Construction of Haag-Kastler nets for factorizing S-matrices with poles

Yoh Tanimoto

(partly joint with H. Bostelmann and D. Cadamuro) University of Rome "Tor Vergata" Supported by Rita Levi Montalcini grant of MIUR

June 4th 2018, Cortona

Towards more 2d QFTs

Construct Haag-Kastler nets for integrable models for scalar factorizing S-matrices with **poles** (bound states).

Massive, non-perturbative, interacting quantum field theories in d=2.

Methods and results

Take the conjectured S-matrix with **poles** as an input, construct first **observables localized in wedges**, then prove the existence of local observables indirectly.

- Observables in wedge: $\widetilde{\phi}(\xi) = z^{\dagger}(\xi) + \chi(\xi) + z(\xi)$ (c.f. Lechner '08, $\phi(f) = z^{\dagger}(f^+) + z(f^+)$ for S-matrix without poles).
- Observables in double cones by intersection.

Duality, solitons, bound states, quantum groups...

Overview of the strategy

- Haag-Kastler net $(\{A(O)\}, U, \Omega)$: local observables A(O), spacetime symmetry U and the vacuum Ω .
- Wedge-algebras first: construct $\mathcal{A}(W_R), U, \Omega$ from wedge-local fields, then take the intersection

$$\mathcal{A}(D_{a,b}) = U(a)\mathcal{A}(W_{\mathrm{R}})U(a)^* \cap U(b)\mathcal{A}(W_{\mathrm{R}})'U(b)^*$$

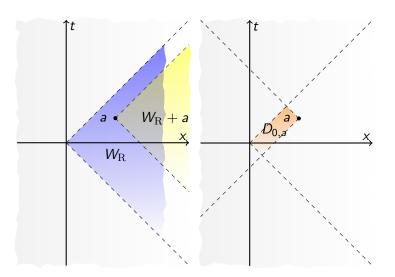
The intersection is large enough if modular nuclearity or wedge-splitting holds.

• Wedge-local observables: $\widetilde{\phi},\widetilde{\phi}'$ such that $[e^{i\widetilde{\phi}(\xi)},e^{i\widetilde{\phi}'(\eta)}]=0.$

Examples: scalar analytic factorizing S-matrix (Lechner '08), twisting by inner symmetry (T. '14), diagonal S-matrix (Alazzawi-Lechner '17)...

More example? **S-matrices with poles**.

Standard wedge and double cone



Analytic factorizing S-matrix

- Pointlike fields are hard. Larger regions contain better observables.
- Wedge: $W_{R/L} := \{(t, x) : x > \pm |t|\}.$

Wedge-local fields in integrable models (Schroer, Lechner)

- S: factorizing S-matrix (without poles).
- z^{\dagger}, z : Zamolodchikov-Faddeev algebra (creation and annihilation operators defined on *S*-symmetric Fock space).
- $\phi(f) = z^{\dagger}(f^+) + z(f^+)$, supp $f \subset W_L$, is localized in W_L .

The full QFT

- The observables $\mathcal{A}(W_{\mathrm{L}})$ in W_{L} are generated by $\phi(f)$.
- For diamonds $D_{a,b}$, define $\mathcal{A}(D_{a,b}) = \mathcal{A}(W_{\mathrm{L}} + a) \cap \mathcal{A}(W_{\mathrm{R}} + b)$.
- Examine the **boost operator** to show the existence of local operators (**modular nuclearity** (Buchholz, D'antoni, Longo, Lechner)).

Wedge observables for analytic S-matrix

• Input: **analytic** function $S : \mathbb{R} + i(0, \pi) \to \mathbb{C}$,

$$\overline{S(\theta)} = S(\theta)^{-1} = S(-\theta) = S(\theta + \pi i), \ \theta \in \mathbb{R}.$$

• *S*-symmetric Fock space: $\mathcal{H}_1 = L^2(\mathbb{R}, d\theta)$, $\mathcal{H}_n = P_n \mathcal{H}_1^{\otimes n}$, where P_n is the projection onto *S*-symmetric functions:

$$\Psi_n(\theta_1,\cdots,\theta_n)=S(\theta_{k+1}-\theta_k)\Psi_n(\theta_1,\cdots,\theta_{k+1},\theta_k,\cdots,\theta_n).$$

- S-symmetrized creation and annihilation operators (ZF-algebra): $z^{\dagger}(\xi) = Pa^{\dagger}(\xi)P, z(\xi) = Pa(\xi)P, P = \bigoplus_{n} P_{n}.$
- Wedge-local field (Lechner '03): $\phi(f) = z^{\dagger}(f^+) + z(J_1f^-)$,

$$f^{\pm}(\theta) = \int dx \, e^{\pm ix \cdot p(\theta)} f(x), \quad p(\theta) = (m \cosh \theta, m \cosh \theta),$$

 J_1 is the one-particle CPT operator, $\phi'(g) = J\phi(g_j)J$, $g_j(x) = \overline{g(-x)}$. If $\operatorname{supp} f \subset W_L$, $\operatorname{supp} g \subset W_R$, then $[e^{i\phi(f)}, e^{i\phi'(g)}] = 0$.

S-matrix with poles

If S has a pole:

$$\begin{split} [\phi(f),\phi'(g)]\Psi_1(\theta_1) &= \\ &- \int d\theta \, (f^+(\theta)g^-(\theta)S(\theta_1-\theta) - f^+(\theta+\pi i)g^-(\theta+\pi i)S(\theta_1-\theta+\pi i)) \\ &\times \Psi_1(\theta_1) \end{split}$$

obtains the **residue** of *S* and does not vanish.

• Example (the Bullough-Dodd model): poles at $\theta = \frac{\pi i}{3}, \frac{2\pi i}{3}$, residues -R, R

$$\mathcal{S}_{\varepsilon}(\theta) = \frac{\tanh\frac{1}{2}\left(\theta + \frac{2\pi i}{3}\right)}{\tanh\frac{1}{2}\left(\theta - \frac{2\pi i}{3}\right)} \cdot \frac{\tanh\frac{1}{2}\left(\theta - \frac{(1-\varepsilon)\pi}{3}\right)}{\tanh\frac{1}{2}\left(\theta + \frac{(1-\varepsilon)\pi i}{3}\right)} \frac{\tanh\frac{1}{2}\left(\theta - \frac{(1+\varepsilon)\pi i}{3}\right)}{\tanh\frac{1}{2}\left(\theta + \frac{(1+\varepsilon)\pi i}{3}\right)},$$

where
$$0 < \varepsilon < \frac{1}{2}$$
. $S_{\varepsilon}(\theta) = S_{\varepsilon}\left(\theta + \frac{\pi i}{3}\right)S_{\varepsilon}\left(\theta - \frac{\pi i}{3}\right)$.

New wedge-local field?

The bound state operator

S: two-particle S-matrix, poles
$$\theta = \frac{\pi i}{3}, \frac{2\pi i}{3}, S(\theta) = S\left(\theta + \frac{\pi i}{3}\right)S\left(\theta - \frac{\pi i}{3}\right)$$

 P_n : S-symmetrization, $\mathcal{H} = \bigoplus P_n \mathcal{H}_1^{\otimes n}, \ \mathcal{H}_1 = L^2(\mathbb{R}),$

 $\mathrm{Dom}(\chi_1(\xi))$: to be defined

$$(\chi_1(\xi))\Psi_1(\theta) := \sqrt{2\pi|R|}\xi\left(\theta + \frac{\pi i}{3}\right)\Psi_1\left(\theta - \frac{\pi i}{3}\right), R = \operatorname{Res}_{\zeta = \frac{2\pi i}{3}}S(\zeta)$$

New observables:

$$\chi(\xi) := \bigoplus \chi_n(\xi), \qquad \chi_n(\xi) = nP_n \left(\chi_1(\xi) \otimes \mathbb{1} \otimes \cdots \otimes \mathbb{1}\right) P_n,$$

$$\tilde{\phi}(\xi) := \phi(\xi) + \chi(\xi) \qquad (= z^{\dagger}(\xi) + \chi(\xi) + z(\xi)),$$

$$\tilde{\phi}'(\eta) := J\tilde{\phi}(J_1\eta)J, \qquad \chi'(\eta) = J\chi(J_1\eta)J.$$

Theorem (Cadamuro-T. arXiv:1502.01313)

 $\xi\colon L^2$ bounded analytic in $\mathbb{R}+i(0,\pi)$ "real", $\eta\colon L^2$ bounded analytic in $\mathbb{R}+i(-\pi,0)$ "real", then $\langle\widetilde{\phi}(\xi)\Phi,\widetilde{\phi}'(\eta)\Psi\rangle=\langle\widetilde{\phi}'(\eta)\Phi,\widetilde{\phi}(\xi)\Psi\rangle$ on a dense domain.

The one-particle bound state operator

- $\xi(\zeta)$: analytic in $\mathbb{R} + i(0,\pi)$, $\overline{\xi(\theta + \pi i)} = \xi(\theta)$ ("real").
- $\mathcal{H}_1 = L^2(\mathbb{R})$
- $\mathcal{D}_0 = H^2(-\frac{\pi}{3}, \frac{\pi}{3})$: L^2 -analytic functions in $\mathbb{R} + i(-\frac{\pi}{3}, \frac{\pi}{3})$
- $(\chi_1(\xi))\Psi_1(\theta) := \sqrt{2\pi |R|} \xi(\theta + \frac{\pi i}{3}) \Psi_1(\theta \frac{\pi i}{3})$

What are self-adjoint extensions of $\chi_1(\xi)$?

- Many extensions: $n_{\pm}(\chi_1(\xi)) =$ "half of the zeros" of ξ
- Choose $\xi = \xi_0^2$, no zeros, no singular part (Beurling decomposition). Set $\xi_+(\theta + \frac{\pi i}{3}) = \exp\left(\int d\theta \, P(\theta + \frac{2\pi i}{3}) \log |\xi(\theta + \frac{\pi i}{3})|\right)$, where $P(\theta)$ is the Poisson kernel for $\{\zeta : \frac{\pi}{3} < \operatorname{Re} \zeta < \frac{2\pi}{3}\}$.
 - $\chi_1(\xi) := M_{\xi_+}^* \Delta_1^{\frac{1}{6}} M_{\xi_+}$ is self-adjoint and a natural extension of the above, M_{ξ_+} is unitary, $(\Delta_1^{\frac{1}{6}} \Psi_1)(\theta) = \Psi_1(\theta \frac{\pi i}{3})$.

Towards proof of strong commutativity

Note: $\chi_1(\xi) = M_{\xi_+}^* \Delta_1^{\frac{1}{6}} M_{\xi_+}$ have different domains for different ξ .

$$\chi(\xi) := \bigoplus \chi_n(\xi), \qquad \chi_n(\xi) = nP_n\left(\chi_1(\xi) \otimes \mathbb{1} \otimes \cdots \otimes \mathbb{1}\right) P_n$$
$$= nM_{\xi_+}^{*\otimes n} P_n\left(\Delta_1^{\frac{1}{6}} \otimes \mathbb{1} \otimes \cdots \otimes \mathbb{1}\right) P_n M_{\xi_+}^{\otimes n}.$$

If $\chi(\xi) + \chi'(\eta)$ is self-adjoint, then...

- $\chi(\xi) + \chi'(\eta) + cN$ is self-adjoint.
 - $T(\xi, \eta) := \widetilde{\phi}(\xi) + \widetilde{\phi}'(\eta) + cN$ is self-adjoint by Kato-Rellich. $(= \chi(\xi) + \chi'(\eta) + cN + \phi(\xi) + \phi'(\eta))$
 - $[T(\xi,\eta),\widetilde{\phi}(\xi)] = [cN,\widetilde{\phi}(\xi)] = [cN,\phi(\xi)]$ is small, $\|\widetilde{\phi}(\xi)\Psi\| \le \|T(\xi,\eta)\Psi\|$.
 - use Driessler-Fröhlich theorem (weak \Rightarrow strong commutativity: $[e^{i\widetilde{\phi}(\xi)}, e^{i\widetilde{\phi}'(\eta)}] = 0$) with $T(\xi, \eta)$ as the reference operator.

Self-adjointness of $\chi_n(\xi) + \chi'_n(\eta)$

We exhibit the proof for

$$\chi_2(\xi) \cong P_2(\Delta_1^{\frac{1}{6}} \otimes \mathbb{1}) P_2 \ \subset \ \Delta_1^{\frac{1}{6}} \otimes \mathbb{1} + \textit{M}_S(\mathbb{1} \otimes \Delta_1^{\frac{1}{6}}) \textit{M}_S^* \ \text{on} \ \mathcal{H}_1 \otimes \mathcal{H}_1.$$

Dom = L^2 -functions $\Psi(\theta_1, \theta_2)$ analytic in θ_1 in $\mathbb{R} + i(-\frac{\pi i}{3}, 0)$ and s.t. $S(\theta_1 - \theta_2)\Psi(\theta_1, \theta_2)$ analytic in θ_2 in $\mathbb{R} + i(-\frac{\pi i}{3}, 0)$.

Lemma (Kato-Rellich+)

If A, B, A+B are self-adjoint, and assume that there is $\delta>0$ such that $\operatorname{Re}\langle A\Psi,B\Psi\rangle>(\delta-1)\|A\Psi\|\|B\Psi\|$ for $\Psi\in\operatorname{Dom}(A+B)$. If T is a symmetric operator such that $\operatorname{Dom}(A)\subset\operatorname{Dom}(T)$ and $\|T\Psi\|^2<\delta\|A\Psi\|^2$, then A+B+T is self-adjoint.

 $\Delta_1^{\frac{1}{6}} \otimes \mathbb{1} + \mathbb{1} \otimes \Delta_1^{\frac{1}{6}}$ is self-adjoint. $\mathrm{Dom} = L^2$ -functions $\Psi(\theta_1, \theta_2)$ both analytic in θ_1 and in θ_2 .

Self-adjointness of $\chi_n(\xi) + \chi'_n(\eta)$

$$C(\theta_2 - \theta_1)$$
: function with the same poles and zeros as S in $0 < \operatorname{Im} \left(\theta_2 - \theta_1\right) < \frac{\pi}{3}$, bounded above/below if $-\frac{\pi i}{3} < \operatorname{Im} \left(\theta_2 - \theta_1\right) < 0$.

Let x be an invertible element in $\mathcal{B}(\mathcal{H})$, A be a self-adjoint operator on \mathcal{H} and assume that Ax^* is densely defined. Then xAx^* is self-adjoint.

$$M_C(\Delta_1^{\frac{1}{6}}\otimes \mathbb{1} + \mathbb{1}\otimes \Delta_1^{\frac{1}{6}})M_C^* = M_C(\Delta_1^{\frac{1}{6}}\otimes \mathbb{1})M_C^* + M_C(\mathbb{1}\otimes \Delta_1^{\frac{1}{6}})M_C^*$$
 is self-adjoint. If ε is small enough, and K large enough,

$$\Rightarrow M_{C}^{\frac{k}{K}}(\Delta_{1}^{\frac{1}{6}}\otimes \mathbb{1})M_{C}^{\frac{k}{K}*} + M_{C}(\mathbb{1}\otimes \Delta_{1}^{\frac{1}{6}})M_{C}^{*} \text{ is self-adjoint by KR}+.$$

$$\Rightarrow \Delta_1^{\frac{1}{6}} \otimes \mathbb{1} + M_C M_{\mathcal{D}}^{\frac{k}{K}} (\mathbb{1} \otimes \Delta_1^{\frac{1}{6}}) M_{\mathcal{D}}^{\frac{k}{K}^*} M_C^* \text{ is self-adjoint by KR+, where } C(\theta) \mathcal{D}(\theta) = S(\theta).$$

$$\Rightarrow \Delta_1^{\frac{1}{6}} \otimes \mathbb{1} + M_S(\mathbb{1} \otimes \Delta_1^{\frac{1}{6}})M_S^*$$
 is self-adjoint by KR+.

For a fixed ε , $\chi_{\varepsilon_2,2}(\xi)$ is a perturbation of $\chi_{\varepsilon_1,2}(\xi)$ if $\varepsilon_2 - \varepsilon_1$ is sufficiently small (by intertwining P_{ε_1} and P_{ε_2}).

Similar arguments work for n and $\chi_n(\xi) + \chi'_n(\eta)$ (as long as $\varepsilon_2 < \frac{\pi}{6}$)) (after computations of 30 pages long...).

(sample computations of crossing terms)

$$\begin{split} &\left\langle \textit{M}_{\textit{C}_{\varepsilon}}^{\frac{k}{K}} (\Delta_{1}^{\frac{1}{6}} \otimes \mathbb{1}) \textit{M}_{\textit{C}_{\varepsilon}}^{\frac{k}{K}} \Psi, \; \textit{M}_{\textit{C}_{\varepsilon}} \left(\mathbb{1} \otimes \Delta_{1}^{\frac{1}{6}} \right) \textit{M}_{\textit{C}_{\varepsilon}}^{*} \Psi \right\rangle \\ &= \int \textit{d}\boldsymbol{\theta} \; \overline{\textit{C}_{\varepsilon} \left(\theta_{2} - \theta_{1} \right)^{\frac{k}{K}}} \, \underline{\textit{C}_{\varepsilon} \left(\theta_{2} - \theta_{1} - \frac{\pi i}{3} \right)^{\frac{k}{K}}} \, \overline{\Psi \left(\theta_{1} - \frac{\pi i}{3}, \theta_{2} \right)} \\ & \times \textit{C}_{\varepsilon} \left(\theta_{2} - \theta_{1} \right) \, \overline{\textit{C}_{\varepsilon} \left(\theta_{2} - \theta_{1} + \frac{\pi i}{3} \right)} \Psi \left(\theta_{1}, \theta_{2} - \frac{\pi i}{3} \right) \\ &= \int \textit{d}\boldsymbol{\theta} \; \textit{C}_{\varepsilon} \left(\theta_{2} - \theta_{1} \right) \, \overline{\Psi \left(\theta_{1} - \frac{\pi i}{6}, \theta_{2} - \frac{\pi i}{6} \right)} \\ & \times \textit{C}_{\varepsilon} \left(\theta_{2} - \theta_{1} \right)^{\frac{k}{K}} \, \overline{\textit{C}_{\varepsilon} \left(\theta_{2} - \theta_{1} - \frac{\pi i}{3} \right)^{\frac{k}{K}}} \, \textit{C}_{\varepsilon} \left(\theta_{2} - \theta_{1} + \frac{\pi i}{3} \right) \, \textit{C}_{\varepsilon} \left(\theta_{2} - \theta_{1} \right)^{-1} \\ & \times \, \overline{\textit{C}_{\varepsilon} \left(\theta_{2} - \theta_{1} \right)} \Psi \left(\theta_{1} - \frac{\pi i}{6}, \theta_{2} - \frac{\pi i}{6} \right) + \text{residue} \end{split}$$

and the factor in the middle has positive real part, the residue is small if ε is small...

Existence of local operators: modular nuclearity

- $\mathcal{N} \subset \mathcal{M}$: inclusion of von Neumann algebras, Ω : cyclic and separating for both, Δ : the modular operator for \mathcal{M} .
- Modular nuclearity (Buchholz-D'Antoni-Longo): if the map

$$\mathcal{N}\ni A\longmapsto \Delta^{\frac{1}{4}}A\Omega\in\mathcal{H}$$

is nuclear, then the inclusion $\mathcal{N}\subset\mathcal{M}$ is split.

• (sketch of proof) By assumption, the map

$$\mathcal{N}\ni\mathcal{A}\longmapsto\langle \textit{JA}\Omega,\cdot\;\Omega\rangle=\langle\Delta^{\frac{1}{2}}\textit{A}^*\Omega,\cdot\;\Omega\rangle\in\mathcal{M}_*$$

is nuclear. $\langle JBJ\Omega, A\Omega \rangle = \sum \varphi_{1,n}(A)\varphi_{2,n}(B)$ and one may assume that $\varphi_{k,n}$ are normal. This defines a normal state on $\mathcal{N} \otimes \mathcal{M}'$ which is equivalent to $\mathcal{N} \vee \mathcal{M}'$.

• Bisognano-Wichmann property: for $\mathcal{M}=\mathcal{A}(W_{R})$, Δ^{it} is Lorentz boost (follows if one assumes strong commutativity)

Towards modular nuclearity

$$\xi=\xi_0^2.$$
 Strong commutativity $+$ Bisognano-Wichmann ($\Delta^{it}=$ boosts).

Consider $\mathcal{A}(W_{\mathrm{R}}+a)\subset\mathcal{A}(W_{\mathrm{R}})$, where $a=(0,a_1)$ and the vacuum Ω .

Modular nuclearity: $\mathcal{A}(W_{\mathrm{R}}) \ni A \mapsto \Delta^{\frac{1}{4}} \mathit{U}(a) A \Omega \in \mathcal{H}$,

$$(\Delta^{\frac{1}{4}}\textit{U}(a)\textit{A}\Omega)_{\textit{n}}(\pmb{\theta}) = e^{-i\textit{a}_{1}\sum_{\textit{k}} \sinh(\theta_{\textit{k}} - \frac{\pi \textit{i}}{2})} (\textit{A}\Omega)_{\textit{n}} \left(\theta_{1} - \frac{\pi \textit{i}}{2}, \cdots, \theta_{\textit{n}} - \frac{\pi \textit{i}}{2}\right),$$

which contains a strongly damping factor $e^{-c\sum_k \cosh \theta_k}$.

• (1) Bounded analytic extension. (2) Cauchy integral.

$$A \in \mathcal{A}(W_{\mathbb{R}}) \Longrightarrow A\Omega \in \mathrm{Dom}(\widetilde{\phi}(\xi)) \Longrightarrow (A\Omega)_n \in \mathrm{Dom}(\chi_n(\xi)), \text{ where } \chi_1(\xi) = M_{\xi_+} \Delta_1^{\frac{1}{6}} M_{\xi_+}^*.$$

$$\langle \chi_n(\xi)(A\Omega)_n, (A\Omega)_n \rangle = n \| (\Delta_1^{\frac{1}{12}} M_{\xi_+}^* \otimes \mathbb{1} \otimes \cdots \otimes \mathbb{1}) \cdot (A\Omega)_n \|^2$$

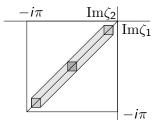
$$= \langle (\widetilde{\phi}(\xi) - \phi(\xi))(A\Omega)_n, (A\Omega)_n \rangle$$

$$= \langle (A\xi - \phi(\xi)A\Omega)_n, (A\Omega)_n \rangle \leq 3\sqrt{n+1} \|\xi\| \cdot \|A\Omega\|^2$$

Towards modular nuclearity

Choose a **nice** ξ so that $|\xi_+(\theta+i\lambda)| > |e^{-ia_1\sinh\frac{\theta}{2}}|$ for $\lambda > \delta > 0$.

- \Longrightarrow Estimate of $(U(\frac{a}{2})A\Omega)_n$ around $\left(\theta_1-\frac{\pi i}{6},\theta_2,\cdots,\theta_n\right)$ by $\|A\|$
- \implies By S-symmetry and the flat tube theorem, $(U(\frac{a}{2})A\hat{\Omega})_n$ has an analytic continuation in all variables in the cube.
 - $(A\Omega)_n \in \mathrm{Dom}(\Delta_n^{\frac{1}{2}}) = \mathrm{Dom}(\Delta_1^{\frac{1}{2}\otimes n})$ so it is analytic on the diagonal.
 - By $\Delta^{\frac{1}{2}}A\Omega = JA^*\Omega$, $(U(\frac{a}{2})A\Omega)_n$, it is analytic on the lower cube.
- \implies Estimate of $(U(\frac{a}{2})A\Omega)_n$ around $(\theta_1 \frac{\pi i}{2}, \cdots, \theta_n \frac{\pi i}{2})$ by ||A|| \implies nuclearity for minimal distance (Alazzawi-Lechner '17).



Summary

- input: two-particle factorizing S-matrix with **poles**
- new observables $\widetilde{\phi}(\xi) = \phi(\xi) + \chi(\xi)$
- ullet strong commutativity + modular nuclearity \Rightarrow interacting net

Open problems

- ☑ Bullough-Dodd (scalar)
- \square Z(N)-Ising, Sine-Gordon, Gross-Neveu, Toda field theories...
- Equivalence with other constructions (exponential interaction by Hoegh-Krohn): what about other examples?
 - sinh-Gordon (Hoegh-Krohn vs Lechner)
 - Federbush (Ruijsenaars vs T.)
 - sine-Gordon ((Fröhlich-)Park(-Seiler) / Bahns-Rejzner vs ??)
- Relations with CFT (scaling limit, integrable perturbation...)
- quantum group symmetry?

