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1. Introduction

Recently there have been progresses in the construction of (1+1)-dimensional quan-

tum field theories with factorizing S-matrices in the operator algebraic approach

[16, 17, 14, 26, 10, 20, 19, 27, 1, 11, 2]. The basic idea is the following [23]: while

pointlike local observables are hard to construct, observables localized in an infinitely

extended wedge-shaped region might be tractable and have simple expressions. It

has been first implemented for a scalar analytic factorizing S-matrix [17, 1, 2] and

strictly local observables have been shown to exist using a quite indirect proof that

relies on properties of the underlying modular operators (for double cones above the

minimal size). In this construction, the input is the particle spectrum of the theory,

together with the S-matrix with certain properties. Construction of observables in

wedges has been extended to theories with several particle species by Lechner and

Schützenhofer [19], including the O(N)-invariant nonlinear σ-models.

Recently, in [12, 13, 29], we further generalized this construction to scalar models

with S-matrices which have poles in the physical strip. The poles in the S-matrix

are believed to correspond to the presence of bound states (e.g., the Bullough–

Dodd model). We also extended this construction to models with several particle

species, where the S-matrix is “diagonal” in a certain sense. They include, e.g., the

Z(N)-Ising model and the AN -affine Toda field theories.

In this work, we extend this last mentioned class of S-matrices to a continuous

family parametrized by two positive numbers. They differ from the S-matrix of the

sine-Gordon model by a CDD factor. This has the same fusing table as that of two

breathers in the sine-Gordon model.

The sine-Gordon modela has been constructed by Park [21] and conjectured to

be equivalent to the Thirring model in a certain sense (Coleman’s equivalence).

In [9] Benfatto, Falco and Mastropietro proved the equivalence between the sine-

Gordon model with finite volume interaction and the Thirring model with a finite

volume mass term. The Thirring model has been also constructed by the functional

integral methods [8]. On the other hand, the sine-Gordon model has been expected

to be integrable and its S-matrix has been conjectured [30]. Yet, in the rigorous

constructions, the factorization of the S-matrix has not been proved (cf. [7], where

the perturbative S-matrix with IR cutoff is shown to converge, yet its factorization

has not been proved).

The conjectured S-matrix of the sine-Gordon model has been studied in the

form factor programme [3, 4]. Certain matrix components of the pointlike local

fields (“form factors”) have been computed, yet the existence of the Wightman

aIn some papers where the model was rigorously constructed, this model is called the “massless”

sine-Gordon model. This refers to the fact that the Lagrangian L = 1
2
(∂µφ)2 +

m2
0

β2 cos(βφ) of the

model does not contain the mass term in the standard form m2φ2 in the kinetic part (even if such
a term arise from the expansion of the interaction term). The resulting theory, however, is believed
to obtain an isolated mass shell. The model corresponding to the Lagrangian with non-zero mass
term has been first constructed and the existence of a bound state has been proved [15].
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field is currently out of reach, because the expansion of the n-point functions in

terms of form factors is not under control. Here, we are not dealing with the sine-

Gordon model itself, but with a new model with the same fusion structure, that we

have not considered before. It arises as a modification of the “breather–breather”

S-matrix of the sine-Gordon model by the multiplication of a CDD factor. The

coupling constant is restricted here to a certain range of values, where there are

only two species of particles involved (two breathers). The breather sector for the

S-matrix of the sine-Gordon model has been extensively studied in the form factor

programme, see, e.g., [4] and references therein. Yet, the residues of the breather–

breather S-matrix have the wrong sign, and they must be contained in the larger

model with solitons (the Thirring model). Instead of it, we modify the breather–

breather S-matrix by a CDD factor which corrects the sign. In this way, there is

no obvious obstruction to relate directly (without adding solitons) these S-matrices

with a local quantum field theory.b

Indeed, we aim at a realization of this model associated with this new S-matrix in

the operator-algebraic framework, i.e. the Haag–Kastler axioms. In this framework,

we construct candidates for wedge-local observables by extending the construction

carried out in [13], see also [18, Sec. 3] for a general overview. As mentioned before,

this is a first step in the construction of strictly local observables, which would

be recovered subsequently, following this program, by taking intersection of the

algebras generated by observables in right and left wedges, and by using an abstract

argument based on a certain phase space property called modular nuclearity. The

question of strong commutativity of these wedge-local observables remains open

also in this model.

With the presence of poles in the S-matrix, the construction of wedge-local

observables must be studied in a case-by-case approach, in contrast to the homo-

geneous construction for the analytic S-matrices [19]. This is due to the idea that

simple poles in the S-matrix correspond to the bound states in the model, there-

fore, the wedge-local observables must reflect such fusing processes. We do this by

introducing the operators which we call the bound state operators. Furthermore,

higher order poles bring further complications and we need the existence of what

we call elementary particles. Our proof of wedge-locality is based on a number of

properties of the two-particle scattering function, and there is actually a infinite

family of examples satisfying them, therefore, we have correspondingly an infinite

family of candidates for quantum field theories.

As our work proceeds case-by-case, we warn the reader that the properties of the

S-matrix we assume are not generic. For example, any model whose S-matrix com-

ponents of the elementary particle (the particle which generates the whole particle

bLet us note that this does not mean that there is a classical Lagrangian corresponding to these
S-matrices. Actually, the family cannot be connected to the free field in a natural way, therefore,
it is difficult to relate our models to the free field by perturbation.
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spectrum by fusing process) contain double or higher poles are beyond the reach of

our present methods.

The paper is organized as follows. In Sec. 2, we will introduce the model and

fix the input scattering data, including the properties of the S-matrix. In Sec. 3,

we exhibit our general notation for multi-particle Fock space, partially following

Lechner–Schützenhofer [19]. In Sec. 4, we introduce the bound state operators χ(f),

χ′(g), we analyze their domains and symmetry properties as quadratic forms. In

Sec. 5, we construct the fields φ̃(f) and φ̃′(g) and show the weak wedge-commutati-

vity between the components for “elementary particles”. In Sec. 6, we conclude our

paper with some remarks.

2. The S-Matrix with Gap in the Coupling Constant

2.1. The factorizing S-matrix

The S-matrix describes the result of scattering in the asymptotic time. From phys-

ical requirements on quantum field theory, it follows that the S-matrix must satisfy

several properties, but the most general ones are not enough to specify the S-matrix.

In several models, the S-matrix is conjectured to be factorizing and additional prop-

erties are conjectured for specific models.

On the other hand, our goal is to construct Haag–Kastler nets having a given

function as the two-particle scattering function. For this purpose, we also need that

the given function satisfies certain properties. Yet, as we are not aiming at con-

structing models with Lagrangian, these properties might differ from those known

in the literature. They are rather justified by the fact that we can construct wedge-

observables satisfying the weak commutativity, hence opening the possibility for

the full Haag–Kastler net.

Our S-matrix is inspired by the sine-Gordon S-matrix and they differ only by an

analytic factor, hence let us give a brief overview of the latter. In the conjectured

integrable sine-Gordon model, the particle spectrum consists of a family of finitely

many particles called breathers {b�} [4]. It is also conjectured that, the sine-Gordon

model is equivalent to the Thirring model, where the breathers are the bound states

of soliton and the anti-soliton (the anti-particle of the soliton).

In the sine-Gordon model, the number of breathers depends on the coupling

constant 0 < ν < 1 in the expression of the Lagrangian [4]. We will consider

the coupling constant in the interval 2
3 < ν < 4

5 , and differently from the sine-

Gordon model, we do not consider solitons and interpret that there are only two

breathers b1, b2, by taking the maximal analyticity (see below) in a strict sense.c

The masses of the breathers are given by mb� = 2m sin �νπ
2 , where m > 0 and

� = 1, 2. These particles are neutral and hence the charge conjugate of b� (denoted

cIn the form factor programme [3], for a given 0 < ν < 1, there are K breathers, where K is the
largest integer such that Kν < 1. Especially, if 1

2
< ν < 1, there is only one breather b1, differently

from our case (we are indeed not considering the Thirring model).
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with b̄� in literature) is b� itself. The elastic two-particle scattering processes are

characterized by a matrix-valued function with only non-zero components SSG
b1b1

(θ),

SSG
b2b1

(θ), SSG
b1b2

(θ) and SSG
b2b2

(θ), where θ is the difference of the rapidities of the

incoming particles.

Our new S-matrix has the same particle spectrum as the breather–breather

sector of the sine-Gordon model, and admit components, Sb1b1(θ), Sb2b1(θ), Sb1b2(θ)

and Sb2b2(θ), similarly to those of the sine-Gordon model. We will give explicit

expressions for them in Sec. 2.2. The difference between Sbkb�(θ) and SSG
bkb�

(θ) is

another analytic function called CDD factors.

The particles b1, b2 may form a bound state in a scattering process. We declare

that the possible fusing processes are only of three types, (b1b1) → b2, (b1b2) → b1
and (b2b1) → b1. On the other hand, (b2b2) is not a fusion. The corresponding

imaginary rapidities of the fusing particles are denoted by θb2(b1b1) for the first fusion,

and θb1(b1b2), θ
b1
(b2b1)

for the second two types of fusion. Correspondingly, we do not

specify the rapidity θ(b2b2), since there is no fusion (b2b2). The actual values will be

given in Sec. 2.2.

In the same way as in [13], to these fusing processes there correspond the so-

called fusion angles, which determine the position of the simple poles in the compo-

nents Sb1b1(ζ), Sb1b2(ζ) and Sb2b1(ζ) in the physical strip 0 < Im ζ < π. Specifically,

for the fusion (b1b1) → b2, Sb1b1(ζ) has a simple pole at ζ = iθb2b1b1 , where

θb2b1b1 := θb2(b1b1) + θb2(b1b1)

(
= 2θb2(b1b1)

)
.

Similarly, Sb1b2(ζ), corresponding to the fusing process (b2b1) → b1, has a simple

pole at ζ = iθb1b1b2 , where

θb1b1b2 := θb1(b1b2) + θb1(b2b1),

and the same holds for the S-matrix component Sb2b1(ζ). We note that these fusing

rules for the angles follow the mass parallelogram depicted in [13, Fig. 1]. In our

construction, the poles in the component Sb2b2(ζ) do not matter. We will indeed

introduce the additional concept of elementary particle in analogy with [13], and

we assume the so-called “maximal analyticity” only for the elementary particle b1.

These angles correspond to s-channel poles and in the model under investiga-

tion they are explicitly given in Table 1. The S-matrix components Sb1b1 , Sb1b2 , Sb2b1

and Sb2b2 are meromorphic functions on C, which we present below. In addition,

we will introduce the matrix elements ηb2b1b1 , η
b1
b2b1

and ηb1b1b2 (there is no correspond-

ing matrix element for (b2b2), as this is not a fusion). In a general non-diagonal

case, they formally diagonalize the above S-matrix components at the correspond-

ing pole, and their eigenvalues correspond to the residues. They were also defined

in [3] and more explicitly in [22, before Eq. (1.13)] (see also [6, Sec. 4.1.2] for models

having the “breather sector”) and here we adopt a slightly modified convention, as

below.
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2.2. Scattering data

The input which specifies the S-matrix of our model is the following.

• The coupling constant ν, which is a parameter such that 2
3 < ν < 4

5 and

the mass parameter m > 0 which determines the masses of the breathers (see

below). For the value of ν in the range above, we consider two breathers, b1, b2.

Indeed, K = 2 is the largest integer such that Kν < 2.

• The S-matrix components: Sbkb�(ζ) = SSG
bkb�

(ζ)SCDD
bkb�

(ζ), where

SSG
b1b1(ζ) =

tan
1

2i
(ζ + iπν)

tan
1

2i
(ζ − iπν)

,

SSG
b1b2(ζ) = SSG

b2b1(ζ) =

tan
1

2i

(
ζ +

3iπν

2

)
tan

1

2i

(
ζ − 3iπν

2

) ·
tan

1

2i

(
ζ +

iπν

2

)
tan

1

2i

(
ζ − iπν

2

) ,

SSG
b2b2(ζ) =

tan
1

2i
(ζ + 2iπν)

tan
1

2i
(ζ − 2iπν)

·

(
tan

1

2i
(ζ + iπν)

)2

(
tan

1

2i
(ζ − iπν)

)2

are the breather–breather S-matrix components of the sine-Gordon model (see

[4, 22]), and SCDD
bkb�

are introduced as follows:

SCDD
b1b1 (ζ) :=

sinh
1

2
(ζ − iπ(ν − ν−))

sinh
1

2
(ζ + iπ(ν − ν−))

·
sinh

1

2
(ζ − iπ(ν + ν+))

sinh
1

2
(ζ + iπ(ν + ν+))

×
sinh

1

2
(ζ − iπ(1− ν + ν−))

sinh
1

2
(ζ + iπ(1− ν + ν−))

·
sinh

1

2
(ζ − iπ(1− ν − ν+))

sinh
1

2
(ζ + iπ(1− ν − ν+))

, (1)

and expecting the bootstrap equation (see condition (S6) below), we also define

SCDD
b1b2 (ζ) = SCDD

b2b1 (ζ)

:= SCDD
b1b1

(
ζ + iθb2(b1b1)

)
SCDD
b1b1

(
ζ − iθb2(b1b1)

)

=

sinh
1

2

(
ζ − iπ

(
3

2
ν − ν−

))
sinh

1

2

(
ζ + iπ

(
1

2
ν − ν−

)) ·
sinh

1

2

(
ζ − iπ

(
3

2
ν + ν+

))
sinh

1

2

(
ζ + iπ

(
1

2
ν + ν+

))
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×
sinh

1

2

(
ζ − iπ

(
1− 1

2
ν + ν−

))
sinh

1

2

(
ζ + iπ

(
1− 3

2
ν + ν−

)) ·
sinh

1

2

(
ζ − iπ

(
1− 1

2
ν − ν+

))
sinh

1

2

(
ζ + iπ

(
1− 3

2
ν − ν+

))

×
sinh

1

2

(
ζ − iπ

(
1

2
ν − ν−

))
sinh

1

2

(
ζ + iπ

(
3

2
ν − ν−

)) ·
sinh

1

2

(
ζ − iπ

(
1

2
ν + ν+

))
sinh

1

2

(
ζ + iπ

(
3

2
ν + ν+

))

×
sinh

1

2

(
ζ − iπ

(
1− 3

2
ν + ν−

))
sinh

1

2

(
ζ + iπ

(
1− 1

2
ν + ν−

)) ·
sinh

1

2

(
ζ − iπ

(
1− 3

2
ν − ν+

))
sinh

1

2

(
ζ + iπ

(
1− 1

2
ν − ν+

)) ,
(2)

SCDD
b2b2 (ζ) := SCDD

b1b2

(
ζ + iθb2(b1b1)

)
SCDD
b1b2

(
ζ − iθb2(b1b1)

)
= SCDD

b1b1

(
ζ + iθb2b1b1

)
SCDD
b1b1 (ζ)2SCDD

b1b1

(
ζ − iθb2b1b1

)
.

We do not need an explicit expression for SCDD
b2b2

, and we omit computing it. The

parameters ν− and ν+ satisfy the following set of conditions:

(i) ν−, ν+ > 0.

(ii) ν− ∈ ( 32ν − 1, 12ν
)
.

(iii) ν+ ∈ (0, 1− ν).

(iv) 1− ν = ν− + ν+.

For 2
3 < ν < 4

5 , there are such ν−, ν+. Indeed, by rewriting every condition (i)–

(iii) only in terms of ν+ through (iv) which is equivalent to ν− = 1− ν − ν+, we

obtain 0 < ν+ < 1−ν and 1− 3
2ν < ν+ < 2− 5

2ν, which have always a non-trivial

intersection for 2
3 < ν < 4

5 (on the other hand, in the interval 4
5 < ν < 1 there is

no such intersection).

Let us take such ν−, ν+. (iv) is equivalent to −( 12ν − ν−
)
= 1 − 3

2ν − ν+,

therefore, from (2) and sinh 1
2 (ζ + 2πi) = −sinh 1

2ζ, we have

SCDD
b1b2 (ζ) = SCDD

b2b1 (ζ)

=

sinh
1

2

(
ζ − iπ

(
3

2
ν − ν−

))
sinh

1

2

(
ζ + iπ

(
1

2
ν − ν−

)) ·
sinh

1

2

(
ζ − iπ

(
3

2
ν + ν+

))
sinh

1

2

(
ζ + iπ

(
1

2
ν + ν+

))

× −1

sinh
1

2

(
ζ + iπ

(
1− 3

2
ν + ν−

)) ·
sinh

1

2

(
ζ − iπ

(
1− 1

2
ν − ν+

))
1

1850010-7



April 17, 2018 12:18 WSPC/S0129-055X 148-RMP J070-1850010

D. Cadamuro & Y. Tanimoto

× 1

sinh
1

2

(
ζ + iπ

(
3

2
ν − ν−

)) ·
sinh

1

2

(
ζ − iπ

(
1

2
ν + ν+

))
1

×
sinh

1

2

(
ζ − iπ

(
1− 3

2
ν + ν−

))
sinh

1

2

(
ζ + iπ

(
1− 1

2
ν + ν−

)) ·
sinh

1

2

(
ζ − iπ

(
1− 3

2
ν − ν+

))
sinh

1

2

(
ζ + iπ

(
1− 1

2
ν − ν+

)) ,
and it is straightforward to see that these S-matrix components have no pole in

the physical strip 0 < Im ζ < π.

• There are only three possible fusing processes (b1b1) → b2, (b2b1) → b1 and

(b1b2) → b1. Note that (b2b2) is not a fusion. The corresponding rapidities of

particles θb2(b1b1), θ
b1
(b1b2)

and θb1(b2b1) are presented in the fusion table (Table 1).

We define the fusion angles by θγαβ := θγ(αβ) + θγ(βα) if (αβ) → γ is a two fusing

process, where α, β, γ = b1 or b2.

The data collected above satisfy the following properties (in general, these

properties involve the charge conjugation, but for breathers it is trivial, b̄1 = b1
and b̄2 = b2). In the following, k, � = 1, 2.

(S1) Meromorphy. The functions Sbkb�(ζ) are meromorphic on C.

(S2) Parity symmetry. Sbkb�(ζ) = Sb�bk(ζ).

(S3) Unitarity. Sbkb�(ζ)
−1 = Sb�bk(ζ̄).

(S4) Hermitian analyticity. Sbkb�(ζ) = Sbkb�(−ζ)−1.

(S5) Crossing symmetry. Sbkb�(iπ − ζ) = Sb�bk(ζ).

(S6) Bootstrap equation. Let α, β, γ, µ = b1 or b2. If (αβ) → γ is a fusing

process in Table 1, there holds

Sµγ(ζ) = Sµα(ζ + iθγ(αβ))Sµβ(ζ − iθγ(βα)).

(S7) Value at zero. Sbkbk(0) = −1.

(S8) Regularity. The components Sbkb� have only finitely many zeros in the

physical strip and there is κ > 0 such that ‖S‖κ := sup
{|Sbkb�(ζ)| : ζ ∈

R+ i(−κ, κ)} <∞ (the value of κ depends on the parameters ν, ν−, ν+).

Table 1. Fusions and angles.

Processes Rapidities of particles Fusion angles

(b1b1) → b2 θb2
(b1b1)

= πν
2

θb2b1b1
= πν

(b2b1) → b1, (b1b2) → b1 θb1
(b1b2)

= π(1 − ν), θb1
(b2b1)

= πν
2

θb1b2b1 = θb1b1b2 = π
(
1− ν

2

)

(b2b2) not a fusion

1850010-8
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(S9) Maximal analyticity (for b1).
d The component Sb1b1(ζ) has only two

simple poles in the physical strip. They are at iθb2b1b1 = iπν (called s-

channel pole) and iθ′b2b1b1
:= iπ − iθb2b1b1 = iπ(1 − ν) (called t-channel pole,

whose existence follows from crossing symmetry). Similarly, the component

Sb1b2(ζ) has also only two simple poles, i.e. an s-channel pole at iθb1b1b2 =

iπ
(
1− ν

2

)
and a t-channel pole at iθ′b1b1b2

:= iπ − iθb1b2b1 = iπν
2 .

(S10) No higher poles. Sb1bk have no double or higher poles in the physical

strip, k = 1, 2.

(S11) Positive residue (for b1). If (b1bk) → b� is a fusing process, then

Rb�
b1bk

:= Res
ζ=iθ

b�
b1bk

Sb1bk(ζ) ∈ iR+.

We note that while some of these properties are well known in the form factor

programme, see e.g., [3, Sec. 2] and [6, Sec. 4], for the proof of weak-wedge

commutativity we additionally require properties (S11) (see proof of Theorem 5.1

below) which is known for many models (e.g., [6, Sec. 4.1]), and (S7) (relevant for

the relations among the residues and their signs, see proof of (S11) and comments

before Eq. (4)) and the absence of double or higher order poles of the S-matrix

components Sb1bk , k = 1, 2, in the physical strip as mentioned above.

We are currently not able to treat directly observables generating particles

bk, k �= 1 from the vacuum. What we do is to try to construct observables gen-

erating the particle bk from the vacuum and hope that they generate the whole

Hilbert space. The assumption (S10) or an analogous assumptions exclude some

S-matrices in the literature, e.g., see [6, Sec. 4.2.4].

Proof of the properties.

• (S1)–(S6) and (S8). These properties are already satisfied by the S-matrix with

components SSGbkb� of the sine-Gordon model (and well-known in the literature).

It is also straightforward to check that SCDD
bkb�

(ζ) satisfy (S1)–(S5) and (S8). As

for (S6), we have by construction

SCDD
b1b2 (ζ) = SCDD

b1b1

(
ζ +

iπν

2

)
SCDD
b1b1

(
ζ − iπν

2

)
.

By the properties mentioned above (in particular, hermitian analyticity), we have

SCDD
b1b1 (ζ) = SCDD

b1b2

(
ζ +

iπν

2

)
SCDD
b1b1 (ζ − iπ(1− ν)).

Similarly, the bootstrap for b2 can be satisfied by construction.

Therefore, the products Sbkb�(ζ) = SSG
bkb�

(ζ)SCDD
bkb�

(ζ) satisfy them as well.

dWe call this “maximal analyticity” because each s-channel pole at iθ
b�
b1bk

has a corresponding

entry (b1bk) → b� in the fusion Table 1. It should be noted that this is required only for the
S-matrix components containing b1, the “elementary particle” defined below.
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• (S7). It is easy to see that SSG
bkbk

(0) = −1, while SCDD
bkbk

(0) = 1, therefore, we have

Sbkbk(0) = −1.

• (S9). The expression of SCDD
b1bk

(ζ) does not have poles in the physical strip, so the

pole structure of Sb1bk(ζ) is determined by SSG
b1bk

(ζ), which is easy to check (and

known in the literature).

• (S10) This is clear from the explicit expressions of SCDD
b1bk

(ζ) and SSG
b1bk

(ζ).

• (S11) is violated in the sine-Gordon model, indeed

RSGb2
b1b1

:= Res
ζ=iθ

b2
b1b1

SSG
b1b1(ζ) = 2i tan(πν) ∈ −iR+,

for our range of ν ∈ (23 ,
4
5 ).

On the other hand, by counting the zeros on the imaginary line and by

recalling that SCDD
b1b1

(0) = 1, we see that SCDD
b1b1

(iπν) < 0, hence we obtain

Rb2
b1b1

= Res ζ=iπνSb1b1(ζ) ∈ iR+ as desired. From this, it follows thatRb1
b1b2

∈ iR+

as well, since we will see below that Rb1
b1b2

= Rb2
b1b1

.

Remark 2.1. If ν < 2
3 , then Sb1b2 has one more pair of simple poles and vio-

lates (S9). If 4
5 < ν, combined with (ii) and (iv) (1 − 3

2ν < ν+ < 2− 5
2ν), it forces

that ν+ < 0 and the condition (S11) fails.

The residues of Sb1bk(ζ) will play an important role, so we give them symbols.

Rb�
b1bk

:= Res
ζ=iθ

b�
b1bk

Sb1bk(ζ), R′b�
b1bk

:= Res
ζ=iθ

′b�
b1bk

Sb1bk(ζ)

Rb�
bkb1

:= Res
ζ=iθ

b�
bkb1

Sbkb1(ζ), R′b�
bkb1

:= Res
ζ=iθ

′b�
bkb1

Sbkb1(ζ)

and it follows that Rb�
b1bk

= Rb�
bkb1

.

As before, we also introducee the symbols ηb2b1b1 and ηb1b2b1 by the following

formula:

ηb2b1b1 = i

√
2π
∣∣∣Rb2

b1b1

∣∣∣, ηb1b1b2 = i

√
2π
∣∣∣Rb1

b1b2

∣∣∣, ηb1b2b1 = i

√
2π
∣∣∣Rb1

b2b1

∣∣∣. (3)

Furthermore, by convention, we set to zero any residues and matrix elements of the

above type which do not correspond to a fusion in Table 1. From the properties

(S2)–(S7) of the S-matrix, there is a number of other properties of the fusion angles

and of the residues that follow, and we refer for the proofs to [13, Sec. 2.1]. We

would mention here only the following. The residue of the t-channel pole is related

to the residue of the s-channel pole by R′b2
b1b1

= −Rb2
b1b1

and R′b1
b2b1

= −Rb1
b1b2

, and

that by (S2), Rb1
b1b2

= Rb1
b2b1

. (S6) and (S7) imply that Rb2
b1b1

= Rb1
b1b2

. Furthermore,

eWe use a slightly different convention from [22]: For a fusing process (αβ) → γ, we have ηγαβ =√
2π ηγαβ

(Quella).
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if (b1bk) → b� is a fusing process, the fusion angles are also related by

π − θb�b1bk = θbk(b1b�), θbk(b�b1) = θb�(bkb1). (4)

From the equality Rb2
b1b1

= Rb1
b1b2

and the parity Rb1
b1b2

= Rb1
b2b1

, it also holds that

ηb2b1b1 = ηb1b1b2 = ηb1b2b1 .

Particle spectrum. Given the mass parameter m > 0, we define the masses of

the particles as

mb1 = 2m sin
νπ

2
, mb2 = 2m sin

2νπ

2
.

They satisfy the following “fusion” rule:

mb2 = mb1 cos θ
b2
(b1b1)

+mb1 cos θ
b2
(b1b1)

, mb1 = mb1 cos θ
b1
(b1b2)

+mb2 cos θ
b1
(b2b1)

,

(5)

which are a particular case of [13, Eq. (1)].

As b1 plays a special role in our methods, we call it an elementary particle

as in [13, Sec. 2.1].

3. The Physical Hilbert Space

From the scattering data of Sec. 2.2, we construct basic mathematical structures

for the wedge-observables in the quantum field theory on the S-symmetric Fock

space. The construction can be thought of as a kind of deformation of a free field

theory with the input given by the S-matrix. The single-particle Hilbert space

accommodates the two species of particles:

H1 =
⊕
k=1,2

H1,bk , H1,bk = L2(R, dθ).

An element Ψ1 ∈ H1 can be identified as a vector valued function with compo-

nents θ �→ Ψbk
1 (θ). On the unsymmetrized n-particle space H⊗n

1 , there is a unitary

representation Dn of the symmetric group Gn which, with θθθ := (θ1, . . . , θn), acts as

(Dn(τj)Ψn)
bkbkbk(θθθ) = Sbkj+1

bkj
(θj+1 − θj)Ψ

bk1 ···bkj+1
bkj ···bkn

n (θ1, . . . , θj+1, θj , . . . , θn),

where k1, . . . , kn ∈ {1, 2}, θθθ := (θ1, . . . , θn), bkbkbk := (bk1 , . . . , bkn) and τj ∈ Gn is the

transposition (j, j + 1) → (j + 1, j).

The full Hilbert space H is H :=
⊕∞

n=0 Hn with H0 = CΩ, where Hn = PnH⊗n
1

and Pn := 1
n!

∑
σ∈Gn

Dn(σ) is an orthogonal projection. The elements of H are L2-

sequences Ψ = (Ψ0,Ψ1, . . .), where Ψn are S-symmetric functions, namely invariant

under the action of Gn. Finally, we denote by D the linear hull (without closure)

of {Hn}.
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There is a unitary representation U of the proper orthochronous Poincaré group

P↑
+ on H which preserves each Hn,

U :=
⊕
n

Un, (U(a, λ)Ψ)bkbkbkn (θθθ) := exp

(
i

n∑
l=1

pbkl (θl) · a
)
Ψbkbkbk

n (θ1 − λ, . . . , θn − λ),

where pbkl (θ) = (mbkl
cosh θ,mbkl

sinh θ). Additionally, there is an antiunitary rep-

resentation of the CPT operator on H:

J :=
⊕
n

Jn, (JΨ)bkbkbkn (θθθ) := Ψ
bkn ...bk1
n (θn, . . . , θ1).

We consider test functions with multi-components whose components are chosen as

g ∈⊕2
k=1 S (R2) with gbk ∈ S (R2), and we adopt the following convention:

g±bk(θ) :=
1

2π

∫
d2x gbk(x)e

±ipbk
(θ)·x.

We note thatf if gbk is supported in WR, then g
+
bk
(θ) has a bounded analytic con-

tinuation in R + i(−π, 0) and |g+bk(θ + iλ)| decays rapidly as θ → ±∞ in the strip

for λ ∈ (−π, 0). Moreover, g+bk(θ − iπ) = g−bk(θ).
There is a natural action of the proper Poincaré group on R

2 and on the space

of test functions, denoted by g(a,λ), and it is compatible with the action on the

one-particle space:

(g(a,λ))
±
bk

= U1(a, λ)g
±
bk
.

The CPT transformation acts also on multi-components test functions, which

we denote by j, as g �→ gj, (gj)bk(x) := gbk(−x), and this is again compatible with

J1: (gj)
±
bk
(θ) = J1g

±
bk
(θ) = g±bk(θ).

Moreover, we introduce the complex conjugate of a multi-component test func-

tion by (g∗)bk(x) := gbk(x) and if g = g∗, then we say that g is real and it follows

that g±bk(ζ) = g∓bk(ζ) (cf. [19, Proposition 3.1]).

Zamolodchikov–Faddeev algebra

Similarly to [19], creators and annihilators z†bk(θ), zbk(θ) are introduced in the S-

symmetric Fock space H. For ϕ ∈ H1, their actions on vectors Ψ = (Ψn) ∈ D are

given by

(z(ϕ)Ψ)bkbkbkn (θθθ) =
√
n+ 1

∑
l=1,2

∫
dθ′ϕbl(θ′)Ψblbkbkbk

n+1(θ
′, θθθ),

z†(ϕ) = (z(ϕ))∗

(see [19, Proposition 2.4]) and they formally fulfill the following Zamolodchikov–

Faddeev algebra:

z†bk(θ)z
†
bl
(θ′) = Sbkbl(θ − θ′)z†bl(θ

′)z†bk(θ),

fOur convention of the Lorentz metric is a · b = a0b0 − a1b1.
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zbk(θ)zbl(θ
′) = Sbkbl(θ − θ′)zbl(θ

′)zbk(θ),

zbk(θ)z
†
bl
(θ′) = Sblbk(θ

′ − θ)z†bl(θ
′)zbk(θ) + δbkblδ(θ − θ′)�H.

They are opereator-valued distributions defined on D and bounded on each n-

particle space Hn when smeared by a test function.

Let f ∈⊕k=1,2 S (R2), we define

φ(f) := z†(f+) + z(J1f
−)=

∑
k=1,2

∫
dθ
(
f+
bk
(θ)z†bk(θ) + (J1f

−)bk(θ)zbk(θ)
).

This multi-component quantum fieldg is defined on the subspace D of H of vectors

with finite particle number and the properties listed in [19, Proposition 3.1] are

fulfilled, as long as the analyticity in the physical strip is not used. We also introduce

φ′, the reflected field defined for g ∈ S (R2),

φ′(g) := Jφ(gj)J = z′†(g+) + z′(J1g−),

where z′, z′† are the reflected creators and annihilators z′bk(θ) := Jzbk(θ)J and

z′†bk(θ) := Jz†bk(θ)J .
For the class of two-particle S-matrices S(θ) with components which are not

analytic in the physical strip θ ∈ R + i(0, π), we have [φ(f), φ′(g)] �= 0, namely,

even weak commutativity fails for φ, φ′. The goal of the present paper is to find

alternative wedge-observables for the S-matrix of the sine-Gordon model.

4. The Bound State Operator

We introduce an operator χ(f) similarly to [13], which we again call the “bound

state operator”. Its mathematical structure corresponds to our fusion table, which is

same as the breather–breather fusing processes in the sine-Gordon model with two

breathers. In this model, the “elementary particle” is b1, and we restrict ourselves

to the case where fb1 is the only non-zero component of a test function f .

4.1. Definitions and domains

We define χ(f) as an unbounded operator on the S-symmetric Fock spaceH. Recall

that for s < t, H2(Ss,t) is the Hardy space of analytic functions Ψ in Ss,t :=

R + i(s, t) such that Ψ(θ + iλ) is L2(R) as a function of θ for each λ ∈ (s, t) and

their L2-norm is uniformly bounded for λ. For a multi-component test function f

gIf the S-matrix S(ζ) were analytic in the physical strip, φ(f) could be considered as an observable
localized in the standard left wedge WL and if furthermore S is diagonal with additional regularity
conditions, one would be able to obtain a Haag–Kastler net with minimal length [19, 2]. In contrast,
our S-matrix has poles in the physical strip.
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whose only non-zero component is fb1 and is supported in WL, its action on H1 is

given as follows:

Dom(χ1(f)) := H2
(
S−θ

b2
(b1b1)

,0

)
⊕H2

(
S−θ

b1
(b2b1)

,0

)

(χ1(f)ξ)bk(θ) :=


−iηb1b1b2f+

b1

(
θ + iθb1(b1b2)

)
ξb2

(
θ − iθb1(b2b1)

)
if k = 1,

−iηb2b1b1f+
b1

(
θ + iθb2(b1b1)

)
ξb1

(
θ − iθb2(b1b1)

)
if k = 2,

(6)

where ηb2b1b1 , η
b1
b1b2

are the matrix elements introduced in Sec. 2.2, see Eq. (3). Actu-

ally, θb1(b2b1) = θb2(b2b1) =
πν
2 , hence Dom(χ1(f)) = H2

(
S−πν

2 ,0

)⊕2
, but we often keep

the notation above for homogeneity.

The full operator χ(f) is the direct sum of its components χn(f) on Hn:

χ(f) =
∞⊕

n=0

χn(f), χn(f) := nPn(χ1(f)⊗ �⊗ · · · ⊗ �)Pn. (7)

Similarly, and as in [13], we introduce the reflected bound state operator χ′(g) for a
test function g supported in the right wedge WR. Again, its one particle projection

for g having only one non-zero component gb1 is given by

Dom(χ′
1(g)) := H2

(
S
0,θ

b2
(b1b1)

)
⊕H2

(
S
0,θ

b1
(b2b1)

)

(χ′
1(g)ξ)bk(θ) :=


−iηb1b1b2g+b1

(
θ − iθb1(b1b2)

)
ξb2

(
θ + iθb1(b2b1)

)
if k = 1,

−iηb2b1b1g+b1
(
θ − iθb2(b1b1)

)
ξb1

(
θ + iθb2(b1b1)

)
if k = 2.

The full operator on H is given by

χ′(g) =
⊕
n

χ′
n(g), χ′

n(g) := nPn(�⊗ · · · ⊗ �⊗ χ′
1(g))Pn. (8)

This operator is related to χ by the CPT operator J :

χ′(g) = Jχ(gj)J.

To see this, let us consider the one-particle components. By recalling the expres-

sion (6),

(Jχ1(gj)Jξ)b�(θ) = (χ1(gj)Jξ)b�(θ)

= −iηb�b1bk(gj)+b1
(
θ + iθb�(b1bk)

)
(Jξ)bk

(
θ − iθb�(bkb1)

)
= −iηb�b1bkg+b1

(
θ − iθb�(b1bk)

)
ξbk

(
θ + iθb�(bkb1)

)
= (χ′(g)ξ)b�(θ),

where l = 1 or 2 and k = 2 or 1, respectively, and we used that −iηγαβ ∈ R. As Jn
commutes with Pn, we have χ′

n(g) = Jnχn(gj)Jn. Since the whole operators χ(g)

and χ′(g) are defined as the direct sum, the desired equality follows.
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We give some more explicit expressions of Eqs. (7) and (8) by applying them
to a n-particle vector which we assume to be S-symmetric and in the domain of
χ1(f) ⊗ � ⊗ · · · ⊗ � and of � ⊗ · · · ⊗ � ⊗ χ′

1(g), respectively. We have, from (S6),
(S2) and (S4) exactly as in [13, Sec. 3.2],

(χ(f)Ψn)
bk1 ···bkn (θ1, . . . , θn)

= −i
∑

1≤�≤n, α�=b1,b2

η
bk�
b1α�


 ∏

1≤j≤�−1

Sb1bkj

(
θ� − θj + iθ

bk�
(b1α�)

)

× f+b1

(
θ� + iθ

bk�
(b1α�)

)
Ψ

bk1 ...bk�−1
α�bk�+1

...bkn
n

(
θ1, . . . , θ�−1, θ� − iθ

bk�
(α�b1)

, θ�+1, . . . , θn
)
,

(9)

where k1, . . . , kn = 1, 2 and we applied our convention that ηγαβ = 0 if (αβ) → γ is

not a fusion, and terms containing such ηγαβ should be ignored (even if it contains

expressions such as Ψ(. . . , θ− iθγ(βα), . . .) which can be meaningless, as it might be

outside the domain of analyticity).
We have a similar expression for χ′(g):

(χ′(g)Ψn)
bk1 ...bkn (θ1, . . . , θn)

= −i
∑

1≤�≤n, α�=b1,b2

η
bk�
b1α�


 ∏

�+1≤j≤n

Sbkj b1
(θj − θ� + iθ

bk�
(b1α�)

)




× g+b1

(
θ� − iθ

bk�
(b1α�)

)
Ψ

bk1 ...bk�−1
α�bk�+1

...bkn
n

(
θ1, . . . , θ�−1, θ� + iθ

bk�
(α�b1)

, θ�+1, . . . , θn
)
.

(10)

4.2. Some properties

We remark here on some of the properties of χ(f), noting that analogous properties

hold by construction for χ′(g). For a multi-component real test function f whose

only non-zero component is fb1 which is real, we can prove that χ(f) is densely

defined and symmetric.

By construction, χ1(f) is densely defined. To show that χ1(f) is symmetric,

we take two vectors ξ, ψ ∈ Dom(χ1(f)) whose components have compact inverse

Fourier transform. We can show that these vectors form a core for χ1(f). By re-

calling that ηb�b1bk = 0 unless k = 1, � = 2 or k = 2, � = 1, we compute on vectors

ξ, ψ from the core:

〈ψ, χ1(f)ξ〉 = −
∑
k,�

iηb�b1bk

∫
dθ ψb�(θ)f+

b1

(
θ + iθb�(b1bk)

)
ξbk
(
θ − iθb�(bkb1)

)
= −

∑
k,�

iηb�b1bk

∫
dθ f+

b1

(
θ + iπ − iθb�(b1bk)

)
ψb�(θ)ξbk

(
θ − iθb�(bkb1)

)

= −
∑
k�

iηb�b1bk

∫
dθ f+

b1

(
θ + iπ − iθb�b1bk

)
ψb�

(
θ − iθb�(bkb1)

)
ξbk(θ)
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= −
∑
k�

iηbkb1b�

∫
dθ f+

b1

(
θ + iθbk(b1b�)

)
ψb�

(
θ − iθbk(b�b1)

)
ξbk(θ)

= 〈χ1(f)ψ, ξ〉,

where in the second equality we used the property f+(θ + iλ) = f+(iπ − θ − iλ)

explained at the end of Sec. 3. In the third equality, we used the Cauchy theorem and

performed the shift θ → θ+ iθb�(bkb1), since the integrand is analytic, bounded and

rapidly decreasing in the strip R+ i(0, π) due to ξ, ψ being the Fourier transforms

of compactly supported functions and the properties of f+. In the fourth equality

we used the properties π − θb2b1b1 = θb1(b1b2), θ
b2
(b1b1)

= θb1(b2b1) and ηb2b1b1 = ηb1b1b2 from

Sec. 2.2.

We can show that χn(f) is densely defined and symmetric by arguing as in

[13, Proposition 3.1].

Furthermore, the operator χ(f) is covariant with respect to the action U of the

Poincaré group P↑
+ on H that we introduced in Sec. 3 in the following sense. For a

test function f supported in WL and (a, λ) ∈ P↑
+ such that a ∈ WL, we can show

that AdU(a, λ)(χ(f)) ⊂ χ(f(a,λ)). The key to the proof are the relations (5), see

[13, Proposition 3.2] for details.

5. Weak Commutativity

We introduce the field

φ̃(f) = φ(f) + χ(f)

and its reflected field φ̃′(g) = φ′(g)+χ′(g) = Jφ̃(gj)J in a similar manner as in [13].

For f with support inWL and such that f∗ = f , the field φ̃(f) fulfills the properties

listed in [13, Proposition 4.1], and a similar result also holds for the reflected field

φ̃′(g). Regarding the domain of φ̃, we note that, since the domain of χ(f) contains

vectors with finite particle number and with certain analyticity and boundedness

properties (see Sec. 4), its domain is included in the domain of φ(f), and therefore

Dom(φ̃(f)) = Dom(χ(f)).

As already mentioned in [13], the field φ̃(f) has very subtle domain properties.

In particular, because of the poles of S, after applying this operator to a vector

(not the vacuum) in its domain, it generates a vector which is no longer in the

domain of φ̃′(g). For this reason, products of the form φ̃(f)φ̃′(g) and φ̃′(g)φ̃(f) are
not well defined, and we need to compute the commutator [φ̃(f), φ̃′(g)] between ar-

bitrary vectors Φ,Ψ from a suitable space (see below). Moreover, the commutator is

smeared with test functions f, g with only non-zero components corresponding to b1.

We start by considering vectors Ψbkbkbk
n in the domain discussed in Sec. 4.2. These

vectors admit analytic continuation in the first variable, and actually a meromorphic

continuation in each variable, to ±iπν2 . We also note that for certain components

Ψ
bk1 ···bkn
n (θ1, . . . , θn), specifically in the case where two of the indices are equal,

1850010-16



April 17, 2018 12:18 WSPC/S0129-055X 148-RMP J070-1850010

Wedge-local observables for factorizing S-matrix

bkj = bk�
= α, we can infer the existence of zeros by the following computation:

Ψ
bk1 ···α···α···bkn
n (θ1, . . . , θj , . . . , θ�, . . . , θn)

=

 �−1∏
p=j+1

Sbkpα(θp − θj)Sαbkp (θ� − θp)

Sαα(θ� − θj)

×Ψ
bk1 ···α···α···bkn
n (θ1, . . . , θ�, . . . , θj , . . . , θn).

Hence, by (S7) and (S4), Ψbkbkbk
n has a zero at θj−θ� = 0. However, this does not imply

existence of zeros for other components. Furthermore, in the proof of Theorem 5.1,

we will encounter certain poles of S in the computation. Hence, we consider vectors

from the following space:

D0 :=


Ψ ∈ D :

Ψbkbkbk
n is analytic in Rn + i

(
−πν

2
,
πν

2

)n
,

Ψbkbkbk
n (θθθ + iλλλ) ∈ L2(Rn) for λλλ ∈

(
−πν

2
,
πν

2

)n
,

with a uniform bound and has a zero at θj − θ� = 0,

±iπ(1− ν),±iπ
(
3ν

2
− 1

)
,± iπν

2
for all j, �


, (11)

where kj = 1, 2. Note that D0 ⊂ Dom(φ̃(f)) ∩Dom(φ̃′(g)).
One can see that D0 is dense as follows: we take

Cn(θθθ) :=
∏
λ∈Λ

∏
1≤j<k≤n

(θk − θj − iλ)(θj − θk − iλ)

(θk − θj − 2πi)(θj − θk − 2πi)
,

Λ =

{
0, π(1− ν), π

(
3ν

2
− 1

)
,
πν

2

}
,

and consider the set

{MCnPn(ξ1 ⊗ · · · ⊗ ξn), ξj ∈ Dom(χ1(f)) ∩Dom(χ′
1(g))},

where MCn is the multiplication operator by the function Cn.

As Cn is symmetric and it has zeros at the poles of S, the set above is a

subset of D0. Furthermore, asMCn has a dense range and commutes with Pn, MCn

maps a dense subset of PnH⊗n
1 to a dense subset of PnH⊗n

1 . The set {Pn(ξ1 ⊗
· · · ⊗ ξn), ξj ∈ Dom(χ1(f)) ∩ Dom(χ′

1(g))} is dense, therefore, so are its image

MCn(Dom(φ̃(f)) ∩Dom(φ̃′(g))) and D0. Thanks to (S8), [29, Proposition E.7] and

the properties of D0, we can safely use analytic continuations in the proof of our

main theorem.

Theorem 5.1. Let f and g be test functions supported in WL and WR, respectively,

and with the property that f = f∗ and g = g∗. Furthermore, assume that f, g have

components fbk = 0 and gbk = 0 for k �= 1. Then, for each Φ,Ψ in D0, we have

〈φ̃(f)Φ, φ̃′(g)Ψ〉 = 〈φ̃′(g)Φ, φ̃(f)Ψ〉.
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Proof. As in our previous works, we may assume that the vectors Φ and Ψ are

already S-symmetric. Furthermore, we recall that the domains of φ̃(f), φ̃′(g) coin-
cide with those of χ(f), χ′(g), respectively, hence we have the following equalities

as operators:

φ̃(f) = φ(f) + χ(f) = z†(f+) + χ(f) + z(J1f
−),

φ̃′(g) = φ′(g) + χ′(g) = z′†(g+) + χ′(g) + z′(J1g−).

Therefore, the (weak) commutator [φ̃(f), φ̃′(g)] expands into several terms that we

will compute individually.

The commutator [φ(f), φ′(g)]

This commutator has been computed in [19] and then simplified in the case

where S is diagonal in [13]. Here, we briefly recall its expression:

([φ′(g), φ(f)]Ψn)
bkbkbk(θ1, . . . , θn) =

∫
dθ′
(
g−b1(θ

′)

(
n∏

p=1

Sb1bkp (θ
′ − θp)

)
f+
b1
(θ′)

− g+b1(θ
′)

(
n∏

p=1

Sb1bkp (θ
′ − θp)

)
f−
b1
(θ′)

)

× (Ψn)
bkbkbk(θ1, . . . , θn).

By (S5) and the analytic properties of f±, g± explained in Sec. 3, the first term in

the integrand is equal to the second term up to a shift of +iπ in θ′. Since S has

some poles in the physical strip, we obtain residues from this difference.

We are considering test functions f, g whose only non-zero components cor-

respond to b1. In this case, the factor Sb1bk appearing in the expression of the

commutator have exactly two simple poles at ζ = iθ
bk′
b1bk

, iθ
′bk′
b1bk

with k = 1, k′ = 2

and k = 2, k′ = 1, as seen in the fusion table in Sec. 2.2.

With the notation R
bk′
b1bk

, R
′bk′
b1bk

which are non-zero only for k = 1, k′ = 2 and

k = 2, k′ = 1, by applying the Cauchy theorem, we get the contributions from the

above-mentioned poles:

1

2πi
([φ′(g), φ(f)]Ψn)

bkbkbk(θ1, . . . , θn)

=
∑
k=1,2

 n∑
j=1

Rbk
b1bkj

g−b1
(
θj + iθbkb1bkj

)
f+
b1

(
θj + iθbkb1bkj

)

×

 n∏
p=1
p
=j

Sb1bkp

(
θj + iθbkb1bkj

− θp

)
1850010-18
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+
n∑

j=1

R′bk
b1bkj

g−b1

(
θj + iθ′bkb1bkj

)
f+
b1

(
θj + iθ′bkb1bkj

)

×

 n∏
p=1
p
=j

Sb1bkp

(
θj + iθ′bkb1bkj − θp

)
 (Ψn)

bk1 ...bkn (θ1, . . . , θn).

More explicitly, the possible terms from the above expression are given by the

following.

1

2πi
([φ′(g), φ(f)]Ψn)

bkbkbk(θ1, . . . , θn)

=
n∑

j=1

δb1bkjR
b2
b1b1

g−b1
(
θj + iθb2b1b1

)
f+
b1

(
θj + iθb2b1b1

)

×

 n∏
p=1
p
=j

Sb1bkp

(
θj + iθb2b1b1 − θp

) (Ψn)
bk1 ...b1...bkn (θ1, . . . , θj , . . . , θn) (12a)

+
n∑

j=1

δb2bkjR
′b1
b1b2

g−b1
(
θj + iθ′b1b1b2

)
f+
b1

(
θj + iθ′b1b1b2

)

×

 n∏
p=1
p
=j

Sb1bkp

(
θj + iθ′b1b1b2 − θp

) (Ψn)
bk1 ...b2...bkn (θ1, . . . , θj, . . . , θn) (12b)

+

n∑
j=1

δb2bkjR
b1
b1b2

g−b1
(
θj + iθb1b1b2

)
f+
b1

(
θj + iθb1b1b2

)

×

 n∏
p=1
p
=j

Sb1bkp

(
θj + iθb1b1b2 − θp

) (Ψn)
bk1 ...b2...bkn (θ1, . . . , θj , . . . , θn) (12c)

+
n∑

j=1

δb1bkjR
′b2
b1b1

g−b1

(
θj + iθ′b2b1b1

)
f+
b1

(
θj + iθ′b2b1b1

)

×

 n∏
p=1
p
=j

Sb1bkp

(
θj + iθ′b2b1b1 − θp

) (Ψn)
bk1 ...b1...bkn (θ1, . . . , θj, . . . , θn). (12d)

The commutator [χ(f), χ′(g)]

We compute this commutator between vectors Ψ,Φ with only n-particle com-

ponents and with f, g having only non-zero components of type b1. Recall the

expressions of χ(f) and χ′(g) in Sec. 4, where they are written as the sum of n

operators acting on different variables, therefore, there are n2 terms in each of the
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scalar products 〈χ′(g)Φ, χ(f)Ψ〉 and 〈χ(f)Φ, χ′(g)Ψ〉. Of these, one can show that

the n(n − 1) terms in which the above-mentioned operators act on different vari-

ables give exactly the same contribution, exactly as in [13] (this time the operators

χ1(f) and χ
′
1(g) are not positive, but χ(f)⊗�⊗ · · ·⊗� and �⊗ · · ·⊗�⊗χ′

1(g) are

strongly commuting, hence we may consider their polar decomposition), which we

denote by C, therefore, they cancel in the commutator and hence are irrelevant.

Following [13, p. 35], we exhibit the relevant parts (kkk := k1, . . . , kn where each

kj can take 1, 2. Furthermore, if kj = 1, then we put k′j = 2 and if kj = 2, then

k′j = 1):

〈χ′(g)Φ, χ(f)Ψ〉 − C

=

n∑
j=1

∑
kkk

αj ,βj=1,2

∫
dθ1 . . . dθn η

bkj
b1bαj

×
(

j−1∏
p=1

Sb1bkp

(
θj − θp + iθ

bkj
(b1bαj

)

))
f+
b1

(
θj + iθ

bkj
(b1bαj

)

)
× (Ψn)

bk1 ...bαj
...bkn

(
θ1, . . . , θj − iθ

bkj
(bαj

b1)
, . . . , θn

)
η
bkj
b1bβj

×
 n∏

q=j+1

Sb1bkq

(
θj − θq + iθ

bkj
(b1bβj

)

)
× g+b1

(
θj + iθ

bkj
(b1bβj

) − iπ
)
(Φn)

bk1 ...bβj
...bkn

(
θ1, . . . , θj + iθ

bkj
(bβj

b1)
, . . . , θn

)
=

n∑
j=1

∑
kkk

∫
dθ1 . . . dθn η

bkj
b1bk′

j

×
(

j−1∏
p=1

Sb1bkp

(
θj − θp + iθ

bkj
(b1bk′

j
)

))
f+
b1

(
θj + iθ

bkj
(b1bk′

j
)

)
× (Ψn)

bk1 ...bk′
j
...bkn

(
θ1, . . . , θj − iθ

bkj
(bk′

j
b1)
, . . . , θn

)
η
bkj
b1bk′

j

×
 n∏

q=j+1

Sb1bkq

(
θj − θq + iθ

bkj
(b1bk′

j
)

)
× g+b1

(
θj + iθ

bkj
(b1bk′

j
) − iπ

)
(Φn)

bk1 ...bk′
j
...bkn

(
θ1, . . . , θj + iθ

bkj
(bk′

j
b1)
, . . . , θn

)
=

n∑
j=1

∑
kkk

∫
dθ1 . . . dθn η

bkj
b1bk′

j

×
(

j−1∏
p=1

Sb1bkp

(
θj − θp + iθ

bkj
b1bk′

j

))
f+
b1

(
θj + iθ

bkj
b1bk′

j

)
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× (Ψn)
bk1 ...bk′

j
...bkn (θ1, . . . , θj , . . . , θn)η

bkj
b1bk′

j

×
 n∏

q=j+1

Sb1bkq

(
θj − θq + iθ

bkj
bk′

j
b1

)
× g+b1

(
θj + iθ

bkj
b1bk′

j

− iπ
)
(Φn)

bk1 ...bk′
j
...bkn (θ1, . . . , θj, . . . , θn),

where we used (9) and (10), exploited that ηb2b1b1 , η
b1
b1b2

are the only non-zero com-

binations, then performed the shift θj → θj + iθ
bkj
(bk′

j
b1)

in the third equality and

used θγαβ = θγ(αβ) + θγ(βα). This shift in θj is allowed by the analyticity and decay

properties of f+, g+ at infinity in the strip, [12, Lemma B.2] and the property of

Ψ,Φ ∈ D0 explained before Theorem 5.1: more precisely, depending on whether

bkp = b1 or b2 (respectively for bkq ), Sb1bkp (ζ) has a pole at iπν and iπ(1− ν), or at
iπν2 and i(1− πν

2 ), and there are no other poles by the assumptions (S9)(S10). As

θj → θj+iθ
bkj
(bk′

j
b1)

= θj+i
πν
2 (this does not depend on bkj : see Table 1), the integral

contour might move across the pole when θj → θj + iπ(1− ν), θj → θj + iπ(3ν2 − 1)

or θj → θj + iπν2 , depending on the combination of bkp and bkj . But these poles are

cancelled by the zeros of Ψn,Φn ∈ D0, hence the shift is legitimate and the result

is L1 (the integral is the inner product of two L2-functions).

Similarly, we can compute the other term 〈χ(f)Φ, χ′(g)Ψ〉 in the commutator

[χ(f), χ′(g)] and obtain:

〈χ(f)Φ, χ′(g)Ψ〉 − C

=

n∑
j=1

∑
kkk

αj ,βj=1,2

∫
dθ1 . . . dθn η

bkj
b1bαj

(
j−1∏
p=1

Sb1bkp

(
θj − θp + iθ

bkj
(b1bαj

)

))

× f+
b1

(
θj + iθ

bkj
(b1bαj

)

)
(Φn)

bk1 ...bαj
...bkn

(
θ1, . . . , θk − iθ

bkj
(bαj

b1)
, . . . , θn

)
× η

bkj
b1bβj

 n∏
q=j+1

Sbkq b1

(
θq − θj + iθ

bkj
(b1bβj

)

)
× g+b1

(
θj − iθ

bkj
(b1bβj

)

)
(Ψn)

bk1 ...bβj
...bkn

(
θ1, . . . , θj + iθ

bkj
(bβj

b1)
, . . . , θn

)
=

n∑
j=1

∑
kkk

∫
dθ1 . . . dθn η

bkj
b1bk′

j

(
j−1∏
p=1

Sb1bkp

(
θj − θp − iθ

bkj
bk′

j
b1

+ iπ
))

× f+
b1

(
θj − iθ

bkj
bk′

j
b1

+ iπ
)
(Φn)

bk1 ...bk′
j
...bkn (θ1, . . . , θj , . . . , θn)
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× η
bkj
b1bk′

j

 n∏
q=j+1

Sb1bkq

(
θj − θq − iθ

bkj
b1bk′

j

+ iπ
) g+b1

(
θj − iθ

bkj
b1bk′

j

)
× (Ψn)

bk1 ...bk′
j
...bkn (θ1, . . . , θj , . . . , θn),

where we used (9), (10) and θγαβ = θγ(αβ) + θγ(βα), we performed the shift θj →
θj − iθ

bkj
(bk′

j
b1)

and we used properties (S3)–(S5). As before, we can perform the shift

in θj using the analyticity and decay properties of f+, g− at infinity in the strip,

[12, Lemma B.2] and the zeros of the vectors Ψ,Φ ∈ D0. This also guarantees the

fact that the result is still L1.

Since there are only two types of fusing processes (b1b1) → b2 and (b1b2) → b1
in the model, the possible contributions to the expectation values above are

〈χ′(g)Φ, χ(f)Ψ〉 − C

=

n∑
j=1

∑
kkk

ηb2b1b1η
b2
b1b1

∫
dθ1 . . . dθn

j−1∏
p=1

Sb1bkp

(
θj − θp + iθb2b1b1

)
× f+

b1

(
θj + iθb2b1b1

)
(Ψn)

bk1 ...b1...bkn (θ1, . . . , θj , . . . , θn)

×
n∏

q=j+1

Sb1bkq

(
θj − θq + iθb2b1b1

)
× g+b1

(
θj + iθb2b1b1 − iπ

)
(Φn)

bk1 ...b1...bkn (θ1, . . . , θj, . . . , θn) (13a)

+

n∑
j=1

∑
kkk

ηb1b1b2η
b1
b1b2

∫
dθ1 . . . dθn

j−1∏
p=1

Sb1bkp

(
θj − θp + iθb1b1b2

)
× f+

b1

(
θj + iθb1b1b2

)
(Ψn)

bk1 ...b2...bkn (θ1, . . . , θj , . . . , θn)

×
n∏

q=j+1

Sb1bkq

(
θj − θq + iθb1b2b1

)
× g+b1

(
θj + iθb1b1b2 − iπ

)
(Φn)

bk1 ...b2...bkn (θ1, . . . , θj, . . . , θn), (13b)

and similarly,

〈χ(f)Φ, χ′(g)Ψ〉 − C

=
n∑

j=1

∑
kkk

ηb2b1b1η
b2
b1b1

∫
dθ1 . . . dθn

j−1∏
p=1

Sb1bkp

(
θj − θp − iθb2b1b1 + iπ

)
× f+

b1

(
θj − iθb2b1b1 + iπ

)
(Φn)

bk1 ...b1...bkn (θ1, . . . , θj , . . . , θn)

×
n∏

q=j+1

Sb1bkq

(
θj − θq − iθb2b1b1 + iπ

)
g+b1

(
θj − iθb2b1b1

)
× (Ψn)

bk1 ...b1...bkn (θ1, . . . , θj , . . . , θn) (14a)
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+

n∑
j=1

∑
kkk

ηb1b1b2η
b1
b1b2

∫
dθ1 . . . dθn

j−1∏
p=1

Sb1bkp

(
θj − θp − iθb1b2b1 + iπ

)
× f+

b1

(
θj − iθb1b2b1 + iπ

)
(Φn)

bk1 ...b2...bkn (θ1, . . . , θj , . . . , θn)

×
n∏

q=j+1

Sb1bkq

(
θj − θq − iθb1b1b2 + iπ

)
g+b1

(
θj − iθb1b1b2

)
× (Ψn)

bk1 ...b2...bkn (θ1, . . . , θj , . . . , θn). (14b)

Now, the commutator [φ′(g), φ(f)] cancels the commutator [χ(f), χ′(g)]: more pre-

cisely, (12a) cancels (13a), (12b) cancels (14b), (12c) cancels (13b), (12d) cancels

(14a). This uses the following properties:

• The properties of fusion angles and residues, such as θb1b1b2 := θb1(b1b2) + θb1(b2b1),

θ′b2b1b1
= π − θb2b1b1 , θ

′b1
b1b2

= π − θb1b2b1 , R
′b2
b1b1

= −Rb2
b1b1

and R′b1
b2b1

= −Rb1
b1b2

.

• Equation (3) and Rb2
b1b1

, Rb1
b1b2

∈ iR+, hence
(
ηb2b1b1

)2
= −2πiRb2

b1b1
and

(
ηb1b1b2

)2
=

−2πiRb1
b1b2

.

• f+
b1
(θ + iπ) = f−

b1
(θ), g+b1(θ − iπ) = g−b1(θ).

Most of these properties are from Sec. 2.2.

The commutators [χ(f), z′(J1g−)] and [z(J1f
−), χ′(g)]

Using the expressions of χ(f) and χ′(g) in (9) and (10), we can also compute

these commutators as in [13]. Noting that ηb2b1b1 , η
b1
b1b2

are the only possible non-zero

combinations, we find

([χ(f), z′(J1g−)]Ψn)
bk1 ...bkn−1 (θ1, . . . , θn−1)

=
√
n iηb1b1b2

∫
dθ′ g−b1(θ

′)f+
b1

(
θ′ + iθb1(b1b2)

)

× (Ψn)
b2bk1 ...bkn−1 (θ′ − iθb1(b2b1), θ1, . . . , θn−1)

n−1∏
j=1

Sb1bkj
(θ′ − θj)

,
which it can be rewritten by shifting θ′ → θ′ + iθb1(b2b1) as follows

([χ(f), z′(J1g−)]Ψn)
bk1 ...bkn−1 (θ1, . . . , θn−1)

=
√
n iηb1b1b2

∫
dθ′g−b1

(
θ′ + iθb1(b2b1)

)
f+
b1

(
θ′ + iθb1b1b2

)

× (Ψn)
b2bk1 ...bkn−1 (θ′, θ1, . . . , θn−1)

n−1∏
j=1

Sb1bkj

(
θ′ + iθb1(b2b1) − θj

). (15)
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For the shift in θ′, as it is based on an application of the Cauchy Theorem, it uses

the analyticity and decay properties of f+, g− at infinity in the strip, [12, Lemma

B.2] and the fact that the poles of the S-factors in the product above are cancelled

by the zeros of the vector Ψn ∈ D0. More precisely, for bkj = b1, Sb1b1(ζ) has a pole

at ζ = iπ − iθb2b1b1 = iπ(1 − ν). Noting that π(1 − ν) < θb1(b2b1) =
πν
2 for 2

3 < ν < 4
5 ,

the zero of the factor Cn at iπ(1 − 3ν
2 ) becomes relevant here (see below (11)),

while the pole at ζ = iθb2b1b1 = iπν is not reached by the shift by iπν
2 in θ′. The

pole of Sb1b2(ζ) at ζ = iπν2 = iθb1(b2b1) is cancelled by the zeros of Ψn arising from

S-symmetry (see the observations above (11)), as in this case bkj = b2, while the

pole at ζ = iπ(1 − ν
2 ) is not reached by the shift by iπν

2 in θ′. There are no other

poles by the assumptions (S9) and (S10). This also guarantees the fact that the

result is still L2. Similarly, we have

([z(J1f
−), χ′(g)]Ψn)

bk1 ...bkn−1 (θ1, . . . , θn−1)

= −√
n iηb1b1b2

∫
dθ′f−

b1
(θ′)g+b1

(
θ′ − iθb1(b1b2)

)

× (Ψn)
b2bk1 ...bkn−1

(
θ′ + iθb1(b2b1), θ1, . . . , θn−1

)n−1∏
j=1

Sbkj b1

(
θj − θ′ + iθb1(b1b2)

),
and by shifting θ′ → θ′ − iθb1(b2b1) we can rewrite this expression as

([z(J1f
−), χ′(g)]Ψn)

bk1 ...bkn−1 (θ1, . . . , θn−1)

= −√
n iηb1b1b2

∫
dθ′f−

b1

(
θ′ − iθb1(b2b1)

)
g+b1

(
θ′ − iθb1b1b2

)
× (Ψn)

b2bk1 ...bkn−1 (θ′, θ1, . . . , θn−1)

n−1∏
j=1

Sbkj b1

(
θj − θ′ + iθb1b1b2

)
= −√

n iηb1b2b1

∫
dθ′f+

b1

(
θ′ + iπ − iθb1(b2b1)

)
× g−b1

(
θ′ + iπ − iθb1b1b2

)
(Ψn)

b2bk1 ...bkn−1 (θ′, θ1, . . . , θn−1)

×
n−1∏

j=1

Sbkj b1

(
θ′ − θj + iπ − iθb1b1b2

), (16)

where we used the property of f−, g+ under π-translation and (S5). As before, the

shift in θ′ is allowed as the poles of the S-factors in the product above are cancelled

by the zeros of Ψn ∈ D0. More precisely, Sb2b1(ζ) has a pole at iπν2 and this is

crossed as θ′ is shifted by iπ(1 − ν
2 ), hence the zero of the factor Cn at iπ(1 − ν)

becomes relevant, while the pole at ζ = iπ(1 − ν
2 ) is cancelled by the zeros of Ψn

arising from S-symmetry. The pole of Sb1b1(ζ) at ζ = iπ(1−ν) is crossed when θ′ is
not shifted, hence we need the zero of the factor Cn at iπν2 to compensate it, while

the pole at ζ = iπν is not reached by the shift.

1850010-24



April 17, 2018 12:18 WSPC/S0129-055X 148-RMP J070-1850010

Wedge-local observables for factorizing S-matrix

The commutators (15) and (16) cancel each other due to the property π−θb1b1b2 =

θb1(b2b1) (see Eq. (4)).

The commutators [z†(f+), χ′(g)] and [χ(f), z′†(g+)]

These commutators are the adjoints of the previous ones, therefore, they cancel

weakly by the above computations.

This shows the weak-commutativity property of the fields φ̃(f) and φ̃′(g). While

being already a major step towards the construction of the model in the algebraic

setting, it would be important to obtain a proof of strong commutativity of these

fields in order to construct the corresponding wedge-algebras and to prove the

existence of strictly local observables through intersection of a shifted right and left

wedge. The proof of strong commutativity is however a hard task because of the

subtle domain properties of φ̃(f) as mentioned at the beginning of Sec. 5. We are in

fact able to show that φ̃(f) is a symmetric quadratic form on a suitable domain of

vectors, but it is not self-adjoint. Therefore, for the proof of strong commutativity,

we would need not only to prove existence of self-adjoint extensions of the two fields,

but also to select the ones that strongly commute. Some results in this direction

are recently available in [28, 29] in the case of scalar S-matrices with bound states

(e.g., the Bullough–Dodd model), but these techniques are hard to extend to more

general S-matrices.

Remark 5.2. Our proof depends only on the properties summarized in Sec. 2.2 and

not on the specific expressions of the S-matrix. This implies that our construction

and the proof of weak commutativity work as well if one considers S-matrix such as

Sbkb�(ζ) = SSG
bkb�

(ζ)

N∏
j=1

Sj,CDD
bkb�

(ζ),

where Sj,CDD
bkb�

(ζ) is a factor as in (1) with (possibly different) parameters νj,±,
and N is an odd number (this is necessary to maintain (S11)). Therefore, we have

abundant candidates for integrable QFT with the fusion structure considered in

this paper.

6. Concluding Remarks

We have investigated the construction of integrable models with bound states in a

series of two papers [12, 13]. In the second paper, the construction methods intro-

duced in [12] are extended to a class of models with several particle species and “di-

agonal” S-matrices with poles in the physical strip, which includes the Z(N)-Ising

model and the affine-Toda field theories as examples. This construction is based on

finding observables localized in unbounded wedge-shaped regions to avoid infinite

series that characterize strictly local operators. These strictly local observables,
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with some regularity condition on S, should be recovered by taking intersection of

the algebras generated by observables in right and left wedges (cf. [17, 2]).

Here we considered a model which arises as a deformation of the sine-Gordon

model with a parameter ν which corresponds to a certain range of the coupling

constant, 2
3 < ν < 4

5 , with an additional CDD factor. As for the proof of weak

wedge-locality, we need only some properties of the S-matrix components, and there

are abundant examples, as we pointed out in Remark 5.2. As far as we know, that

QFTs with such S-matrices have never appeared in the literature. It is an interesting

problem to find (or exclude) a Lagrangian description of them (note that the CDD

factors appearing here are necessary and our S-matrix cannot be considered as a

perturbation of the sine-Gordon model in the sense of, e.g., [25]). In this respect, let

us observe that we could find the sign-adjusting CDD factor only for the interval
2
3 < ν < 4

5 , while ν = 1 corresponds to the (doubled) Ising model. As there is a gap
4
5 ≤ ν < 1, this casts doubt that a naive perturbation argument should work.

The resulting theory describes two breathers b1, b2 subject to elastic scattering

and with the property that they can also fuse to form a bound state (the fusing pro-

cesses are (b1b1) → b2, (b1b2) → b1 and (b2b1) → b1). This model falls again into the

class of “diagonal” S-matrices, and in this sense, it can be regarded as an extension

of the previous techniques investigated in [13]. This fusion table is the same as the

restriction of the table of the Thirring model [24, 3] to the breather–breather sector

(note that it is called “the sine-Gordon model” in the literature in the form factor

programme, e.g., [3], assuming the equivalence between them). Yet, the original

breather–breather S-matrix of the Thirring model does not satisfy the positivity

of residues (see Sec. 2.2), hence cannot be considered as a separate model. In this

sense, the present paper highlights the really necessary properties of the S-matrix

for wedge-locality and contains a new hint in the construction of interacting quan-

tum field theories in the algebraic framework.

An interesting problem would be an extension of such a construction to in-

tegrable models with “non-diagonal” S-matrices, e.g., the Thirring model [3] or

SU(N)-invariant S-matrices [5]. It would be interesting to show that weak wedge-

commutativity holds at least for some of these models. They are currently under

investigation. It should be noted that commutation relations of pointlike fields have

not been proved for these models.h Our methods represent a complementary way

of proving existence of local observables, which may work if the S-matrix compo-

nents concerning elementary particles (solitons in the case of the Thirring model)

have only simple poles, yet here several analytic questions (such as the domains of

unbounded operators and modular nuclearity) must be addressed.

On the other hand, there are some factorizing S-matrices which do not satisfy

the assumption (S10) or an analogous assumption [6, Sec. 4.2.4]. Constructing ob-

servables for such models, or in more generally, observables generating particles

with higher-poles in the S-matrix components is an interesting open problem.

hMichael Karowski, private communication.
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Table 2. Ranges of the coupling constant ν in the sine-Gordon model.

Range of ν The residue of pole of SSG
b1b1

Comment

4/5 < ν < 1 −iR+ No adjusting CDD factor found

2/3 < ν < 4/5 −iR+ Adjusting CDD factors found

1/2 < ν < 2/3 −iR+ There are three breathers if one requires the
maximal analyticity within breathers.

No adjusting CDD factor found

0 < ν < 1/2 iR+ There is a breather bk for which

Res
ζ=iθ

bk+1
b1bk

SSG
b1bk

(ζ) ∈ −iR+

As we mentioned in Sec. 2.2, the S-matrix studied in the present paper is a

deformation of the S-matrix of the sine-Gordon model in the range of the cou-

pling constant 2
3 < ν < 4

5 by a CDD factor. The reason for the CDD factor is the

following: while the fusion table of the breather–breather S-matrix is closed un-

der fusions, these S-matrix components cannot be considered as a separate model

because the residues of some poles in the physical strip are on −iR+ (see com-

ment before Eq. (3)), which is not compatible with our proof. We note that also in

the proof of local commutativity theorem in the form factor programme [22] this

property is used, therefore, it must be adjusted in some way. Varying the range

of the coupling constant ν, the situation is as pictured in Table 2. In particular,

as explained in Sec. 2.2, for 4
5 < ν < 1 there are no values of ν− and ν+ which

fulfill the required conditions after Eq. (2), and our simplest form for a CDD factor

does not work. For 1
2 < ν < 2

3 , there are three breathers in the model (if we take

the maximal analyticity literally), and both SSG
b1b1

and SSG
b2b1

have s-channel poles

with residues in −iR+. We could not find a suitable CDD factor adjusting all the

residues. Finally, in the range 0 < ν < 1
2 there is an increasing number of breathers

by maximal analyticity, and while Res
ζ=iθ

b2
b1b1

SSG
b1b1

(ζ) ∈ iR+, there are other S-

matrix components whose residues are in −iR+. We could not find a suitable CDD

factor for this range as well.

Finally, the domain of the operator χ(f) is considerably small. Indeed, one

can show that even the one-particle component χ1(f) is not self-adjoint, see [28];

moreover, the domains of χn(f) must be somehow enlarged compensating the fac-

tor Cn. We believe that these domain issues are fundamentally related with the

complicated fusing processes of the models, hence deserve a separate study.
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