal for almost all λ, hence it extends to a locally normal
representation π̃λ and the original representation πϕ decomposes into

πϕ =
∫ ⊕

X
π̃λdμ(λ).

Furthermore, the GNS vector �ϕ decomposes into a direct integral

�ϕ =
∫ ⊕

X
�λdμ(λ).

The representative Uϕ(γ ) decomposes into direct integrals as well, since m commutes
with Uϕ(γ ):

Uϕ(γ ) =
∫ ⊕

X
Uλ(γ )dμ(λ).

From this it holds that�λ is invariant under Uλ(γ ), thus the stateϕλ(·) := 〈�λ, πλ(·)�λ〉
is invariant under the action of γ , for almost all λ. By the definition of the direct integral
it holds that

ϕ =
∫ ⊕

X
ϕλdμ(λ).

It is obvious that ϕλ is locally normal.
It remains to show that each ϕλ is extremal γ -invariant. By assumption, m is maxi-

mally commutative in the commutant of (πK(K)∪{Uϕ(γ )})′′. This von Neumann algebra
is generated by a countable dense subset {πK(xi )} and a representative Uϕ(γ ). Then, by
Theorem 3.3, this is equivalent to the condition that ({πλ(xi )} ∪ {Uλ(γ )})′′ = B(Hλ),
namely ϕλ is extremal γ -invariant.

If we consider a continuous family {γs}, we only have to take a countable family of
operators {πK(xi )} ∪ {Uϕ(γs)}s∈Q. ��
Corollary 3.6. Let A ⊂ B be an inclusion of split nets with a locally normal conditional
expectation which commutes with γ . If ϕ is an extremal γ -invariant state on A, then ϕ
extends to an extremal γ -invariant state on the quasilocal algebra B of the net B.

Proof. The composition ϕ ◦ E is a γ -invariant state on B. By Proposition 3.5, ϕ ◦ E
can be written as an integral of extremal γ -invariant states:

ϕ ◦ E =
∫ ⊕

X
ψλdμ(λ).

By assumption, the restriction of ϕ ◦ E to A is equal to ϕ, which is extremal γ -invariant,
hence the restriction ψλ|A coincides with ϕ for almost all λ. Hence, each of ψλ is an
extremal γ -invariant extension of ϕ. ��
Lemma 3.7. If the net A is asymptotically γ -abelian, then it is γ -abelian.
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Proof. Let ϕ be a locally normal γ -invariant state on A. The action of γ is canonically
unitarily implemented by Uϕ(γ ). Let E0 be the projection onto the space of Uϕ(γ )-
invariant vectors in Hϕ and �1, �2 ∈ E0Hϕ . Let us put ψ(x) = 〈�1, πϕ(x)�2〉.

By the assumption of asymptotically γ -abelianness, it is easy to see that

lim
N→∞

1

N

N∑
i=1

ψ(γ n(x)y) = lim
N→∞

1

N

N∑
i=1

ψ(yγ n(x)).

On the other hand, by the mean ergodic theorem we have

lim
N→∞

1

N

N∑
i=1

ψ(γ n(x)y) = lim
N→∞

1

N

N∑
i=1

〈�1,Uϕ(γ )
nπϕ(x)(Uϕ(γ )

∗)nπϕ(y)�2〉

= lim
N→∞

1

N

N∑
i=1

〈�1, πϕ(x)(Uϕ(γ )
∗)nπϕ(y)�2〉

= 〈�1, πϕ(x)E0πϕ(y)�2〉
= 〈�1, E0πϕ(x)E0πϕ(y)E0�2〉.

Similarly we have limN→∞ 1
N

∑N
i=1 ψ(yγ

n(x)) = 〈�1, E0πϕ(y)E0πϕ(x)E0�2〉.
Together with the above equality we see that 〈�1, E0πϕ(x)E0πϕ(y)E0�2〉 =
〈�1, E0πϕ(x)E0πϕ(y)E0�2〉, which means that E0πϕ(x)E0 and E0πϕ(y)E0 commute.

��
Proposition 3.8. If ϕ is a locally normal γ -invariant state on the asymptotically γ -abe-
lian net A, then the following are equivalent:

(a) in the GNS representation πϕ , the space of invariant vectors under Uϕ(γ ) is one
dimensional.

(b) ϕ is weakly γ -clustering.
(c) ϕ is extremal γ -invariant.

Proof. First we show the equivalence (a)⇔(b). By the asymptotic γ -abelianness we
have

lim
N→∞

1

N

N∑
i=1

ϕ(γ n(x)y) = lim
N→∞

1

N

N∑
i=1

ϕ(yγ n(x)),

and it holds by the mean ergodic theorem that

lim
N→∞

1

N

N∑
i=1

ϕ(γ n(x)y) = 〈�ϕ, E0πϕ(x)E0πϕ(y)E0�ϕ〉,

lim
N→∞

1

N

N∑
i=1

ϕ(yγ n(x)) = 〈�ϕ, E0πϕ(y)E0πϕ(x)E0�ϕ〉.

Now if E0 is one dimensional, then it holds that

〈�ϕ, E0πϕ(y)E0πϕ(x)E0�ϕ〉 = 〈�ϕ, πϕ(y)�ϕ〉〈�ϕ, πϕ(x)�ϕ〉
= 〈�ϕ, E0πϕ(x)E0πϕ(y)E0�ϕ〉,

and this is weakly γ -clustering.
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Conversely, if A is weakly γ -clustering, the above equality holds and it implies that
E0 is one dimensional, since �ϕ is cyclic for πϕ(A).

Next we see the implication (a)⇒(c). Let us take a projection P in the commutant
(πϕ(A) ∪ {Uϕ(γ )})′. Since P commutes with Uϕ(γ ), P�ϕ is again an invariant vec-
tor. By assumption the space of the invariant vector is one dimensional, it holds that
P�ϕ = �ϕ or that P�ϕ = 0. We may assume that P�ϕ = �ϕ (otherwise consider
1 − P). By the cyclicity of �ϕ for πϕ(A), it is separating for πϕ(A)′, thus P = 1.

Finally, we prove the implication (c)⇒(a). By Lemma 3.7, the algebra E0πϕ(A)E0 is
abelian, but by assumption (c), πϕ(A)∪{Uϕ(γ )} act irreducibly and Uϕ(γ ) acts trivially
on E0. Hence E0πϕ(A)E0 acts irreducibly on E0. This is possible only if E0 is one
dimensional. ��

3.2. Extension of KMS states. In this section we partly follow the steps in [1]. We give
an overview of the proof of Theorem II.4 of [1] in Appendix A, where some notations
are introduced.

Let A ⊂ B be an inclusion of asymptotically γ -abelian split nets of factors, and sup-
pose that A is the fixed point subnet of a locally normal action α by a separable compact
group G which commutes with γ and τ . We take a weakly γ -clustering primary τ -KMS
state ϕ on A and fix a γ -clustering extension ψ to B (whose existence is assured by
Corollary 3.6).

Lemma 3.9. There is a one-parameter group εt ∈ Z(Gψ,G) such that the restriction
of ψ to BGψ is a faithful KMS state with respect to τ ′

t := τt ◦ αεt .

Proof. We consider the inclusion of C∗-algebras Ar = Br
G ⊂ Br and the restriction of

τ . This is an inclusion of C∗-systems. The restriction of ψ to the regular subalgebra Br
is still γ -clustering by Lemma 2.4. We claim that the restriction ofψ (hence of ϕ) to Br

G

(see Remark 2.3) is still a primary KMS state. Indeed, the GNS representation of ϕ|Br
G

can be identified with a subspace of the representation πϕ of A. By the local normality,
this subspace for Br

G (which coincides with Ar) includes the subspace generated by
A(I ) for each fixed index set. The whole representation space of πϕ is the closed union
of such subspaces, hence these spaces coincide. Furthermore, by the local normality,
πϕ(Br

G)′′ contains πϕ(A(I ))′′ for each I . Hence the von Neumann algebras generated
by πϕ(A) and πϕ(Br

G) coincide and ϕ|Br
G is primary.

Now we can apply Lemma A.2 to obtain a one-parameter group εt ∈ Z(Gψ,G) such
that ψ restricted to Br

Gψ is a KMS state with respect to τ ′
t . Then by Lemmas 2.5, 2.6

we see that ψ is a KMS state on the net BGψ and it is faithful. ��
Theorem 3.10. Let A ⊂ B be an inclusion of asymptotically γ -abelian split nets of
factors, and suppose that A is the fixed point subnet of a locally normal action α by
a separable compact group G which commutes with γ and τ . Then, for any weakly
γ -clustering extension ψ to B of a primary τ -KMS state ϕ on A (such an extension
always exists by Corollary 3.6), there is a one-parameter subgroup (ε ◦ ζ ) in G such
that ψ is a primary τ̃ -KMS state where τ̃t = τt ◦ αεt ◦ζt . The state ψ is automatically
faithful.

Proof. The restriction of ψ to Br is primary as we saw in Lemma 3.9.
This time we consider the inclusion Br

Gψ ⊂ Br. Any locally normal representation
of the regularized algebra extends to a representation of the net on the same Hilbert
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space, hence it is faithful on the quasilocal algebra since we treat a net of factors. Then
we can apply Lemma A.3 together with Theorem A.5 to see that there is a one-parameter
subgroup ζt ∈ Gψ such that ψ |Br is a τ̃ -KMS state where τ̃t = τt ◦ αεt ◦ζt and εt is
taken from Lemma 3.9. By Lemma 2.5 ψ is a KMS state on the net B. Again by local
normality, the primarity of ψ |Br and ψ are equivalent. The faithfulness is proved as in
Proposition 3.9. ��

We have the following corollary. Note that the gauge group of a split net is separable
because the underlying Hilbert space is automatically separable.

Corollary 3.11. Let A ⊂ B be an inclusion of split conformal nets on the real line R,
and suppose that A is the fixed point subnet of a locally normal action α by a com-
pact group G which commutes with translations τ . Then, for every weakly τ -clustering
primary τ -KMS state ϕ on A, there exists a weakly τ -clustering extension ψ to B. For
any such extension ψ there is a one-parameter subgroup (ε ◦ ζ ) in G such that ψ is a
primary τ̃ -KMS state where τ̃t = τt ◦ αεt ◦ζt . The state ψ is automatically faithful.

4. The U(1)-Current Model

From now on, we discuss concrete examples from one-dimensional Conformal Field
Theory. We recall some constructions regarding the U (1)-current and discuss its KMS
states for two reasons: being a free field model, it is simple enough to allow a complete
classification of the KMS states, showing an example of a non-completely rational model
with multiple KMS states; it is useful in the classification of states for the Virasoro nets,
whose restrictions to R are translation-covariant subnets of the U (1)-current net.

4.1. The U (1)-current model. The U (1)-current model is the chiral component of the
derivative of the massless scalar free field in 2-dimensional Minkowski space time. See
[5,24] for details.

In the R picture, the space C∞
c (R,R) can be completed to a complex Hilbert space

(the one-particle space) with the complex scalar product ( f, g) := ∫
p>0 2p f̂ (p)ĝ(p),

where f̂ is the Fourier transform of f , and the imaginary unit is given by Î f (p) :=
−i sgn(p) f̂ (p). The imaginary part of the scalar product is a symplectic formσ( f, g) :=∫
R

f g′dx . The U (1)-current algebra AU (1) is the Weyl algebra constructed on this sym-
plectic space, generated by Weyl operators W ( f ) = ei J ( f ) acting on the corresponding
Fock space (if f is a real function, J ( f ) is essentially self-adjoint on the finite particle-
number subspace). The net structure is given by AU (1)(I ) := {W ( f ) : supp( f ) ⊂ I }′′.
This defines a conformal net on S1 in the sense of Part I. The current operators satisfy
[J ( f ), J (g)] = iσ( f, g) and the Weyl operators satisfy

W ( f )W (g) = W ( f + g) exp

(
− i

2
σ( f, g)

)
.

Let us briefly discuss the split property of the U (1)-current net. A sufficient con-
dition for the split property for a conformal net on S1 is the trace class condition,
namely the condition that the operator e−sL0 , where L0 is the generator of the rota-
tion automorphism, is a trace class operator for each s > 0 [4,12]. The Fock space
is spanned by the vectors of the following form J (e−n1)J (e−n2) · · · J (e−nk )�, where
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en(θ) = ei2πnθ , 0 ≤ n1 ≤ n2 ≤ · · · ≤ nk, k ∈ N, and all these vectors are linearly
independent and eigenvectors of L0 with eigenvalue

∑k
i=1 ni . Hence the dimension

of the eigenspace with eigenvalue N is p(N ), the partition number of N . There is an
asymptotic estimate of the partition function [19]: p(n) ∼ 1

4n
√

3
eπ

√
2n/3. Hence with

some constants Cs, Ds , we have

Tr(e−sL0) =
∞∑

n=0

p(n)e−sn ≤
∞∑

n=0

Cse−Ds n,

which is finite for a fixed s > 0. Namely we have the trace class condition, and the split
property.

The Sugawara construction T := 1
2 : J 2 :, using normal ordering, gives the stress-

energy tensor, satisfying the commutation relations:

[T ( f ), T (g)] = iT ([ f, g]) + i
c

12

∫
R

f ′′′g dx (2)

with c = 1 and [ f, g] = f g′ − g f ′. This is the relation of Vect(S1), which is the
Lie algebra of Diff(S1). This (projective) representation T of Vect(S1) integrates to a
(projective) representation U of Diff(S1). Furthermore, T and J satisfy the following
commutation relations.

[T ( f ), J (g)] = i J ( f g′). (3)

Accordingly, U acts on J covariantly: if γ is a diffeomorphism of R, then U (γ )J ( f )
U (γ )∗ = J ( f ◦ γ−1) (see [6,33] for details).

4.2. KMS states of the U (1)-current model. We give here the complete classification of
the KMS states of the U (1)-current model, which first appeared in [40, Thm. 3.4.11].

Proposition 4.1. There is a one-parameter group q �→ γq of automorphisms of AU (1)|R
commuting with translations, locally unitarily implementable, such that

γq (W ( f )) = eiq
∫
R

f dx W ( f ). (4)

Proof. For any I � R, let sI be a function in C∞
c (R,R) such that ∀x ∈ I, sI (x) = x ;

then σ(sI , f ) := ∫
R

f dx if supp f ⊂ I and therefore

Ad W (qsI ) W ( f ) = e−iσ(qsI , f )W ( f ) = eiq
∫
R

f dx W ( f ) .

Set γq |A(I ) = Ad W (qsI ), this is a well-defined automorphism, since Ad W (qsI ) |A(I )= Ad W (qsJ ) |A(I ) when I ⊂ J , which can be extended to the norm closure AU (1)
satisfying (4) and commuting with translations because so does the integral. ��
Lemma 4.2. A state ϕ is a primary KMS state of the U (1)-current model if and only if
so is ϕ ◦ γq for one value (and hence all) of q ∈ R.

Proof. By a direct application of the KMS condition and the fact that γq is an automor-
phism commuting with translations. ��
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Theorem 4.3. The primary (locally normal) KMS states of the U (1)-current model at
inverse temperature β are in one-to-one correspondence with real numbers q ∈ R; each
state ϕq is uniquely determined by its value on the Weyl operators

ϕq(W ( f )) = eiq
∫

f dx · e
− 1

4 ‖ f ‖2
Sβ , (5)

where ‖ f ‖2
Sβ

= (
f, Sβ f

)
and the operator Sβ is defined by Ŝβ f (p) := coth βp

2 f̂ (p).

The geometric KMS state is ϕgeo = ϕ0 and any other primary KMS state is obtained by
composition of the geometric one with the automorphisms (4):

ϕq = ϕgeo ◦ γq .

Proof. The algebra of the U (1)-current model is a Weyl CCR algebra, for which the
general structure of KMS states w.r.t. a Bogoliubov automorphism is essentially known:
see e.g. [36, Thm. 4.1] or [3, Ex. 5.3.2]. It is however easier to do an explicit and
straightforward calculation for the present case.

Let ϕ be a KMS state and f, g ∈ C∞
c (R,R). Recall that a product of Weyl opera-

tors is again a (scalar multiple of) Weyl operator, so that the quasilocal C∗-algebra is
linearly generated by Weyl operators. Hence the state ϕ is uniquely determined by its
values on {W ( f )}. Furthermore, under the KMS condition, the function t �→ F(t) =
ϕ (W ( f )W (gt )), where gt (x) := g (x − t), has analytic continuation in the interior of
Dβ := {0 ≤ �z ≤ β}, continuous on Dβ , satisfying

F(t + iβ) = e−iσ(gt , f )F(t) = eiσ( f,gt )F(t). (6)

We search for a solution F0 of the form F0(z) = exp K (z), where K is analytic in the
interior of Dβ and has to satisfy the logarithm of (6), K (t + iβ) = iσ( f, gt )+ K (t). The

Fourier transform of t �→ iσ ( f, gt ) is p �→ p f̂ (p)ĝ (p), thus we have a simple equa-

tion for the Fourier transform w.r.t. t : exp(−βp)K̂ (p) = K̂ (p) + p f̂ (p)ĝ (p), from

which K̂ (p) = p f̂ (p)ĝ(p)
exp(−βp)−1 . It can be explicitly checked that F0 is a solution of (6); any

other solution, divided by the never vanishing function F0, has to be constant (w.r.t. t)
by analyticity. The general solution can therefore be written as F(t) = c( f, gt ) · F0(t),
with c( f, gt ) independent of t .

To obtain (5), notice that

ϕ (W ( f + gt )) = F (t) e
i
2 σ( f,gt ) = c( f, gt ) · exp

[
K (t) +

i

2
σ ( f, gt )

]
,

and K (t) + i
2σ ( ft , g) is the Fourier antitransform of

p f̂ (p)

(
1

e−βp − 1
+

1

2

)
ĝ (p) = −1

2
p f̂ (p) coth

βp

2
ĝ (p) = −1

2
p f̂ (p)̂Sβg (p)

which is given by

−1

2

∫
eitp p f̂ (p)̂Sβg (p) dp=−1

2

(
f, Sβgt

)=−1

4

(
‖ f + gt‖2

Sβ −‖ f ‖2
Sβ −‖gt‖2

Sβ

)
,
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since ( f, Sβgt ) is a real form. Note that ‖gt‖2
Sβ

is independent of t . We finally have the
general solution in the form

ϕ (W ( f + gt )) = c( f, gt ) · e
1
4

(
‖ f ‖2

Sβ
+‖gt ‖2

Sβ

)
· e

− 1
4 ‖ f +gt ‖2

Sβ .

Note that factors ϕ(W ( f + gt )) and e− 1
4 ‖ f +gt ‖2

depend only on the sum f + gt , hence

so does the remaining factor: we define c( f + gt ) := c( f, gt ) · e
1
4

(
‖ f ‖2

Sβ
+‖gt ‖2

Sβ

)
. Since

c( f, gt ) and ‖gt‖Sβ are independent of t , so is c( f + gt ). As ϕ(W ( f )) = ϕ(W (− f )),

c( f ) = c(− f ). Now we have

ϕ(W ( f + gt )) = c( f + gt ) · e
− 1

4 ‖ f +gt ‖2
Sβ,

and we only have to determine c( f + gt ).
Concerning the continuity, we notice that ‖ f ‖Sβ ≥ ‖ f ‖, because coth p ≥ 1 for

any p ∈ R+; the map f �→ W ( f ) is weakly continuous when C∞
c (R,R) is given the

topology of the (one-particle space) norm ‖·‖ and a fortiori of the norm ‖·‖Sβ ; being ϕ
a KMS state and locally normal, f �→ ϕ(W ( f )) is continuous w.r.t. both norms and
f �→ c( f ) = ϕ(W ( f ))·exp(− 1

4 ‖ f ‖2
Sβ
) is continuous w.r.t. the norm ‖·‖Sβ ; finally, both

λ �→ λ f and t �→ ft are continuous w.r.t. the ‖·‖Sβ norm, thus in particular λ �→ c(λ f )
(and trivially the constant function t �→ c( f + gt )) is continuous.

If we require ϕ to be primary, it satisfies the clustering property: for t → ∞,

ϕ(W ( f + gt )) = ϕ(W ( f )W (gt )) exp

(
i

2
σ( f, gt )

)
→ ϕ(W ( f ))ϕ(W (g)),

and thus

c( f + g) = c( f ) · c(g), (7)

because both σ( f, gt ) and ( f, Sβgt ) go to 0. It follows that c(0) = 1, c(− f ) =
c( f )−1 = c( f ) and |c( f )| = 1. As R � λ �→ c(λ f ) is a continuous curve in
{z ∈ C : |z| = 1}, there is a unique functional ρ : C∞

c (R,R) → R s.t. c( f ) =
exp(iρ( f )), ρ(0) = 0 and λ �→ ρ(λ f ) is continuous.

Clearly, (7) implies ρ( f + g)− ρ( f )− ρ(g) ∈ 2πZ; by continuity of λ �→ ρ(λ f +
λg)− ρ(λ f )− ρ(λg) and ρ(0) = 0, we get ρ( f + g) = ρ( f ) + ρ(g). Similarly, from
[29, Prop. 6.1.2] we know that ρ has the same continuity property of c, i.e. w.r.t. the
‖·‖Sβ norm; c( ft ) = c( f ) implies ρ( ft ) − ρ( f ) ∈ 2πZ, but this difference vanishes
because t �→ ρ( ft ) is continuous. Therefore, ρ is a real, translation invariant and linear
functional. According to [32], any translation invariant linear functional (even without
requiring continuity) ρ on C∞

c (R,R) is of the form ρ( f ) = q
∫

f (x)dx . So, if ϕ is a
primary KMS state, it has to be of the form (5). Conversely, Lemma 4.2 implies that all
these states are KMS.

These are regular states (i.e. λ �→ ϕ(W (λ f )) is a C∞ function ∀ f ) and the one point
and two points functions are given by

ϕq (J ( f )) = q
∫

f dx, (8)

ϕq(J ( f ) J (g)) = 1

2
� (

f, Sβg
)

+
i

2
σ ( f, g) + q2

∫
f dx

∫
gdx, (9)
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where � means the real part. The geometric KMS state has to coincide with one of those:
it is ϕ0. This can be proved by noticing that, if supp f ⊂ I ,

ϕgeo (W (λ f ))=(
�,AdU

(
γI,β

)
W (λ f )�

)=
(
�,W

(
λ f ◦ γ−1

I,β

)
�
)
=e

− 1
4λ

2
∥∥∥ f ◦γ−1

I,β

∥∥∥2

,

where the exponent is a quadratic form in f , therefore the state is regular and taking
the derivative w.r.t. λ we get ϕgeo (J ( f )) = 0, which implies q = 0 by comparison
with (8). ��
Remark 4.4. The gauge automorphism γz defined by the map J ( f ) �→ −J ( f ) acts as
a change in the sign of q: ϕq ◦ γz = ϕ−q .

The ‘energy density’ of a state can be read from the expectation value of the stress-
energy tensor as the constant c in the formula ϕ (T ( f )) = c

∫
f dx . Beside its physical

interpretation, this formula is also useful to classify the states on the Virasoro net (see
Sects. 5.2 and 5.3). In order to evaluate ϕq (T ( f )), we need two technical lemmas.

In the following, Dfin := span
{
ψ = J ( f1)...J ( fn)� : n ∈ N, f1, . . . , fn ∈ C∞(S1,

R)
}

is the space of finite number of particles and D∞ := ∩n∈N D(Ln
0) is the common

domain of the powers of L0; D(Ln
0) ⊃ D∞ and Dfin are all dense in the vacuum Hilbert

space, contain the space of finite energy vectors and are cores for Ln
0 (the following

lemma implies also that D∞ ⊃ Dfin).

Lemma 4.5 (Energy bounds). Let Pn (J, T, L0) be a (noncommutative) polynomial
in L0 and some J ( fi ) and T ( f j ) of total degree n, with fi , f j ∈ C∞(S1,R), then
∀ψ ∈ D∞,

‖Pn(J, T, L0) ψ‖ ≤ rn
∥∥(1 + L0)

nψ
∥∥ , (10)

with an appropriate rn (depending on { fk} and on n but not on ψ).

Proof. The operators J ( f ) and T ( f ) satisfy similar bounds

‖J ( f )ψ‖ ≤ c f ‖(1 + L0)ψ‖ ‖T ( f )ψ‖ ≤ c f ‖(1 + L0)ψ‖ (11)

for any ψ ∈ Dfin with c f independent of ψ [6, Ineqs. (2.21) and (2.23)], and sim-
ilar commutation relations on Dfin: [L0, J ( f )] = i J (∂θ f ), [L0, T ( f )] = iT (∂θ f ).
Since Dfin is a core for L0, ∀ψ ∈ D(L0), using a sequence ψn ∈ Dfin, s.t. ψn → ψ

and L0ψn → L0ψ , and the closedness of J ( f ) and T ( f ), the bounds (11) hold on
D(L0) ⊃ D∞; hence the commutators hold also on D∞, using ∀ψ ∈ D∞ a sequence
ψn ∈ Dfin, s.t. ψn → ψ and L2

0ψn → L2
0ψ (from which L0ψn → L0ψ). One sees also

that D∞ is invariant under J ( f ) and T ( f ).
We can generalize the inequalities (11), which are equivalent to (10) for n = 1, to

any n. Indeed, induction and commutation relations show that on D∞,

(1 + L0)
n J ( f ) =

∑
0≤k≤n

(
n
k

)
i k J (∂k

θ f )(1 + L0)
n−k . (12)

Then, we use induction in the degree of the polynomial to prove (10). Suppose (10) holds
for degree n. Any polynomial of degree n + 1 is a linear combination of polynomials of
degree n multiplied from the right by J ( f ) or T ( f ) or L0.

First, let us consider J ( f ). ‖Pn (J, T, L0) J ( f )ψ‖ ≤ rn‖(1+L0)
n J ( f )ψ‖ by induc-

tion hypothesis and, applying (12) (notice that 1+ L0 ≥ L0,1), the last norm is smaller
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than
∑

0≤k≤n ck‖J (∂k
θ fn)(1 + L0)

n−kψ‖, where each term is estimated, using (11), by
constants times ‖(1 + L0)

n+1ψ‖.
Secondly, we consider T ( f ). With T in place of J , Eq. (12) still holds and the same

argument as above applies.
Finally, ‖Pn (J, T, L0) L0ψ‖ ≤ rn‖(1 + L0)

n L0ψ‖ ≤ rn‖(1 + L0)
n+1ψ‖ and thus

(10) holds for degree n + 1. ��
Lemma 4.6. D∞ is invariant for the Weyl operator W ( f ) = ei J ( f ), ∀ f ∈ C∞(S1),
and the unitary U (g), ∀g ∈ Diff(S1), implementing the conformal symmetry.

Proof. The subspace Dfin is included in D∞ by (10), and it is invariant under L0, as
[L0, J ( f )] = i J (∂θ f ). Using also the commutator [J ( f ), J (g)k] = ikσ( f, g)J (g)k−1

(easy consequence of [J ( f ), J (g)] = iσ( f, g)), we compute ∀ψ ∈ Dfin,

[
L0, J ( f )n

]
ψ =

(
in J ( f )n−1 J (∂θ f )− n(n − 1)

2
J ( f )n−2σ(∂θ f, f )

)
ψ. (13)

We apply it to the expansion of Weyl operators W ( f ) = ∑
k

ik

k! J ( f )k , which is abso-
lutely convergent on Dfin (it is well known that finite particle vectors are analytic for
the free field, see e.g. the proof of [34, Thm. X.41], with the estimate

∥∥J ( f )kψ
∥∥ ≤

2k/2√(n + k)!‖ f ‖k‖ψ‖, where n is the number of particles of ψ). By the closedness

of L0 and the absolute convergence of L0
∑

k
ik

k! J ( f )kψ , thanks to (13), we conclude
that W ( f )Dfin is in the domain of L0. We then easily compute, using the convergent
series, the commutation relations W ( f )∗L0W ( f ) = L0 − J (∂θ f ) + 1

2σ(∂θ f, f ) and
their powers

W ( f )∗Ln
0W ( f )ψ =

(
L0 − J (∂θ f ) +

1

2
σ(∂θ f, f )

)n

ψ. (14)

Finally, (10) applied to the r.h.s., which is a polynomial of degree n in J (∂θ f ) and L0,
gives

‖Ln
0W ( f )ψ‖ ≤ r‖(1 + L0)

nψ‖ (15)

∀ψ ∈ Dfin. As Dfin contains the space of finite energy vectors (the vectors of Dfin where
f1, · · · , fn are trigonometric polynomials), it is dense in D∞ and is a core for Ln

0; any
ψ ∈ D∞ is the limit of a sequence {ψi : i ∈ N} such that (1 + L0)

nψi is conver-
gent, thus, by (15) and the closedness of Ln

0W ( f ), W ( f )D∞ is in the domain of Ln
0.

We have proved that W ( f )D∞ ⊂ D∞; the same is true for W ( f )−1 = W (− f ), thus
W ( f )D∞ = D∞.

A similar argument apply to U (g). First one consider the case where g = exp T ( f )
is contained in a one-parameter group. We replace (14) with the known transformation
property of the stress-energy tensor (L0 = T (1), where 1 has to be understood as the
generator of rotations, the constant vector field on the circle; in the real line picture, it
would be the smooth vector field x �→ 1 + x2) [16]:

U (g)Ln
0U (g)∗ = (

T (g∗1) + rg1
)n (16)

and then apply (10). For a general diffeomorphism g, it is possible to write g as a finite
product of diffeomorphisms contained in one-parameter groups, since Diff(S1) is alge-
braically simple [15,31] and the subgroup generated by one-parameter groups is normal,
hence Diff(S1) itself. Thus we obtained the claimed invariance for any element g. ��
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Theorem 4.7. For any primary KMS state ϕq (cf. (5)) the map t �→ ϕq
(
eitT ( f )

)
is C∞,

∀ f ∈ C∞
c (R,R), and the expectation value of the stress-energy tensor is given by

ϕq (T ( f )) =
(

π

12β2 +
q2

2

)∫
f dx . (17)

Moreover, in the GNS representation (πϕq ,Hϕq ,�ϕq ), �ϕq is in the domain of any (non
commutative) polynomial of the stress-energy tensorsπϕq (T ( fk)) := −i d

dt πϕq (eiT ( fk)),
with fk ∈ C∞

c (R,R), k = 1, . . . , n.

Proof. Fix f ∈ C∞
c (R,R) with supp f ⊂ I � R.

We first consider the case q = 0. According to the proof of Proposition 2.4 and Theo-
rem 2.5 of Part I [7], the GNS representation of ϕgeo is the triple

(
πϕgeo = Expβ,H�,�

)
and there is a gβ,I ∈ C∞

c (R,R) s.t. Expβ |A(I ) = AdU
(
gβ,I

)
. It follows that the

one parameter group t �→ πϕgeo

(
eitT ( f )

) = AdU
(
gβ,I

) (
eitT ( f )

)
has a generator

AdU
(
gβ,I

)
(T ( f )) which can be computed: indeed, [16, Prop. 3.1] proves that, in gen-

eral diffeomorphism covariant nets, if g ∈ Diff(S1)fixes the point ∞, AdU (g) T ( f ) =
T (g∗ f )+rR (g, f ), with g∗ f (x) = g′ · f

(
g−1 (x)

)
and rR (g, f ) = c

12π

∫ √
g′ (x) d2

dx2

f (x)√
g′(x)

dx with the central charge c set equal to 1 for the U (1) case. Therefore, with gβ,I

in place of g, recalling that gβ,I (t) = e
2π t
β on the support of f , we get

πϕgeo(T ( f )) = AdU (gI ) T ( f ) = T
(
gI ∗ f

)
+
πc

12β2

∫
f dx . (18)

The vacuum vector � is in the domain of the operator (18) and any product of such
operators; from (�, T (h)�) = 0 for any h ∈ C∞

c (R,R), we easily compute (17). The
case q = 0 is proved.

We now consider the general case for q. In this case the GNS representation is(
πϕq = Exp ◦ γq ,H�,�

)
with γq |A(I ) = Ad W (qsI ) defined in Proposition 4.1. The

one parameter group t �→ AdU (gI ) ◦ Ad W (qsI )
(
eitT ( f )

)
has a self-adjoint generator

AdU (gI ) ◦ Ad W (qsI ) (T ( f )), which has to be computed. According to Lemma 4.6,
for anyψ ∈ Dfin ⊂ D∞ with a finite number of particles, Ad W (qsI ) (T ( f )) ψ is well-
defined because D∞ is in the domain of T ( f ). Using, as for Eq. (13), [J ( f ), J (g)k] =
ikσ( f, g)J (g)k−1 and [T ( f ), J (g)] = i J ( f g′), we compute ∀ψ ∈ Dfin a generaliza-
tion of (13):

[
T ( f ), J (g)n

]
ψ =

(
in J (g)n−1 J ( f g′)− n(n − 1)

2
J (g)n−2σ( f g′, g)

)
ψ.

We use a similar argument to that following Eq. (13). The expansion of Weyl opera-

tors W (g) = ∑
k

ik

k! J (g)k is absolutely convergent on Dfin; using the absolute conver-

gence of L0
∑

k
ik

k! J (g)kψ and the estimate ‖T ( f )ψ‖ ≤ c f ‖(1 + L0)ψ‖, we conclude

that also T ( f )
∑

k
ik

k! J (g)kψ is absolutely convergent and therefore, by the closedness
of T ( f ), W (g)Dfin is in the domain of T ( f ). The convergent series lets us compute
(cf. (14)) W (g)∗T ( f )W (g)ψ = (

T ( f )− J ( f g′) + 1
2σ( f g′, g)

)
ψ . In the particular

case in which g = −qsI , and thus f g′ = −q f (recall that supp f ⊂ I ), we obtain

Ad W (qsI ) (T ( f )) = T ( f ) + q J ( f ) +
q2

2

∫
f dx



Thermal States in Conformal QFT. II

on the dense set Dfin and also on D∞, where both sides are defined. We can apply
AdU (gI ) to this operator, as D∞ is invariant for U (gI ), and taking into account its
action on J ( f ) and T ( f ), we get

πϕq (T ( f )) = T
(
gI ∗ f

)
+

π

12β2

∫
f dx + q J

(
f ◦ g−1

I

)
+

q2

2

∫
f dx . (19)

� is in the domain of the operator (19) and any power of such operators; as before, using
also (�, J (h)�) = 0 for any h ∈ C∞

c (R,R), we easily compute (17). ��
We finally observe that the thermal completion (defined in Part I [7]), in the case of

the U (1)-current model, does not give any new net.

Theorem 4.8. The thermal completion of the U (1)-current net w.r.t. any of its primary
(locally normal) KMS states is unitarily equivalent to the original net.

Proof. In the case of the geometric KMS state, this is the content of Theorem 2.5 in Part
I [7]. The general case follows from the fact that any other primary KMS state of the
U (1)-current model is obtained by composition of the geometric one with an automor-
phism, so that the local algebras Âϕq (e2π t , e2πs) := Aϕq (t,∞) ∩ Aϕq (s,∞)′ do not
depend on the value of q. ��

5. The Case of Virasoro Nets

5.1. The geometric KMS state of Virc. The Virasoro nets Virc with c < 1 are com-
pletely rational [21, Cor. 3.4], so our results in Part I [7] apply and thus they have a
unique KMS state: the geometric state ϕgeo. This is not the case for c ≥ 1. Before going
to the classification of the KMS states of Vir1 and a (possibly incomplete) list of KMS
states for the Virasoro net with central charge c > 1, we characterize the geometric state
for any c [40, Thm. 3.6.2].

Theorem 5.1. The (primary locally normal) geometric KMS states of the Virc net w.r.t.
translations assume the following value on the stress-energy tensor

ϕgeo (T ( f )) =
(
πc

12β2

) ∫
f dx . (20)

Proof. The evaluation of the state on the stress-energy tensor (20) follows from (18)
using the same argument of the proof of Theorem 4.7. ��

5.2. KMS states of the Virasoro net Vir1. Recall [7, Sect. 2.3] that the Virasoro net Vir1
is defined as the net generated by the representatives of diffeomorphisms. In fact, it
holds that Vir1(I ) = {eiT ( f ) : supp( f ) ⊂ I }′′, since the latter contains the representa-
tives of one-parameter diffeomorphisms, which form a normal subgroup of Diff(I ) (the
group of diffeomorphisms with support in I ), then this turns out to be the full group
because Diff(I ) is algebraically simple [15,31]. The net Vir1 is realized as a subnet of
the U (1)-current; we have seen that e−sL0 is trace class, hence Vir1 is split as well.

The primary (locally normal) KMS states of the U (1)-current, restricted to the
Virasoro net, give primary (locally normal) KMS states. They are still primary because
primarity for KMS states is equivalent to extremality in the set of τ -invariant states
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[3, Thm. 5.3.32], and this is in turn equivalent to the clustering property (Proposition
3.8) for asymptotically abelian nets; clustering property is obviously preserved under
restriction. We denote these states ϕ|q|. We know their values on the stress-energy tensor
(17). Notice that the two different states ϕq and ϕ−q coincide when restricted to Vir1.
We have thus a family of primary (locally normal) KMS states classified by a positive
number |q| ∈ R

+. We will show that these exhaust the KMS states on Vir1.
An important observation for this purpose is that the U (1)-current net and Vir1 can

be viewed as subnets of an even larger net. Namely, let B := ASU (2)1 be the net gen-
erated by the vacuum representation of the loop group L SU (2) at level 1 [17], or by
the SU (2)-chiral current at level 1 [35], on which the compact group SU (2) acts as
inner symmetry (an automorphism of the net which preserves the vacuum state). This
net satisfies the trace class condition by an analogous estimate as for U (1)-current net
in Sect. 4.1, hence it is split. It has been shown [35] that the Virasoro net Vir1 can be
realized as the fixed point subnet of B with respect to this inner symmetry. Moreover,
as shown in [8], all the subnets of B are classified as fixed points w.r.t. the actions of
closed subgroups of SU (2) (conjugate subgroups give rise to isomorphic fixed points);
in particular, let AU (1) be the U (1)-current net, it is the fixed point BH of the net B w.r.t.
the action of the subgroup H " S1 of rotations around a fixed axis. Therefore, we have
the double inclusion

Vir1 = BSU (2) ⊂ AU (1) = BH ⊂ ASU (2)1 =: B,

and a complete classification of the KMS states of the intermediate net AU (1). As we
are not able to directly extend a τ -KMS state on Vir1 to a τ -KMS state on AU (1), we
use an auxiliary extension to B exploiting the existence of the gauge group SU (2) and
Corollary 3.11.

Theorem 5.2. The primary (locally normal) KMS states of the Vir1 net w.r.t. translations
are in one-to-one correspondence with positive real numbers |q| ∈ R

+; each state ϕ|q|
can be evaluated on the stress-energy tensor and it gives

ϕ|q| (T ( f )) =
(

π

12β2 +
q2

2

) ∫
f dx . (21)

Proof. For any q ∈ R, the restriction of the KMS state ϕq to the Vir1 subnet gives a
KMS state. The evaluation of the state on the stress-energy tensor (21), depending only
on |q|, follows again from (18) using the same argument of the proof of Theorem 4.7.

We have to prove that any primary KMS state of Vir1 arises in this way. Let ϕ be a
primary KMS state of Vir1 = BSU (2). By applying Corollary 3.11, we obtain a locally
normal primary (i.e. extremal) τ -invariant extension ϕ̃ on B, which is a KMS state w.r.t.
the one parameter group t �→ τ̃t = τt ◦ αεt ◦ζt , with a suitable one parameter group
t �→ εt ◦ ζt ∈ SU (2). The image of t �→ εt ◦ ζt ∈ SU (2) is a closed subgroup H " S1

since SU (2) has rank 1 and any one-parameter subgroup forms a maximal torus, there-
fore, if we consider the subnet A = BH , it is τ̃ invariant and, as τ̃t |A = τt |A, the state
ϕ̃ is a primary KMS state of A w.r.t. τ . It then follows that the KMS state ϕ of Vir1 is
the restriction of a KMS state ϕ̃|A of A, isomorphic to the U (1)-current net AU (1). ��
Remark 5.3. The geometric KMS state corresponds to q = 0, because it is the restriction
of the geometric KMS state on the U (1)-current net, and the corresponding value of the

‘energy density’ π
12β2 + q2

2 is the lowest in the set of the KMS states.
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Remark 5.4. In contrast to the case of the U (1)-current net (Theorem 4.3), here the dif-
ferent primary KMS states are not obtained through composition of the geometric one
with automorphisms of the net.

By contradiction, suppose that there were an automorphism α of the net such that
ϕ|q| = ϕ ◦ α with q $= 0. The KMS condition for ϕ ◦ α w.r.t. the one parameter
group t �→ τt is equivalent to the KMS condition for ϕ w.r.t. the one parameter group
t �→ α ◦ τt ◦ α−1 and, by the uniqueness of the modular group, τt has to coincide with
α ◦ τt ◦ α−1, i.e. the automorphism of the net commutes with translations. By Proposi-
tion 4.2 of Part I [7], α cannot preserve the vacuum state and, by Lemma 4.5 of Part I,
there is a continuous family of pairwise non-unitarily equivalent automorphisms of A|R
commuting with translations. By Proposition 4.6 of Part I, there is a continuous family
of automorphic sectors of A, which contradicts the fact, proved in [9], that Vir1 can have
at most countable sectors with finite statistical dimension.

Recall that in Part I the thermal completion net played a crucial role. Let Aϕ(t, s) :=
πϕ(A(t, s)) and Ad

ϕ(t, s) := Aϕ(t,∞) ∩ Aϕ(s,∞)′. Putting A ≡ Vir1 and ϕ ≡ ϕ|q|
with q $= 0, we have examples for which

Aϕ(t, s) $= Ad
ϕ(t, s).

Indeed, if the inclusion Aϕ(t, s) ⊂ Ad
ϕ(t, s) were an equality, as A = Vir1 has the split

property, Theorem 3.1 of Part I tells that ϕ would have to be ϕgeo ◦ α. The observation
in the previous paragraph would give a contradiction.1

5.3. KMS states of the Virasoro net Virc with c > 1. Here we show a (possibly incom-
plete) list of KMS states of the net Virc with c > 1.

The restriction of Vir1 to the real line R can be embedded as a subnet of the restriction
to R of the U (1)-current net. One can simply define a new stress-energy tensor [6, Eq.
(4.6)], with k ∈ R and f ∈ C∞

c (R,R)

T̃ ( f ) := T ( f ) + k J
(

f ′)
and, using the commutation relations (2), calculate that

[
T̃ ( f ) , T̃ (g)

] = i T̃ ([ f, g]) + i
1 + k2

12

∫
R

f ′′′gdx .

It follows that the net generated by T̃ ( f ) as Virc (I ) :=
{

ei T̃ ( f ) : supp f ⊂ I
}′′

with

I � R, is the restriction to R of the Virasoro net with c = 1 + k2 > 1 [6]. We observe
that Virc(I ) ⊂ AU (1)(I ) for I � R. Indeed, we know the locality of J and T , hence

if supp( f ) ⊂ I , then ei T̃ ( f ) commutes with W (g) with supp(g) ⊂ I ′ by the Trotter
formula. By the Haag duality it holds that ei T̃ ( f ) ∈ AU (1)(I ).

The primary (locally normal) KMS states of the U (1)-current, restricted again to
this Virasoro net, give primary locally normal KMS states, noticing that ϕq

(
J

(
f ′)) =

q
∫

f ′dx = 0:

ϕ|q| (T̃ ( f )
) = ϕ|q| (T ( f )) =

(
π

12β2 +
q2

2

)∫
f dx;

as in the c = 1 case, the restrictions of ϕq and ϕ−q are equal. We have thus the following

1 This shows that the formula (10) in [38] is incorrect and does not hold in general.
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Theorem 5.5. There is a set of primary (locally normal) KMS states of the Virc net
with c > 1 w.r.t. translations in one-to-one correspondence with positive real numbers
|q| ∈ R

+; each state ϕ|q| can be evaluated on polynomials of stress-energy tensor T ( f )
and on a single T ( f ) it gives:

ϕ|q| (T ( f )) =
(

π

12β2 +
q2

2

) ∫
f dx . (22)

The geometric KMS state corresponds to q = 1
β

√
π(c−1)

6 and energy density πc
12β2 .

Proof. As in the case of Vir1, the restriction of a primary KMS state of the U (1)-current
net is a primary KMS state and ϕq = ϕ p if and only if q = ±p.

The last statement on the geometric KMS state follows by comparison of (22)
with (20). ��
Remark 5.6. Unlike the Vir1 case, here the geometric KMS state does not correspond
either to q = 0 or the lowest possible value π

12β2 of the energy density.

An argument toward classification. We give here an argument that could be useful in
the classification of KMS states on Virasoro nets.

Let ϕ be a primary (locally normal) KMS state on the Virc net w.r.t. translations and
suppose thatϕ

(
(T ( f1) · · · T ( fn))

∗ (T ( f1) · · · T ( fn))
)
< ∞, f1, · · · , fn ∈ C∞

c (R,R).
This is the case for all the known KMS states, listed above, although we cannot prove
it for a general KMS state. As the state is locally normal, the GNS representation πϕ is
locally normal (thus a unitary equivalence of type III factors) and can be extended to the
stress-energy tensors T ( f ) ( f ∈ C∞

c (R,R)), which are unbounded operators affiliated
to local von Neumann algebras. The above hypothesis is equivalent to the requirement
that the GNS vector �ϕ is in the domain of any (noncommutative) polynomial of the
represented stress-energy tensors πϕ(T ( f )). We show that the values of the state on
polynomials of the stress-energy tensor ϕ(T ( f1) · · · T ( fn)) are uniquely determined by
the value of the state on a single stress-energy tensor ϕ (T ( f )), for f ∈ C∞

c (R,R). This
fact seems to determine uniquely the KMS state ϕ, as the net is in some sense generated
by such polynomials, however this is not a rigorous statement.

First of all, one can generalize the KMS condition in order to treat unbounded opera-
tors: it is shown in [40, Prop. 3.5.2] that Eqs. (1) hold with x, y possibly unbounded oper-
ators affiliated to a local algebra, such that�ϕ is in the domain of πϕ(x), πϕ(x∗), πϕ(y)
and πϕ(y∗). Then we show, by induction in n, that ϕ (T ( f )), together with the KMS
conditions, uniquely determines the values ϕ (T ( f1)...T ( fn)). It is obvious for n =
1. It is supposed that �ϕ is in the domain of the polynomials of T ( f ), the value of
ϕ

([
T ( f1)...T ( fn−1), T ( fn)

])
can be computed from the values of ϕ on polynomials

of degree n − 1, using the commutation relations (2) which hold on �ϕ . According
to the KMS condition, there is a function F(t) = ϕ (T ( f1)...T ( fn−1)τt T ( fn)), con-
tinuous and bounded in Dβ := {0 ≤ �z ≤ β} and analytic in its interior, such that
F(t + iβ)− F(t) = ϕ

([
T ( f1)...T ( fn−1), τt T ( fn)

])
. If G has the same properties, then

F −G is continuous in Dβ , analytic in its interior and (F −G)(t + iβ)−(F −G)(t) = 0,
thus F − G can be continued to an analytic bounded function on C, which has to
be a constant. As ϕ is primary, the clustering property implies that the constant is 0:
limt→∞ F(t) = ϕ (T ( f1)...T ( fn−1)) ϕ (T ( fn)) = limt→∞ G(t). Thus F is uniquely
determined and, in particular, ϕ (T ( f1)...T ( fn−1)T ( fn)).
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If the above argument can be made rigorous, one would get that a KMS state on the
Virasoro net is uniquely determined by the value of the ‘energy density’, the constant k
appearing in ϕ(T ( f )) = k

∫
f (x)dx (this in the only possible expression with transla-

tion invariance). In order to prove that the list in (22) is complete, it would be enough to
prove that the set of possible energy density has π

12β2 as greatest lower bound.

6. The Free Fermion Model

In this section we consider the free fermion net and the KMS states on its quasilocal
C∗-algebra. For an algebraic treatment of this model, see [2,30]. In contrast to the U (1)-
current model, the free boson model, it turns out to admit a unique KMS state (for each
temperature). The model is not local, but rather graded local. It is still possible to define
a (fermionic) net [11].

The free fermion field ψ defined on S1 satisfies the following Canonical Anticom-
mutation Relation (CAR):

{ψ(z), ψ(w)} = 2π i · δ(z − w),

and the Hermitian condition ψ(z)∗ = zψ(z), or, if we consider the smeared field, we
have

{ψ( f ), ψ(g)} =
∮

S1

dz

2π i z
f (z)g(z).

We put the Neveu-Schwarz boundary condition: ψ(ze2π i ) = ψ(z). Then it is possible
to expand ψ(z) in terms of Fourier modes as follows.

ψ(z) =
∑

r∈Z+ 1
2

br z−r− 1
2 .

The Fourier components satisfy the commutation relation {bs, br } = δs,−r1, s, r ∈
Z + 1

2 .
There is a faithful *-representation of this algebra which contains the lowest weight

vector �, i.e., bs� = 0 for s > 0 (we omit the symbol for the representation since
it is faithful). This representation is Möbius covariant [2, App. A]. Let U be the uni-
tary representation U of SL(2,R) ∼= SU (1, 1) which makes ψ covariant. It holds that
U (g)� = �.

Let P be the orthogonal projection onto the space generated by even polynomials
of {bs}. It commutes with U (g) and the unitary operator � = 2P − 1 defines an inner
symmetry (an automorphism which preserves the vacuum state 〈�, ·�〉).

For an interval I , we put A(I ) := {ψ( f ) : supp( f ) ⊂ I }′′. Then A is a Möbius covar-
iant fermi net in the sense of [11], and graded locality is implemented by Z , where Z :=
1−i�
1−i . As a consequence, we have twisted Haag duality: it holds that A(I ′) = ZA(I )′Z∗.

In addition, we have the Bisognano-Wichmann property: �i t = U (�(−2π t)), where
�i t is the modular group of A(R+) with respect to � under the identification of S1 and
R ∪ {∞}, and � is the unique one-parameter group of SL(2,R) which projects to the
dilation subgroup in P SL(2,R) under the quotient by {1,−1} [12].
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With {bs} we can construct a representation of the Virasoro algebra with c = 1
2 as

follows (see [30]):

Ln := 1

2

∑
s> n

2

(
s − n

2

)
b−sbn+s, for n ≥ 0,

and L−n = L∗
n . For a smooth function f on S1, we can define the smeared stress-energy

tensor T ( f ) := ∑
n fn Ln , where fn = ∮

S1
dz

2π i z−n−1 f (z). The two fields ψ and T are
relatively local, namely if f and g have disjoint supports, then [ψ( f ), T (g)] = 0 (ψ( f )
is a bounded operator and this holds on a core of T (g)).

By the twisted Haag duality, we have eiT (g) ∈ A(I ) if supp(g) ⊂ I (since ψ( f )
is bounded for a smooth function f , there is no problem of domains). Let us define
Vir 1

2
(I ) := {eiT (g) : supp(g) ⊂ I }. This Virasoro net Vir 1

2
has been studied in [21] and

it has been shown that Vir 1
2

admits a unique nonlocal, relatively local extension with

index 2. Hence the fermi net A is the extension. Furthermore, by the relative locality, A
is diffeomorphism covariant by an analogous argument as in [10, Thm. 3.7].

We consider the restricted net A|R on R as in Sect. 2.1.1, the quasilocal C∗-algebra
A and translation.

Theorem 6.1. The free fermion net A admits one and only KMS state at each tempera-
ture.

Proof. By the diffeomorphism covariance and Bisognano-Wichmann property, we can
construct the geometric KMS state as in Part I [7, Sect. 2.8] (locality is not necessary).
On the other hand, Vir 1

2
is completely rational [21], hence it admits a unique KMS state.

In this case, we have proved without using locality [7, Thm. 4.11] that also the finite
index extension A admits only the geometric KMS state. ��
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Appendix A. On the Full Extension of a KMS State

In this Appendix we discuss the theorem of Araki-Haag-Kastler-Takesaki [1]. Let B be
a C∗-algebra, G a compact group acting on B and A = BG the fixed point with respect
to the action of G. We take a KMS state ϕ on A and a weakly γ -clustering extension ψ .
If one looks at the statement carefully, it splits into two parts. The first part (Theorem
II.4) claims that there is a distinguished subgroup Nψ (depending on ψ) of G such that
ψ is a KMS state on BNψ with respect to an appropriate one-parameter automorphism
group τ̃ . Then the second part (Remark II.4) says that Nψ is trivial whenψ is faithful on
A, so ψ is a KMS state on the whole algebra B. We believe that the first part is correct,
but the proof of the second part is missing in the paper and we provide a counterexample
at the end of this Appendix. Hence the extension to the full algebra B is not clear in
general.2 Here we prove this complete extension with an additional assumption, which
can be applied to the case of nets.

2 The same statement of full extension is found, for example, in [3, Thm. 5.4.25]. But we think that at least
the argument is flawed. We will give later a counterexample to the argument in [3].
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Let Gψ be the group of the stabilizers of ψ :

Gψ := {g ∈ G : ψ(αg(a)) = ψ(a) for all a ∈ B}.
The actions α of G, τ of R and ρ of Z are assumed to be norm-continuous. We always
assume that G is compact, the action of γ on B is asymptotically abelian. We precisely
cite (the relevant part of)[1, Thm. II.4] (Note that we changed the notation. In the original
literature they use A,F for algebras, α for the time-translation, γ for the compact group
action, τ for the space-translation and ϕ for the state.)

Theorem A.1 (Araki-Haag-Kastler-Takesaki). Assume that G is separable. Let ψ be a
weakly γ -clustering state of B, whose restriction to A is an extremal (τt , β)-KMS state.
Then there exists a closed normal subgroup Nψ of Gψ , a continuous one-parameter
subgroup εt of Z(Gψ,G) and a continuous one-parameter subgroup ζt of Gψ such that
the restriction of ψ to the fixed point algebra under Nψ ,

BNψ = {a ∈ B : αg(a) = a for all g ∈ Nψ }
is a (̃τt , β)-KMS state where τ̃t = τt ◦ αεt ◦ζt .

We recall that the proof of this theorem is further split into two parts ([1, Thm. II.2,
Sect. II.5 and Sect. II.6]).

Lemma A.2 Under the hypothesis of Theorem A.1, there is a one-parameter subgroup

R � t �−→ εt ∈ Z(Gψ,G)

such that the restriction of ψ to BGψ is an (τ ′
t , β)-KMS state where τ ′

t := τt ◦ αεt .

Lemma A.3 Under the hypothesis of Theorem A.1, there is a continuous one-parameter
subgroup ζt of Gψ such that the restriction of ϕ to BNψ is an (̃τt , β)-KMS state where
τ̃t := τt ◦ αεt ◦ζt .

We think both of lemmas are correct, hence the only task is to show that Nψ trivially
acts on B under certain conditions. Then let us recall how Nψ is defined.

Consider the space of functions

Cψ(Gψ) := { f ψa,b ∈ C(Gψ) : f ψa,b(g) = ψ(aαg(b)), a, b ∈ B}.

It has been shown that the norm closure Cψ(Gψ) is a Banach subalgebra of C(Gψ)

[1, Lem. II.3], thus the intersection Cψ(Gψ)∩ Cψ(Gψ)
∗

is a C∗-subalgebra of C(Gψ).
It is easy to see that this intersection is globally invariant under left and right translation
by Gψ since by definition ψ is invariant under Gψ , hence there is a closed normal
subgroup Nψ such that Cψ(Gψ) ∩ Cψ(Gψ)

∗ ∼= C(Gψ/Nψ), where the isomorphism
intertwines the natural actions of Gψ [1, Lem. A.1]. Explicitly, Nψ is defined as follows:

Nψ := {g ∈ Gψ : f (g·) = f (·) for all f ∈ Cψ(Gψ) ∩ Cψ(Gψ)
∗}.

On the other hand, we can define another normal subgroup N ′
ψ of Gψ :

N ′
ψ := {g ∈ Gψ : f ψa,b(g·) = f ψa,b(·) for all a, b ∈ B}.
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It is easy to see, by uniform approximation, that

N ′
ψ := {g ∈ Gψ : f (g·) = f (·) for all f ∈ Cψ(Gψ)}.

Hence, N ′
ψ ⊂ Nψ . Under a general assumption, N ′

ψ has a simple interpretation.

Lemma A.4 Suppose that the GNS representation πψ of B is faithful. Then it holds that
N ′
ψ = {g ∈ Gψ : αg(a) = a for all a ∈ B}, namely N ′

ψ is the subgroup of the elements
acting trivially on B.

Proof We show that N ′
ψ ⊂ {g ∈ Gψ : αg(a) = a for all a ∈ B}, since the other inclu-

sion is obvious. In the GNS representation, the defining equation of N ′
ψ is equivalent

to

〈πψ(a∗)�ψ,Uψ(g)πψ(b)�ψ 〉 = 〈πψ(a∗)�ψ, πψ(b)�ψ 〉, for all a, b ∈ B,

which implies that Uψ(g) = 1 and AdUψ(g) = id. In particular, we have πψ(αg(a)) =
πψ(a) for all a ∈ B and, by the assumed faithfulness of πψ , we obtain αg(a) = a. ��
Theorem A.5 If the GNS representation of BGψ with respect to (the restriction of) ψ is
faithful and if πψ is faithful on B, then Nψ acts trivially on B.

Proof We only have to show that Nψ = N ′
ψ by Lemma A.4 and the latter hypothesis.

Under the former assumption, we show that the intersection Cψ(Gψ) ∩ Cψ(Gψ)
∗

is
equal to Cψ(Gψ), then the Theorem follows from the definitions of Nψ and N ′

ψ .
We remark that the assumption implies that ψ is faithful on B. Indeed, first the

assumption that the GNS representation of ψ restricted to BGψ is faithful implies that
ψ is faithful on BGψ , since the GNS vector of a KMS state is separating [3, Cor. 5.3.9].
Now let x ∈ B such that ψ(x∗x) = 0. Then, by the definition of Gψ, ψ is invariant
under Gψ , thus we have

0 =
∫

Gψ

ψ(αg(x
∗x))dg = ψ

(∫
Gψ

αg(x
∗x)dg

)
.

But
∫

Gψ
αg(x∗x)dg is positive and belongs to BGψ , hence must be zero by the faithful-

ness of ψ on BGψ . This is possible only if x∗x = 0 by the continuity of α.
As recalled in Appendix B, for f ψa,b ∈ Cψ(Gψ), one can take its Fourier component

f ψa,bχ and the original function f ψa,b is uniformly approximated by its components. Hence

it is enough to consider irreducible representations. If f ψa,b contains χ -component for
some a, b ∈ B, then this in particular means that bχ $= 0. By the faithfulness of ψ
on B proved above, one sees that ψ(bχb∗

χ ) $= 0. Since b∗
χ belongs to the irreducible

representation χ , one concludes that the conjugate representation χ is contained in Hψ .
Then any function in Cχ (Gψ) (see Appendix B) belongs to Cψ(Gψ).

Summing up, the adjoint of each component of f ψa,b ∈ Cψ(Gψ) belongs again to

Cψ(Gψ) and each function in Cψ(Gψ) is recovered from its components. This completes
the proof of self-adjointness of Cψ(Gψ). ��
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The hypothesis of the theorem are satisfied not only in our case of conformal nets,
as we see in Sect. 3.2, but also in a wide class of models of statistical mechanics where
local algebras are finite dimensional factors Mn(C).

On the proofs of full-extension in the literature. As noted before, Theorem A.5 without
the assumption of faithfulness of πψ is claimed in [1] without proof. In [3, Thm. 5.4.25]
the theorem of full extension (i.e. Nψ acts trivially) is stated with the assumption of
faithfulness of ϕ = ψ |A on A. But we think that the proof is not complete. The argu-
ment in [3] goes as follows. At the first step, they assume that ψ is faithful on A and
show that ψ is a KMS state on BGψ . At the second step, they say that one can assume
that ψ is invariant under G and the rest follows. The point is that, in the first extension,
the faithfulness of ψ on BGψ is not automatic. The symmetry of the spectrum of πψ is
essential in the second extension and the faithfulness is used for it. Here we provide an
example which shows that this faithfulness does not hold in general. We do not know
whether the theorem holds without these assumptions. The same construction gives a
counterexample to [1, Rem. II.4].

We take an auxiliary system (B,A, τ, α, γ ), where A = BG and take a KMS state ϕ
on A with respect to τ and a γ -clustering extension ψ . Suppose for simplicity that ψ is
faithful and has the whole group as the stabilizer: Gψ := {g ∈ G : ψ ◦ αg = ψ} = G.
We have many such examples: one can take just the geometric KMS state on the regular-
ized quasilocal algebra of a conformal net with a compact group action and the inclusion
of the fixed point subnet.

Consider now the field system (B̂, Â, τ̂ , α̂, γ̂ ), where B̂ := B ⊕ B, Ĝ := (G ×
G)�Z2 with Z2 acting on G × G as the flip, τ̂t := τt ⊕ τt , the action α̂ of (G × G)�Z2
on B ⊕ B being the action α of each copy of G on each copy of B and the action of Z2

as the flip. The fixed point BĜ is the diagonal algebra Â ⊂ A ⊕ A, which is isomorphic
to A. The system (B̂, τ̂ ) is asymptotically abelian as so is (B, τ ).

Let πi : B̂ → B be the projections on a component and ψi := ψ ◦ πi . The two
states ψi are the two γ -clustering extensions of ϕ on B̂ (other extensions are convex
combinations of ψ1 and ψ2 and are KMS states w.r.t. τ̂ ). The stabilizer is in both cases
Ĝψi = (G × G), a normal subgroup of Ĝ, while the flip exchanges the two states:

ψi ◦ αz = ψzi for z ∈ Z2. The intermediate algebra is B̂Ĝψi = A ⊕ A and ψi is
obviously not faithful on it; the faithfulness was assumed implicitly in the second step
of the proof in [3].

Let πψ : B → B(Hψ) be the GNS representation of ψ (faithful as ψ is faithful),
then πψi = πψ ◦ πi : B̂ → B(Hψ) is not faithful, although it is true that πψi (Â)

′′ =
πψi (B̂

Gψi )′′.
Asπψi is not faithful, althoughψi is faithful on Â, we cannot deduce that N ′

ψi
:= {g ∈

Ĝ : ψi (aα̂g(b)) = ψi (ab) for all a, b ∈ B̂} is trivial nor that it acts trivially. Indeed,
N ′
ψ1

= (1,G, 1) and N ′
ψ2

= (G, 1, 1); this is in contradiction with [1, Rem. II.4], since
we show that N ′

ψi
= Nψi , also in this case. By proceeding as in the third paragraph

of the proof of Theorem A.5, let bχ belong to the irreducible representation χ and
ψ1(b∗

χbχ ) $= 0. Then, as bχ is of the form bχ = b1 ⊕ b2, ψ1(bχb∗
χ ) = ψ(b1b∗

1) $= 0
by the faithfulness of ψ , which implies that χ is contained in Hψ ; the rest follows as in
Theorem A.5. One sees that Nψi is a normal subgroup of Ĝψi , ψi and πψi are faithful
neither on B̂ nor on B̂Nψ1 = B ⊕ A. Moreover, the one parameter group τ̂ w.r.t. which
ψi is KMS is not uniquely defined, as ψ1 is not faithful and is KMS w.r.t. τ̂ ◦ α(1,gt ,1)
for any t �→ gt ∈ G.
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Appendix B. Noncommutative Harmonic Analysis

Here we briefly summarize elementary methods to treat actions of a compact group G on
a C∗-algebra. For the classical facts from the representation theory of compact groups,
we refer to the standard textbooks, for example, [23]. The classical Peter-Weyl theorem
says that any irreducible representation of G is finite dimensional. To a finite-dimen-
sional representation one can associate a character χ in the space C(G) of continuous
functions on G. On this space G acts by left and right translations. This becomes a
pre-Hilbert space by the inner product induced by the Haar measure and its completion
is denoted by L2(G). The action by translation is referred to as the left or right regular
representation. Again the Peter-Weyl theorem states that the left or right regular rep-
resentation contains any irreducible representation and the multiplicity is equal to its
dimension. If a function f belongs to an irreducible representation χ of dimension n of
the left (or right) regular representation, then the images of f under right and left transla-
tion of G × G span the whole n2 dimensional space. Here we call this subspace Cχ (G).
Two characters χ, χ ′ are orthogonal iff the corresponding representations are disjoint.
Any unitary representation U can be written as the direct sum of irreducible representa-
tions. The decomposition into classes of inequivalent representations is canonical: for a
character χ associated to an irreducible representation, the map

ξ �→ ξχ =
∫

G
χ(g)U (g)ξdg

is the projection from the representation space onto the direct sum of irreducible sub-
representations of U equivalent to the one corresponding to χ . It holds that ξ = ∑

χ ξχ

and ξχ ⊥ ξχ ′ if χ and χ ′ are inequivalent. The above formula is an extension of the
Fourier decomposition.

An action α of G on a C∗-algebra B is an infinite dimensional representation of G
on a Banach space. It is still possible to define the Fourier components: for a ∈ B, we
put

aχ :=
∫

G
χ(g)αg(a)dg.

In general the sum
∑
χ aχ is not necessarily norm-convergent. Now let us assume that

there is a G-invariant state ψ . Then in the GNS representation (Hψ, πψ,�ψ) there is a
unitary representation Uψ which implements the action α. The components defined for
Uψ and α are compatible: we have

πψ(aχ )�ψ =
∫

G
χ(g)πψ(αg(a))�ψ =

∫
G
χ(g)Uψ(g)πψ(a)�ψ = (πψ(a)�ψ)χ .

From the orthogonality in the representation Uψ , one sees that if χ and χ ′ correspond to
two disjoint representations, thenψ((aχ )∗αg(bχ ′)) = 〈πψ(aχ )�ψ,Uψ(g)πψ(bχ ′))�ψ 〉
= 0. It is immediate to see that the function g �→ ψ(aαg(bχ )) = ψ((aχ )αg(b)) belongs
to Cχ (G). The decomposition of the vector πψ(b)�ψ = ∑

χ πψ(bχ )�ψ converges in

norm, hence for the function f ψa,b(g) := ψ(aαg(b)), the decomposition f ψa,b = ∑
χ f χa,b,

where f χa,b(g) = 〈πψ(a∗)�ψ,Uψ(g)πψ(bχ )�ψ 〉 converges uniformly in the norm
of C(G).
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