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Towards more 2d QFTs

Construct Haag-Kastler nets for integrable models for scalar factorizing
S-matrices with poles (bound states).
Massive, non-perturbative, interacting quantum field theories in d = 2.

Methods and results

Take the conjectured S-matrix with poles as an input, construct first
observables localized in wedges, then prove the existence of local
observables indirectly.
o Observables in wedge: ¢(¢) = z(€) + x(&) + z(¢)
(c.f. Lechner ‘08, ¢(f) = zI(f*) + z(f*) for S-matrix without poles).

@ Observables in double cones by intersection.

Duality, solitons, bound states, quantum groups...
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Overview of the strategy

e Haag-Kastler net ({{A(0)}, U,Q): local observables A(O), spacetime
symmetry U and the vacuum €.

o Wedge-algebras first: construct A(Wg), U, Q from wedge-local
fields, then take the intersection

A(Dap) = U(a)A(Wr)U(a)" N U(b)A(Wr) U(b)*

The intersection is large enough if modular nuclearity or
wedge-splitting holds.
o Wedge-local observables: ¢, @ such that [/, ei¢/(”)] =0.
Examples: scalar analytic factorizing S-matrix (Lechner '08), twisting by
inner symmetry (T.'14), diagonal S-matrix (Alazzawi-Lechner '17)...

More example? S-matrices with poles.
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Standard wedge and double cone
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Analytic factorizing S-matrix

@ Pointlike fields are hard. Larger regions contain better observables.
o Wedge: Wy 1, = {(t,x) : x > £[t|}.

Wedge-local fields in integrable models (Schroer, Lechner)

e S: factorizing S-matrix (without poles).

o z', z: Zamolodchikov-Faddeev algebra (creation and annihilation
operators defined on S-symmetric Fock space).

o ¢(f) = zI(f*) + z(ft), supp f C Wy, is localized in W4,

@ The observables A(W,) in Wi, are generated by ¢(f).
e For diamonds D, p,, define A(D, ) = AW, + a) N A(WRr + b).

@ Examine the boost operator to show the existence of local operators
(modular nuclearity (Buchholz, D'antoni, Longo, Lechner)).
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Wedge observables for analytic S-matrix

e Input: analytic function S: R+ i(0,7) — C,
S(0) = S(0)"* = S(—0) = S(6 + i), O €R.

o S-symmetric Fock space: Hy = L%(R, df), H, = P,HY", where P, is
the projection onto S-symmetric functions:

\Un(017 U 7017) — 5(0k+1 - ek)\un(e:h T 70k+179k5 e ’an)‘

@ S-symmetrized creation and annihilation operators (ZF-algebra):
z4(§) = Pal ()P, 2(¢) = Pa(¢)P, P = @, P
o Wedge-local field (Lechner ‘03):  ¢(f) = zI(f+) + z(h1f7),

() = /dx e POf(x), p(6) = (mcosh B, mcoshh),

J1 is the one-particle CPT operator, ¢/(g) = Jo(gj)J, gj(x) = g(—x).
if supp £ C Wi, suppg C Wi, then [e90), 6@/ @] — 0
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S-matrix with poles

If S has a pole:

[o(f), ¢'(&)IV1(61) =
_ / d6 (F+(0)g=(8)S(61 — 0) — (8 + mi)g— (6 + 7)S(61 — 6 + i)

x W1(61)
obtains the residue of S and does not vanish.
e Example (the Bullough-Dodd model): poles at 6 = %"7 % residues
“R,R
5.(0) = tanh% <9+ 237”> . tanh% 9 _ (1735)7T') tanh % (9 _ (]_<F3€)7TI>’
tanh 1 ( _ %) tanh (9 (1—35)7”) hi (0 N (1+s)7rl)

+
where 0 <c < 3. S.(0)=5.(0+%) S (6-5).

New wedge-local field?
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The bound state operator

S: two-particle S-matrix, poles 6 = %i, % 5(0)=S (0 + %) 5( — %)
P,: S-symmetrization, H = @ P,H", H1 = L3(R),
Dom(x1(€)) : to be defined
((E)W1(0) == v2rlRI (0 + %) w1 (6 — %) , R = Res_an: S(C)
New observables :
X(©) =B xn€),  xal&) =nPr(x1(§) ©®1®--- @ 1) Py,

B(&) == o() +x(&)  (=2(&) +x(&) + 2(€)),
¢'(n) := Jo(Jin)J, X' (1) = Ix(dn)J.

Theorem (Cadamuro-T. arXiv:1502.01313)

€: L2 bounded analytic in R + i(0,7) “real”, n: L* bounded analytic in
R+ i(—,0) “real’, then ((€)®, & (m)W) = (¢/(n)®, )W) on  dense
domain.
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https://arxiv.org/abs/1502.01313

The one-particle bound state operator

o £(¢): analytic in R +i(0,7), £(6 4 i) = £(0) (“real”).
[ 7‘[1 = Lz(R)
o %y = H?(—%,%): [*-analytic functions in R + i(—%, %)

o (x1(§)W1(0) := v/2x[RIE(6 + F)W1 (6 — F)

What are self-adjoint extensions of x1(&)? J

e Many extensions: ny(x1(£)) = “half of the zeros” of ¢

e Choose ¢ = &3, no zeros, no singular part (Beurling decomposition).
Set £4(0+ Zf) =exp (f do P(0 + 25" ) log |£(6 + %)D where P(0) is
the Poisson kernel for {(: § < Re( < 2%
x1(§) = ME+A1% Mg, is self-adjoint and a natural extension of the
above, Mg, is unitary, (A;%Wl)w) V(0 — %
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Towards proof of strong commutativity

1
Note: x1(§) = Mg, A7 Mg, have different domains for different .

X(©) =P xal€),  xal&) =nPr(x1(§)@1®---®@1)P,

1
— nI\/IZ?”P,, (Af RI® - ® I[) P,,MS”.

If x(&) + X'(n) is self-adjoint, then...
e x(&) + X'(n) + cN is self-adjoint.
o T(&,n) = d(&) + ¢'(n) + cN is self-adjoint by Kato-Rellich.
(=x(©) + X () + N+ (&) + ¢'(n))

o [T(&m), ()] = [N, d(€)] = [N, ¢(€)] is small,
o(E)W|| < [ T(E,n)V|.

@ use Driessler-Frohlich theorem (weak = strong commutativity:
[%(€), e/?"(M] = 0) with T(£,n) as the reference operator.
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Self-adjointness of x,(&) + x%(n)

We exhibit the proof for

1 1 1
Xg(f) &= P2(A16 X ]1)P2 C Af ® 1+ Ms(]l & Af)/\/’; on Hi ® H;i.

Dom = L2-functions W(fy,62) analytic in 6; in R+i(—%,0) and s.t.
S(01 — 62)¥(01,02) analytic in > in R + i(—7,0).

Lemma (Kato-Rellich+)

If A, B, A+ B are self-adjoint, and assume that there is 6 > 0 such that
Re (AV, BV) > (§ — 1)||AV||||BV|| for W € Dom(A+ B). If T is a
symmetric operator such that Dom(A) C Dom(T) and

| TW||? < 6||AV||, then A+ B+ T is self-adjoint.

1 1
A @1+ 1® A} is self-adjoint. Dom = L2-functions W(f1,6) both
analytic in 61 and in 6,.
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Self-adjointness of x,(&) + x%(n)

C(62 — 61): function with the same poles and zeros as 5 in
0 <Im (02 —01) < 5, bounded above/below if —% < Im (6> — 61) < 0.

Let x be an invertible element in B(?), A be a self-adjoint operator on #
and assume that Ax* is densely defined. Then xAx™ is self-adjoint. J

1 1 1 1
Mc(A; @ 1+ 1@ AP )M = Mc(A? @ 1)Mg + Mc(1 @ A )ME is
self—adjomt If € is smaII enough, and K large enough,
= MK(A6 ® H)MK + /\/IC(]I ® A“)MC is self-adjoint by KR+
= A6 ® 1+ MCI\/IK(]l ® Al)I\/I5 M is self-adjoint by KR+, where
C(0)D(0) = S(0).

1 1
= A} ® 1+ Ms(1 ® A7 )M¢ is self-adjoint by KR+.
For a fixed €, X, 2(€) is a perturbation of x., 2(&) if €2 — e1 is sufficiently
small (by intertwining P, and P.,).
Similar arguments work for n and x,(&) + x},(n) (as long as e2 < %))
(after computations of 30 pages long...).
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(sample computations of crossing terms)

ko1 K, 1
<M55(Af ® 1)MEW, Mc. (1 ® Af) ME. w>

C(62-0:-F) v (02— To0n)

x@%—mg@—w+)(%% )
i
6

XI=>
x\»

— [ db C. (62— t1)

:/d0Cg(02—6’1)\U<91—7g,92 )
% C. (02 — 01)% C. (92 - 7;’) C. <92 o+ 3) C. (62— 61)7"
x C. (02 — 01)V (91 6i> + residue
and the factor in the middle has positive real part, the residue is small if €

is small...
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Existence of local operators: modular nuclearity

e N C M: inclusion of von Neumann algebras, Q: cyclic and
separating for both, A: the modular operator for M.

@ Modular nuclearity (Buchholz-D'Antoni-Longo): if the map

N3SA— AiAQ e H

is nuclear, then the inclusion N’ C M is split.
o (sketch of proof) By assumption, the map

N3 A (JAQ,- Q) = (AZA*Q,- Q) € M,

is nuclear. (JBJQ, AQ) =3 ¢1,n(A)p2,n(B) and one may assume
that ¢k , are normal. This defines a normal state on N ® M’ which
is equivalent to A"V M.

e Bisognano-Wichmann property: for M = A(Wg), A™ is Lorentz
boost (follows if one assumes strong commutativity)
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Towards modular nuclearity

= £3. Strong commutativity + Bisognano-Wichmann (A"t = boosts).
0

Consider A(WR + a) C A(WR), where a = (0, a1) and the vacuum Q.
Modular nuclearity: A(Wg) > A— Al U(a)AQ € H,
(A% U(a)AQ),,(B) _ e*ial stinhwk*%)(AQ)n (91 _ %’.’ .. 79n _ li)'
which contains a strongly damping factor e 2oy cosh by
o (1) Bounded analytic extension. (2) Cauchy integral.

Ae A(WR) = AQ € Dom(¢(§)) = (AQ), € Dom(xn(&)), where
x1(§) = Mg, A M, .

(Xn(E)(AQ)n, (AQ)) = n|(BEME, @ 1® -+ @ 1) - (AQ)|?
(H(E) — H(E)) (A, (AQ),)
(A€ — B(E)AQ)., (AQ),) < 3v/n T 1[¢]|- | AQ>

Y. Tanimoto (Tor Vergata University) Integrable QFT with bound states

04/06/2018, Cortona 15 / 17



Towards modular nuclearity

Choose a nice ¢ so that |£,(6 4 i))| > [e™™ Si”h%| for A >4 > 0.
— Estimate of (U(3)AQ), around (01— 5,0, ,60,) by [|A]
= By S-symmetry and the flat tube theorem, (U(5)AQ), has an
analytic continuation in all variables in the cube.
1 lon

o (AQ), € Dom(A3) = Dom(Af® ) so it is analytic on the diagonal.

e By A2AQ = JA*Q, (U(5)AQ),, it is analytic on the lower cube.
— Estimate of (U(3)AQ), around (01 — %, -+ 0, — %) by |||
= nuclearity for minimal distance (Alazzawi-Lechner '17).

—iT Im¢,

Im¢;

—iT
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Summary

@ input: two-particle factorizing S-matrix with poles

o new observables ¢(¢&) = ¢(¢) + x(€)
@ strong commutativity + modular nuclearity = interacting net

Open problems

o o Bullough-Dodd (scalar)
e O Z(N)-Ising, Sine-Gordon, Gross-Neveu, Toda field theories...

e Equivalence with other constructions (exponential interaction by
Hoegh-Krohn): what about other examples?

o sinh-Gordon (Hoegh-Krohn vs Lechner)
o Federbush (Ruijsenaars vs T.)
o sine-Gordon ((Fréhlich-)Park(-Seiler) / Bahns-Rejzner vs ?7)

quantum group symmetry?

Relations with CFT (scaling limit, integrable perturbation...)
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