Covariant representations of $\operatorname{Diff}(\mathbb{R})$

Yoh Tanimoto

Department of Mathematics, University of Rome "Tor Vergata"

15/01/10, Workshop "Foundations and Constructive Aspects of QFT"

Conformal symmetry

- Poincaré group + dilation and special conformal group (preserving the angle).
- conformal symmetry appears in string theory, statistical mechanics, massless particles, scaling limit...

A traditional set of mathematical objects is

- Wightman field (operator valued distribution on Minkowski space)
- Unitary representation of conformal symmetry group with spectrum condition
- the vacuum vector

$\operatorname{Diff}(S^1)$ symmetry

Why do we consider $\text{Diff}(S^1)$ symmetry?

- consider a conformal field on 2 dimensional space parametrized (t, x).
- Some important observables (e.g. stress energy tensor) decompose into components depending only on t + x or t - x.
- under the assumption of dilation symmetry and spectrum condition, each component of stress energy tensor can be extended to S^1 and has a certain commutation relations (Lüscher-Mack theorem).
- the commutation relations are same as the Lie algebra of $\text{Diff}(S^1)$.
- the component of stress energy tensor is $\text{Diff}(S^1)$ covariant.

Introduction

So minimal mathematical objects in conformal field theory are

• Projective unitary irreducible representations of $\text{Diff}(S^1)$ with translations having the positive spectrum.

fact

Projective unitary, positive energy, irreducible representations of $\text{Diff}(S^1)$ are completely classified by c and h. There exists such a representation if and only if there exist natural numbers m, r, s such that

$$c = 1 - \frac{6}{(m+2)(m+3)}, 1 \le m$$

$$h = \frac{\{(m+3)r - (m+2)s\}^2 - 1}{4(m+2)(m+3)}, 1 \le s \le r \le m+1,$$

or $c \ge 1$ and $h \ge 0$. If h = 0, it is said to have the vacuum.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

What happens if we consider a similar problem for $\text{Diff}(\mathbb{R})$?

Definition

A projective unitary representation ρ of $\text{Diff}(\mathbb{R})$ is said to be covariant if there is a representation U of \mathbb{R} with a positive generator such that

$$U(a)
ho(\gamma)U(a)^* =
ho(au_a \circ \gamma \circ au_{-a})$$

A vector Ω in the representation space is called a ground state vector if $U(a)\Omega = \Omega$.

And our main result is

Theorem

There are covariant irreducible representations with a ground state vector of $Diff(\mathbb{R})$ which do not extend to $Diff(S^1)$.

A D > A A P >

We identify the circle S^1 and the real line $\mathbb R$ by the Kayley transformation.

$$x = i \frac{1+z}{1-z} \iff z = \frac{x-i}{x+i}, x \in \mathbb{R}, z \in S^1 \subset \mathbb{C}$$

Virasoro net

With a vacuum representation $\rho_{\it c}$ of $\rm Diff(S^1),$ for any interval $\it I$ of S^1 we define

$$\operatorname{Vir}_{c}(I) = \{ \rho_{c}(\gamma) : \operatorname{supp} \gamma \subset I \}^{\prime \prime}$$

KMS states

A β -KMS state ϕ for the Virasoro net is a state on $\overline{\bigcup_{-1 \notin I} \operatorname{Vir}_c(I)}^{||\cdot||}$ such that for any two element *a*, *b* there is analytic function *F* on $0 < \operatorname{Im} z < \beta$ with

$$F(t) = \phi(a\tau_t(b)), F(t+i\beta) = \phi(\tau_t(b)a),$$

where au is the automorphism of translations.

Taking the limit $\beta \rightarrow \infty$, we have the following definition.

ground states

A ground state ϕ for the Virasoro net is a state on $\overline{\bigcup_{-1 \notin I} \operatorname{Vir}_c(I)}^{|| \cdot ||}$ invariant for translations and in whose GNS representation the generator of translations has a positive spectrum.

< D > < A > < B >

- ρ_c : the representation of $\mathrm{Diff}(\mathrm{S}^1)$
- ϕ : a ground state on Vir_c
- π : corresponding GNS representation
- $\implies \pi \circ \rho_{\mathfrak{c}}|_{\mathrm{Diff}(\mathbb{R})} \text{ is a ground state representation of } \mathrm{Diff}(\mathbb{R}).$

Classification program

A (locally normal) ground state on Vir net \implies A (locally normal) ground state representation of Diff(\mathbb{R}) Classification of ground state representations

 \Longrightarrow Classification of ground states on Vir net

Theorem (T. in preparation)

For Virasoro net with $c \geq 1$, there are ground states parametrized by a positive number k. The case k = 0 corresponds to the vacuum representation.

cf.

Conjecture (Longo and Weiner)

For Virasoro net with c < 1, there is unique β -KMS state for each β .

Representations of $Diff(S^1)$

Let U be a representation of $\text{Diff}(S^1)$. Diff (S^1) includes important one-parameter subgroups:

Möbius group

$$\begin{array}{lll} \text{rotation } \rho_s(z) &=& e^{is}z, \text{ for } z \in S^1 \subset \mathbb{C} \\ \text{translation } \tau_s(x) &=& x+s, \text{ for } x \in \mathbb{R} \\ \text{dilation } \delta_s(x) &=& e^sx, \text{ for } x \in \mathbb{R} \end{array}$$

Spectrum condition

- \iff the spectrum of translation is positive
- \iff the spectrum of rotation is positive

The rotation group is compact \implies the rotation group has the lowest eigenvector with eigenvalue h.

U is a projective representation.

 $\iff U(g)U(h) = c(g,h)U(gh)$ where $c(g,h) \in S^1 \subset \mathbb{C}$

The function c(g, h) must satisfy the cocycle identity.

fact

the second cohomology of $\text{Diff}(S^1)$ is isomorphic to \mathbb{R} .

c(g, h) is determined by a real number c.

Lie algebra of $Diff(S^1)$

group/algebra	elements	operation
$\operatorname{Diff}(S^1)$	\mathcal{C}^∞ diffeomorphisms of \mathcal{S}^1	$f \circ g$ (composition)
$Vect(S^1)$	C^∞ vector fields on S^1	[f,g] := fg' - f'g
Witt	$L_n(heta) = ie^{in heta}$	$[L_m, L_n] = (m-n)L_{m+n}$

fact

Witt is simple. In particular, the first cohomology of Witt on \mathbb{C} is trivial (Witt has no nontrivial one dimensional representation). The second cohomology of Witt on \mathbb{C} is one dimensional (Witt has the unique central extension Vir).

The Virasoro algebra has the following commutation relations.

$$[L_m, L_n] = (m-n)L_{m+n} + \frac{Cn(n^2-1)}{12}\delta_{m,-n}$$

12 / 24

Take the U(1)-current algebra.

$$[J_m, J_n] = im\delta_{m, -n}$$

Define an operator valued distribution J on S^1 as follows.

$$J: C^{\infty}(S^1) \ni f(z) = \sum f_n z^n \mapsto \sum f_n J_n$$

fact

J satisfies locality, namely, if supp f and suppg are disjoint, then [J(f), J(g)] = 0.

Concrete constructions of representations of $\operatorname{Diff}(\mathbb{R})$

Define

$$L_n = \frac{1}{2} \sum_m J_m J_{n-m}, L_0 = \sum_{m>0} J_{-m} J_m.$$

fact

Operators $\{L_n\}$ consist a representation of the Virasoro algebra with C = I. $\{L_n\}$ generate a representation ρ of Diff(S¹) with c = 1.

fact

The current J is covariant under the action of ho, namely,

$$\rho(\gamma)J(f)\rho(\gamma)^{-1} = J(f \circ \gamma)$$

Define nets of von Neumann algebras:

$$\begin{aligned} \operatorname{Vir}_1(I) &= \{\rho(\gamma) : \operatorname{supp} \gamma \subset I\}'' \\ \mathcal{A}_{U(1)}(I) &= \{e^{iJ(f)} : \operatorname{supp} f \subset I\}'' \end{aligned}$$

fact

For an interval I of S^1 , it holds that $A_{U(1)}(I)' = A_{U(1)}(I')$ where I' is the complement of I (the Haag duality).

 $\operatorname{Vir}_1(I) \subset A_{U(1)}(I).$

Definition

An endomorphism of the net $A_{U(1)}$ is a family of endomorphisms $\{\sigma_I\}$ of $\{A_{U(1)}(I)\}$ such that if $I \subset J$ then $\sigma_J|_I = \sigma_I$.

For a real function α on $\mathbb{R} = S^1 \setminus 1$, we define a new field

$$J_{\alpha}(f) = J(f) + \int \alpha(z) f(z) \frac{dz}{2\pi i z}$$

fact (Buchholz-Mack-Todorov automorphism)

The Fourier components of J_{α} satisfy the same commutation relations of J. The map $\sigma_{\alpha} : e^{iJ(f)} \mapsto e^{iJ(f_{\alpha})}$ extends to an automorphism of $A_{U(1)}$.

16 / 24

イロト 不得下 イヨト イヨト

If $\{\sigma_I\}$ is an endomorphism of $A_{U(1)}$, then $\sigma \circ \rho_1$ is a (possibly new) representation of $\text{Diff}(\mathbb{R})$.

Theorem (T. in preparation)

Let α be a function on S^1 , invariant under translations as a vector field. Then $\sigma_{\alpha} \circ \rho_1$ is a ground state representation of $\text{Diff}(\mathbb{R})$ with the cocycle c = 1. $\sigma_{\alpha} \circ \rho_1$ is covariant with respect to the original translation with the original vacuum vector.

The set of these functions α are parametrized by a real number q. These representations are equivalent if and only if $q^2 = q'^2$.

There are constructions also for c > 1.

Let V be a covariant representation T of $Vect(\mathbb{R})$ with a ground state Ω with a cocycle corresponding to $c \in \mathbb{R}$. We set

$$k = \frac{\langle T(f)\Omega, \Omega \rangle}{\int f(x) dx}$$
 "energy density"

Observation

- If the Fourier transform of f has the support in \mathbb{R}_+ , then $T(f)\Omega = 0$.
- If the Fourier transform of f has the support only around 0, then T(f) is "almost a scalar multiple of the identity".
- We can decompose T(f) into three parts, namely positive, zero, negative frequency parts.

Observation (continued)

- The representation space is spanned by the vectors $T(f_1)T(f_2)\cdots T(f_n)\Omega$.
- The inner product is determined by the n-point function $\langle T(f_1)T(f_2)\cdots T(f_n)\Omega,\Omega\rangle$.
- The n-point function is reduced to (n-1)-point functions by the commutation relations and the support property.
- The inner product is determined by k (and c).

19 / 24

The dilation acts on $\operatorname{Vect}(\mathbb{R})$ as automorphisms and the composition of a dilation with a representation changes "the energy density" k. In particular, if a representation $V_{c,k}$ has a positive definite scalar product for some c, k > 0, then $V_{c,k'}$ has a positive definite scalar product for any k' > 0.

The case k = 0 extends to a representation of Vir.

Theorem (T. in preparation)

The irreducible representation V of $S(\mathbb{R})$ with a ground state and with is classified c and k.

Conversely, for any c, $h \in \mathbb{R}$ we can construct a module of $\mathcal{S}(\mathbb{R})$ with an invariant sesquilinear form. The form is positive semidefinite if $c \ge 1$ and $k \ge 0$. The form is not positive semidefinite if k > 0 and $c \ne 1 - \frac{6}{(m+2)(m+3)}$ or $c = \frac{1}{2}$.

Conjecture

The representation V has an invariant inner product if and only if $c \ge 1$ and $k \ge 0$ or k = 0 and c is in the discrete series.

Conjecture

- The ground state on Virasoro net with c < 1 is unique.
- The ground state on a loop group net is unique.
- The ground state on a completely rational net is unique.

21 / 24

Further covariant representations

We consider B_0 , the group of stabilizers of 1 of Diff(S¹).

group/algebra	elements	operation
B ₀	diffeomorphisms stabilizing $ heta=0$	$f \circ g$ (composition)
Vect(S ¹) ₀	vector fields f with $f(0) = 0$	[f,g] := fg' - f'g
\mathcal{K}_0	$K_n(\theta) = i(1 - e^{in\theta})$	Restriction of Vir

Theorem (T. '09)

The ideal structure of \mathcal{K}_0 is determined as an infinite sequence of ideals

$$\mathcal{K}_0 \supset \mathcal{K}_1 \supset \mathcal{K}_2 \supset \cdots$$

and an exceptional ideal $\mathcal{K}_{1,3} \supset \mathcal{K}_3$ and it holds that $[\mathcal{K}_n, \mathcal{K}_n] = \mathcal{K}_{2n+1}$. In particular, $\mathcal{K}_1 = [\mathcal{K}_0, \mathcal{K}_0]$ has codimension one in \mathcal{K}_0 and \mathcal{K}_0 has one dimensional representation. The second cohomology of \mathcal{K}_0 on \mathbb{C} is one dimensional (\mathcal{K}_0 has the

The second cohomology of \mathcal{K}_0 on \mathbb{C} is one dimensional (\mathcal{K}_0 has the unique central extension \mathcal{K}).

Theorem (T. '09, T. in preparation)

For any $c \in \mathbb{R}$, $h, \lambda \in \mathbb{C}$, there is a representation of \mathcal{K} with a contravariant sesquilinear form $\langle \cdot, \cdot \rangle$ and a lowest weight vector v such that

$$Cv = cv, K_nv = (h + n\lambda)v$$
 for $n > 0$.

(Note that $K_n = L_0 - L_n$ in Vir. If $h \in \mathbb{R}$, $\lambda = 0$, this module reduces to a restriction of Vir module.)

The sesquilinear form is positive semidefinite for some values of $c \ge 1$, $h \in \mathbb{C} \setminus \mathbb{R}$, and $\lambda \in \mathbb{C}$. These representations integrate to representations of the group B_0 with positive spectrum of translations, without a ground state.

These representations are expected not to extend to $\text{Diff}(S^1)$.

イロト 不得下 イヨト イヨト

- several covariant representations (with and without ground states) are constructed.
- partial classification of Verma modules of $\text{Diff}(\mathbb{R})$ with conditions.
- differentiability of ground state representations?
- positive definiteness of general Verma modules?
- relations with KMS states?
- ground states for loop group models?