KMS states on conformal nets (joint work with P. Camassa, R. Longo and M. Weiner)

Yoh Tanimoto

Department of Mathematics, University of Rome "Tor Vergata"

30/08/10, Göttingen

KMS state on C*-algebra

 \mathcal{A} : C*-algebra, α_t : one-parameter automorphism group. A β -KMS state φ on \mathcal{A} with respect to α_t is a state with the following condition: for any $x, y \in \mathcal{A}$ there is an analytic function f such that

$$f(t) = \varphi(x\alpha_t(y)), f(t+i\beta) = \varphi(\alpha_t(y)x).$$

Example: matrix algebra

 $\mathcal{A} = M_n(\mathbb{C}), \alpha_t = \operatorname{Ad}(e^{itH}), H$: positive. The state $\varphi(x) = \frac{\operatorname{Tr}(e^{-\beta H}x)}{\operatorname{Tr}(e^{-\beta H})}$ is a β -KMS state. The KMS condition characterizes this state.

Example: modular automorphism group

 $\mathcal{A} = M$, a von Neumann algebra, φ : a faithful normal state, σ^{φ} : the modular automorphism. φ is a -1-KMS state.

Introduction: conformal nets

- Spacetime: the circle $S^1 = \mathbb{R} \cup \{\infty\}$.
- Möbius symmetry: translation, dilation, rotation.
- Diffeomorphism covariance.

Conformal net

A conformal net A is an assignment of von Neumann algebra A(I) to each interval $I \subset S^1$ such that

•
$$I \subset J \Rightarrow \mathcal{A}(I) \subset \mathcal{A}(J)$$

•
$$I \cap J = \emptyset \Rightarrow [A(I), A(J)] = 0.$$

- There is $U : PSL(2, \mathbb{R}) \to \mathcal{U}(\mathcal{H})$ such that $U(g)\mathcal{A}(I)U(g)^* = \mathcal{A}(gI)$, with positivity of energy.
- There is Ω invariant under $PSL(2, \mathbb{R})$.
- U extends to $\text{Diff}(S^1)$.

Introduction: KMS states on conformal nets

Two copies of the theory on real line \iff Chiral conformal theory on two dimension. The automorphism concerned: translation.

Observations

• Dilation covariance: the phase structure is uniform with respect to temperature.

$$\varphi$$
 is a β -KMS state $\iff \varphi \circ \delta_s$ is a βe^s -KMS state.

We consider always $\beta = 1$.

• Diffeomorphism covariance: there is at least one geometric state.

Problem

Are there KMS states other than the geometric state?

4 / 19

Nets with several KMS states

- U(1)-current net: parametrized by \mathbb{R} .
- Virasoro net with $c \ge 1$: there are at least KMS states parametrized by \mathbb{R}_+ .

Nets with unique KMS state

- completely rational nets.
 - thermal completion gives extension.
 - uniqueness for maximal nets.
 - extension trick.

Bisognano-Wichmann property

The vacuum state ω is a KMS state for $\mathcal{A}(\mathbb{R}_+)$ with respect to **dilation**.

Diffeomorphism covariance

The exponential map

$$t \longmapsto e^t$$

is a diffeomorphism between ${\rm I\!R}$ and ${\rm I\!R}_+,$ and this intertwines translation and dilation.

This diffeomorphism Exp is implemented **locally** by a unitary U.

The geometric KMS state

The state $\omega \circ Exp$ is well defined and a KMS state with respect to translation.

W(f): Weyl operator in Fock representation.

$$[W(f), W(g)] = \exp\left(-i\int f(\theta)g'(\theta)d\theta\right),$$
$$\mathcal{A}_{U(1)}(I) = \{W(f) : \operatorname{supp}(f) \subset I\}''.$$

There are automorphisms of the restricted net $\mathcal{A}_{\mathbb{R}}$ parametrized by $q \in \mathbb{R}$:

$$\alpha_q: W(f) \longmapsto \exp\left(iq \int_{\mathbb{R}} f(t)dt\right) W(f).$$

Theorem (Wang, 06)

For any $q \in \mathbb{R}$, $\varphi_{\text{geo}} \circ \alpha_q$ is a KMS state. Any KMS state on the U(1)-current net is of this form.

Virasoro nets Vir_c are nets generated by the field T which satisfies the following commutation relation:

$$[T(f), T(g)] = iT(fg' - f'g) + \frac{ic}{12} \int_{\mathbb{R}} f'''(t)g(t)dt.$$

From the U(1)-current, we can construct a stress energy tensor:

$$T(z) = \frac{1}{2} : J(z)^2 :$$

or its deformations (Buchholz and Schulz-Mirbach, '90):

$$T_k(z) = T(z) + kJ'(z) + \frac{k^2}{2}$$

 T_k satisfies the commutation relation with $c = 1 + k^2$.

 $\mathrm{Vir}_c|_{\mathbb{R}}$ for $c\geq 1$ can be embedded in $A_{U(1)}|_{\mathbb{R}}$ in a translation-covariant way. In particular, the automorphisms α_q can be applied to elements in $\mathrm{Vir}_c.$

Theorem

The compositions $\varphi_{\text{geo}} \circ \alpha_q |_{\text{Vir}_c}$ give rise to different KMS states for different values of $\frac{q^2}{2}$.

We don't know if these states are all or not.

Complete rationality

A conformal net \mathcal{A} is said to be **completely rational** if it satisfies the following:

- The split property.
- Strong additivity.
- Finiteness of *µ*-index.

Examples of complete rational nets

- Loop group nets.
- Virasoro nets with c < 1.
- Finite index inclusions and extensions.

Fact

A completely rational net admits only finitely many inequivalent DHR representations.

In examples we saw:

● different KMS states ⇔ different "combination" of charges.

Translation invariance:

• a KMS state should contain an "infinite" amount of charge with some density.

Expectation: completely rational nets admit only the geometric state.

Thermal completion

- ψ : a primary KMS state on a net \mathcal{A} .
- π : the GNS representation with respect to ψ .
- ξ : the corresponding GNS vector.

The inclusion $(\pi(\mathcal{A}(\mathbb{R}_+)) \subset \pi(\mathcal{A}(\mathbb{R})), \xi)$ is a half-sided modular inclusion. The corresponding Möbius covariant net is called the **thermal** completion of \mathcal{A} with respect to ψ .

In completely rational case, the thermal completion is an irreducible extension of the original net with finite index.

Fact

A completely rational net admits only finitely many extensions of net. Among extensions, there are **maximal** extensions.

Lemma

The thermal completion of the geometric KMS state φ_{geo} is the original net.

Lemma

Any KMS state ψ on a completely rational maximal net \mathcal{A} is a composition of the geometric state φ_{geo} and an automorphism $\gamma = \pi_{\psi} \circ \pi_{\varphi_{\text{geo}}}^{-1}$ of $\mathcal{A}|_{\mathbb{R}_{+}}$.

Lemma

There is a map from the set of automorphisms on \mathbb{R} commuting with translation to the set of automorphisms on S^1 commuting with rotation. Two automorphisms on \mathbb{R} are unitarily equivalent if and only if the images are unitarily equivalent.

Proof: by diffeomorphism covariance. Example: on U(1)-current net,

$$\begin{aligned} &\alpha_q(W(f)) = \exp\left(iq\int_{S^1} f(\theta)d\theta\right)W(f) \\ &\gamma_q(W(f)) = \exp\left(iq\int_{\mathbb{R}} f(t)dt\right)W(f) \end{aligned}$$

We want infinitely many automorphism to have a contradiction with the finiteness of sectors.

Lemma

 γ : an automorphism on \mathbb{R} . If $\varphi_{\text{geo}} \circ \gamma \neq \varphi_{\text{geo}}$, then $\omega \circ \gamma \neq \omega$.

Lemma

If
$$\varphi \circ \delta_s = \varphi$$
 for some $s \in \mathbb{R}$, then $\varphi = \omega$.

Lemma

If $\omega \circ \gamma \neq \omega$, then $\omega \circ \gamma \circ \delta_s$ are all different states. $\delta_{-s} \circ \gamma \circ \delta_s$ are all different automorphisms.

A B F A B F

For a completely rational maximal net $\mathcal{A}:$

Any KMS state ψ gives an automorphism γ on $\mathcal{A}_{\mathbb{R}_+}$: $\psi = \varphi_{\text{geo}} \circ \gamma$.

- $\implies \gamma$ gives an automorphism α on \mathcal{A} .
- $\implies \{\delta_s \circ \gamma \circ \delta_{-s}\} \text{ could give infinitely many sectors (Impossible)}.$
- $\Longrightarrow \gamma$ commutes with dilation.
- $\Longrightarrow \gamma$ preserves the vacuum state.
- $\Longrightarrow \gamma$ preserves the geometric state.

Theorem

Any completely rational maximal net admits only the geometric KMS state $\varphi_{\rm geo}.$

There is a one-to-one correspondence: KMS state w.r.t. translation on $\mathcal{A}|_{\mathbb{R}} \iff$ KMS state w.r.t. dilation on $\mathcal{A}|_{\mathbb{R}_+}$.

 ψ : KMS state, π : GNS representation, $\hat{\mathcal{A}}$: thermal completion.

Lemma

The inclusion $\pi(\mathcal{A}(a, b)) \subset \hat{\mathcal{A}}(a, b) := \pi(\mathcal{A}(a, \infty)) \cap \pi(\mathcal{A}(b, \infty))'$ is irreducible and of finite index, hence there is a conditional expectation $E : \hat{\mathcal{A}} \to \mathcal{A}$.

Lemma

The state $\omega \circ \operatorname{Exp} \circ \pi^{-1} \circ E$ is a KMS state on $\hat{\mathcal{A}}|_{\mathbb{R}_+}$.

Extension trick			
The initial net	vacuum state		KMS state
	\Downarrow	thermal completion	\Downarrow
The extended net	KMS state		vacuum state

- Repeating this construction, we arrive at a maximal net.
- For a maximal net, a KMS state is the geometric state.
- The KMS state of the starting point must be geometric.

Theorem

Any completely rational net admits only the geometric KMS state.

18 / 19

- Examples with continuously many KMS states
- Uniqueness for completely rational nets
- Similar result for ground states?
- General extension argument for finite index inclusions?