KMS states on conformal nets
(joint work with P. Camassa, R. Longo and M. Weiner)

Yoh Tanimoto

Department of Mathematics, University of Rome “Tor Vergata”

30/08/10, Göttingen
Introduction: KMS states

KMS state on C*-algebra

\(\mathcal{A} \): C*-algebra, \(\alpha_t \): one-parameter automorphism group. A \(\beta \)-KMS state \(\varphi \) on \(\mathcal{A} \) with respect to \(\alpha_t \) is a state with the following condition: for any \(x, y \in \mathcal{A} \) there is an analytic function \(f \) such that

\[
 f(t) = \varphi(x\alpha_t(y)), f(t + i\beta) = \varphi(\alpha_t(y)x).
\]

Example: matrix algebra

\(\mathcal{A} = M_n(\mathbb{C}) \), \(\alpha_t = \text{Ad}(e^{itH}) \), \(H \): positive. The state \(\varphi(x) = \frac{\text{Tr}(e^{-\beta H}x)}{\text{Tr}(e^{-\beta H})} \) is a \(\beta \)-KMS state. The KMS condition characterizes this state.

Example: modular automorphism group

\(\mathcal{A} = \mathcal{M} \), a von Neumann algebra, \(\varphi \): a faithful normal state, \(\sigma^\varphi \): the modular automorphism. \(\varphi \) is a \(-1 \)-KMS state.
Introduction: conformal nets

- Spacetime: the circle $S^1 = \mathbb{R} \cup \{\infty\}$.
- Möbius symmetry: translation, dilation, rotation.
- Diffeomorphism covariance.

Conformal net

A conformal net \mathcal{A} is an assignment of von Neumann algebra $\mathcal{A}(I)$ to each interval $I \subset S^1$ such that

- $I \subset J \Rightarrow \mathcal{A}(I) \subset \mathcal{A}(J)$
- $I \cap J = \emptyset \Rightarrow [\mathcal{A}(I), \mathcal{A}(J)] = 0$.

There is $U : \text{PSL}(2, \mathbb{R}) \rightarrow \mathcal{U}(\mathcal{H})$ such that $U(g)\mathcal{A}(I)U(g)^* = \mathcal{A}(gI)$, with positivity of energy.

There is Ω invariant under $\text{PSL}(2, \mathbb{R})$.

U extends to $\text{Diff}(S^1)$.
Two copies of the theory on real line \(\iff\) Chiral conformal theory on two dimension. The automorphism concerned: translation.

Observations

- Dilation covariance: the phase structure is uniform with respect to temperature.

\[
\varphi \text{ is a } \beta\text{-KMS state } \iff \varphi \circ \delta_s \text{ is a } \beta e^s\text{-KMS state.}
\]

We consider always \(\beta = 1\).

- Diffeomorphism covariance: there is at least one geometric state.

Problem

Are there KMS states other than the geometric state?
Introduction: summary of results

Nets with several KMS states

- $U(1)$-current net: parametrized by \mathbb{R}.
- Virasoro net with $c \geq 1$: there are at least KMS states parametrized by \mathbb{R}_+.

Nets with unique KMS state

- completely rational nets.
 1. thermal completion gives extension.
 2. uniqueness for maximal nets.
 3. extension trick.
Geometric KMS state

Bisognano-Wichmann property
The vacuum state ω is a KMS state for $\mathcal{A}(\mathbb{R}_+)$ with respect to dilation.

Diffeomorphism covariance
The exponential map $t \mapsto e^t$ is a diffeomorphism between \mathbb{R} and \mathbb{R}_+, and this intertwines translation and dilation.
This diffeomorphism Exp is implemented locally by a unitary U.

The geometric KMS state
The state $\omega \circ \text{Exp}$ is well defined and a KMS state with respect to translation.
Case: $U(1)$-current net

$W(f)$: Weyl operator in Fock representation.

$$[W(f), W(g)] = \exp \left(-i \int f(\theta) g'(\theta) d\theta \right),$$

$$\mathcal{A}_{U(1)}(I) = \{ W(f) : \text{supp}(f) \subset I \}''.$$

There are automorphisms of the restricted net $\mathcal{A}_\mathbb{R}$ parametrized by $q \in \mathbb{R}$:

$$\alpha_q : W(f) \mapsto \exp \left(iq \int_{\mathbb{R}} f(t) dt \right) W(f).$$

Theorem (Wang, 06)

For any $q \in \mathbb{R}$, $\varphi_{\text{geo}} \circ \alpha_q$ is a KMS state. Any KMS state on the $U(1)$-current net is of this form.
Virasoro nets Vir_c are nets generated by the field T which satisfies the following commutation relation:

$$[T(f), T(g)] = iT(fg' - f'g) + \frac{ic}{12} \int_{\mathbb{R}} f'''(t)g(t)dt.$$

From the $U(1)$-current, we can construct a stress energy tensor:

$$T(z) = \frac{1}{2} : J(z)^2 :$$

or its deformations (Buchholz and Schulz-Mirbach, ’90):

$$T_k(z) = T(z) + kJ'(z) + \frac{k^2}{2}$$

T_k satisfies the commutation relation with $c = 1 + k^2$.

Y. Tanimoto (University of Rome II)
Case: Virasoro nets with $c \geq 1$

Vir$_c|_\mathbb{R}$ for $c \geq 1$ can be embedded in $A_{U(1)}|_\mathbb{R}$ in a translation-covariant way. In particular, the automorphisms α_q can be applied to elements in Vir$_c$.

Theorem

The compositions $\varphi_{\text{geo}} \circ \alpha_q|_{\text{Vir}_c}$ give rise to different KMS states for different values of $\frac{q^2}{2}$.

We don’t know if these states are all or not.
A conformal net \mathcal{A} is said to be **completely rational** if it satisfies the following:

- The split property.
- Strong additivity.
- Finiteness of μ-index.

Examples of complete rational nets:

- Loop group nets.
- Virasoro nets with $c < 1$.
- Finite index inclusions and extensions.
Complete rationality: finiteness of sectors and extensions

Fact
A completely rational net admits only finitely many inequivalent DHR representations.

In examples we saw:
- different KMS states \iff different “combination” of charges.

Translation invariance:
- a KMS state should contain an “infinite” amount of charge with some density.

Expectation: completely rational nets admit only the geometric state.
Thermal completion

- ψ: a primary KMS state on a net \mathcal{A}.
- π: the GNS representation with respect to ψ.
- ξ: the corresponding GNS vector.

The inclusion $(\pi(\mathcal{A}(\mathbb{R}_+)) \subset \pi(\mathcal{A}(\mathbb{R})), \xi)$ is a half-sided modular inclusion. The corresponding Möbius covariant net is called the thermal completion of \mathcal{A} with respect to ψ.

In completely rational case, the thermal completion is an irreducible extension of the original net with finite index.
Case: completely rational maximal nets

Fact
A completely rational net admits only finitely many extensions of net. Among extensions, there are **maximal** extensions.

Lemma
The thermal completion of the geometric KMS state φ_{geo} is the original net.

Lemma
Any KMS state ψ on a completely rational maximal net \mathcal{A} is a composition of the geometric state φ_{geo} and an automorphism $\gamma = \pi_\psi \circ \pi_{\varphi_{\text{geo}}}^{-1}$ of $\mathcal{A}|_{\mathbb{R}^+}$.
Automorphisms of nets on S^1 VS on \mathbb{R}

Lemma

There is a map from the set of automorphisms on \mathbb{R} commuting with translation to the set of automorphisms on S^1 commuting with rotation. Two automorphisms on \mathbb{R} are unitarily equivalent if and only if the images are unitarily equivalent.

Proof: by diffeomorphism covariance.

Example: on $U(1)$-current net,

$$\alpha_q(W(f)) = \exp \left(iq \int_{S^1} f(\theta) d\theta \right) W(f)$$

$$\gamma_q(W(f)) = \exp \left(iq \int_{\mathbb{R}} f(t) dt \right) W(f)$$
Dilation on automorphisms on \mathbb{R}

We want infinitely many automorphism to have a contradiction with the finiteness of sectors.

Lemma

γ: an automorphism on \mathbb{R}.

If $\varphi_{\text{geo}} \circ \gamma \neq \varphi_{\text{geo}}$, then $\omega \circ \gamma \neq \omega$.

Lemma

If $\varphi \circ \delta_s = \varphi$ for some $s \in \mathbb{R}$, then $\varphi = \omega$.

Lemma

If $\omega \circ \gamma \neq \omega$, then $\omega \circ \gamma \circ \delta_s$ are all different states. $\delta_{-s} \circ \gamma \circ \delta_s$ are all different automorphisms.
For a completely rational maximal net \mathcal{A}:
Any KMS state ψ gives an automorphism γ on $\mathcal{A}_{\mathbb{R}^+}$: $\psi = \varphi_{\text{geo}} \circ \gamma$.
\implies γ gives an automorphism α on \mathcal{A}.
$\implies \{\delta_s \circ \gamma \circ \delta_{-s}\}$ could give infinitely many sectors (Impossible).
\implies γ commutes with dilation.
\implies γ preserves the vacuum state.
\implies γ preserves the geometric state.

Theorem

*Any completely rational maximal net admits only the geometric KMS state φ_{geo}.***
Extension trick

There is a one-to-one correspondence:
KMS state w.r.t. translation on $\mathcal{A}|_{\mathbb{R}} \iff$
KMS state w.r.t. dilation on $\mathcal{A}|_{\mathbb{R}^+}$.

ψ: KMS state, π: GNS representation, $\hat{\mathcal{A}}$: thermal completion.

Lemma

The inclusion $\pi(\mathcal{A}(a, b)) \subset \hat{\mathcal{A}}(a, b) := \pi(\mathcal{A}(a, \infty)) \cap \pi(\mathcal{A}(b, \infty))'$ is irreducible and of finite index, hence there is a conditional expectation $E: \hat{\mathcal{A}} \to \mathcal{A}$.

Lemma

The state $\omega \circ \text{Exp} \circ \pi^{-1} \circ E$ is a KMS state on $\hat{\mathcal{A}}|_{\mathbb{R}^+}$.
Extension trick

<table>
<thead>
<tr>
<th>The initial net</th>
<th>vacuum state</th>
<th>thermal completion</th>
<th>KMS state</th>
</tr>
</thead>
<tbody>
<tr>
<td>The extended net</td>
<td>KMS state</td>
<td></td>
<td>vacuum state</td>
</tr>
</tbody>
</table>

- Repeating this construction, we arrive at a maximal net.
- For a maximal net, a KMS state is the geometric state.
- The KMS state of the starting point must be geometric.

Theorem

Any completely rational net admits only the geometric KMS state.
Examples with continuously many KMS states
Uniqueness for completely rational nets
Similar result for ground states?
General extension argument for finite index inclusions?