Operator-algebraic construction of integrable QFT and CFT

Yoh Tanimoto

University of Rome "Tor Vergata", supported by Programma Rita Levi Montalcini

June 1st 2018, ICFT 22 Cardiff

What is quantum field theory? cf.

- classical field theory: PDE
- quantum mechanics: Hilbert space, unitary evolution (+ measurement theory)

What is a quantum field?

- definition?
- example?
- integrability?

Wightman axioms

Quantum field ϕ

- ϕ : operator valued distribution ($\phi(f)$ is an (unbouded) operator on a Hibert space)
- satisfies locality, Poincaré covariance, positivity of energy, existence of vacuum

n-point functions

- consider $F_n(x_1, \cdots x_n) := \langle \Omega, \phi(x_1) \cdots \phi(x_n) \Omega \rangle$
- $\{F_n\}$ satisfy locality, Poincaré invariance, analyticity
- Reconstruction theorem: one can recover ϕ from $\{F_n\}$.

Particle spectrum and S-matrix can be constructed from ϕ . **Examples**: (d=2) $P(\phi)$, exponential interaction (sine/sinh-Gordon), Yukawa, Gross-Neveu, Thirring, local gauge theories, CFT... (d=3) ϕ^4 , abelian gauge theories...

Integrable QFT

(Pertubatively check that there is no particle production, e.g. sine-Gordon)

Factorizing S-matrix

- Conjecture particle contents from Lagrangian
- Determine the symmetry of the model and fusion relations
- Conjecture the S-matrix

Form factor programme (Babujian, Karowski, Smirnov...)

- Factorizing S-matrix is given.
- Form factors $\operatorname{out}\langle q_1,\cdots,q_m|O(x)|p_1,\cdots,p_n\rangle^{\operatorname{in}}$ are conjectured.
- *n*-point functions $\langle \Omega, O(x)O(0)\Omega \rangle = \sum_{n} \int dp_1 \cdots dp_n \langle \Omega, O(x) | p_1, \cdots, p_n \rangle^{\text{in in}} \langle p_1, \cdots, p_n | O(0)\Omega \rangle$ should be computed.
- Convergence? Locality in e.g. the sine-Gordon model?

< □ > < □ > < □ > < □ > < □ > < □ >

Haag-Kastler axioms

- Concerned with algebras of observables (**bounded operators**) $\mathcal{A}(O)$ in spacetime regions O.
- Isotony, locality, Poincaré covariance, positivity of energy, existence of vacuum
- ϕ : quantum (Wightman) field $\Longrightarrow \mathcal{A}(O) := \overline{\{e^{i\phi(f)} : \operatorname{supp} f \subset O\}}^{\operatorname{vN}}$

Isotony: $O_1 \subset O_2 \Longrightarrow \mathcal{A}(O_1) \subset \mathcal{A}(O_2)$ means that **larger** regions contain **more** observables, also **simpler** ones. Wedge: $W_{\mathrm{R}} := \{(t, x) : x > |t|\}.$

Why wedges?

- Form factors $^{\text{out}}\langle q_1, \cdots, q_m | O(x) \Omega \rangle^{\text{in}}$ of interacting pointlike fields O(x) are complicated.
- $\bullet\,$ For a large region ${\it W}_{\rm R}$, there might be simpler observables.

イロト 不得 トイヨト イヨト 二日

Standard wedge and double cone

Prepare

- $\bullet \ \, \text{Hilbert space} \ \, \mathcal{H}$
- Representation U of the Poincaré group
- Vacuum vector Ω
- \bullet A (von Neumann) algebra ${\cal M}$ (of observables in ${\it W}_{\!\rm R})$

They should satisfy $U(a, \lambda)\mathcal{M}U(a, \lambda) \subset \mathcal{M}$ if $a \in W_{\mathbb{R}}$, and $\overline{\mathcal{M}\Omega} = \overline{\mathcal{M}'\Omega} = \mathcal{H}$ (the Reeh-Schlieder property), where $\mathcal{M}' = \{x \in \mathcal{B}(\mathcal{H}) : [x, y] = 0 \text{ for } y \in \mathcal{M}\}.$

Wedge to double cones

For a double cone
$$D_{a,b} = (W_{\mathrm{R}} + a) \cap (W_{\mathrm{L}} + b)$$
,
 $\mathcal{A}(D_{a,b}) = U(a,0)\mathcal{M}U(a,0)^* \cap U(b,0)\mathcal{M}'U(b,0)^*$

If $\mathcal{A}(D_{a,b})$ is sufficiently large, (\mathcal{A}, U, Ω) is a Haag-Kastler net.

Example: massive free field

- $\mathcal{H}_1 = L^2(\mathbb{R}, d\theta), \mathcal{H} = \bigoplus_n P_n \mathcal{H}_1^{\otimes n}$ (symmetric Fock space), where P_n is the symmetrizer. z^{\dagger}, z : creation/annihilation operators
- $(U_1(a,\lambda)\Psi_1)(\theta) = e^{ia \cdot (m\cosh\theta, m\sinh\theta)}\Psi(\theta \lambda), U = \Gamma(U_1)$ (second quantization)
- Ω: the Fock vacuum
- free field ϕ : for a test function f, $\phi(f) = z^{\dagger}(f^{+}) + z(f^{+})$, where $f^{+}(\theta) = \int d^{2}a \, e^{ia \cdot (m \cosh \theta, m \sinh \theta)} f(a)$ and

$$\mathcal{M} = \overline{\{e^{i\phi(f)}: \operatorname{supp} f \subset W_{\mathrm{R}}\}}^{\mathrm{vN}}$$

The free field net

We get the usual free field net:

$$egin{aligned} \mathcal{A}(D_{a,b}) &:= U(a,0)\mathcal{M}U(a,0)^* \cap U(b,0)\mathcal{M}'U(b,0)^* \ &= \overline{\left\{e^{i\phi(f)}: \mathrm{supp}\, f \subset D_{a,b}
ight\}}^{\mathrm{vN}} \end{aligned}$$

Y. Tanimoto (Tor Vergata University)

Example: twisting the free field

Let ϕ be the massive **complex** free field, with the charge operator Q, and $\mathcal{M} = \overline{\{e^{i\phi(f)} : \operatorname{supp} f \subset W_{\mathrm{R}}\}}^{\mathrm{vN}}$ be the wedge-algebra, take the usual U, Ω on \mathcal{H}_{c} . **Double** the Hilbert space: $\mathcal{H}_{\mathrm{c}} \otimes \mathcal{H}_{\mathrm{c}}$.

Theorem (T. arXiv:1301.6090)

- $\tilde{\mathcal{H}}_{c} = \mathcal{H}_{c} \otimes \mathcal{H}_{c}$
- $\tilde{U} = U \otimes U$
- $\tilde{\Omega} = \Omega \otimes \Omega$

•
$$ilde{\mathcal{M}}_t = (\mathcal{M} \otimes \mathbb{C1}) \bigvee e^{itQ \otimes Q} (\mathbb{C1} \otimes \mathcal{M}) e^{-itQ \otimes Q}$$

give an interacting Haag-Kastler net for $t \notin \mathbb{R}/2\pi\mathbb{Z}$. The S-matrix is $e^{itQ\otimes Q}$, very similar to that of the Federbush model.

Proof of wedge-localization: $x \mapsto e^{sQ}xe^{-sQ}$ is an **automorphism** of \mathcal{M} . Differently from $\mathcal{M} = \mathcal{A}(W_R)$, observables in $\mathcal{A}(D_{b,a})$ are **not explicitly known**.

Example: twisting the free field

A variation: Let ϕ be the massive **real** free field, φ an inner symmetric function (almost two-particle scattering function), \mathcal{M} the wedge-algebra. One can construct an operator \tilde{R}_{φ} :

Theorem (T. arXiv:1301.6090, Alazzawi-Lechner arXiv:1608.02359) • $\tilde{\mathcal{H}} = \mathcal{H} \otimes \mathcal{H}$ • $\tilde{\mathcal{U}} = \mathcal{U} \otimes \mathcal{U}$ • $\tilde{\Omega} = \Omega \otimes \Omega$ • $\tilde{\mathcal{M}}_{\varphi} = (\mathcal{M} \otimes \mathbb{C}\mathbb{1}) \bigvee \tilde{R}_{\varphi}(\mathbb{C}\mathbb{1} \otimes \mathcal{M}) \tilde{R}_{\varphi}^{*}$ give an interacting Haag-Kastler net, and the S-matrix is \tilde{R}_{φ} .

Proof of wedge-localization: $x \mapsto \Gamma(\varphi(P_1)) \times \Gamma(\varphi(P_1))^*$ is an **endomorphism** of \mathcal{M} , P_1 the generator of lightlike translation. \tilde{R}_{φ} is a **diagonal** factorizing S-matrix, interaction only between two different species of particles.

Relations to CFT?

 ϕ : massive **free field**, \mathcal{M} : the wedge algebra.

- One obtaines a 1d CFT (the Heisenberg algebra) by restricting to the lightray. Net of observables on intervals *I* on the lightray R.
- Negative lightlike translations implement Longo-Witten endomorphisms: V(s)MV(s)^{*} ⊂ M and V(s) commutes with the positive lightlike translations.
- e^{isQ} and Γ(φ(P₁)) implement Longo-Witten endomorphisms
- \Rightarrow massive integrable model with \tilde{R}_{φ} on $\mathcal{H} \otimes \mathcal{H}$.

Relations to CFT?

Take an **interacting** QFT (\mathcal{A}, U, Ω) , the wedge algebra $\mathcal{M} = \mathcal{A}(W_R)$ and lightlike translation. **Question**: How large is the lightlike intersection $\mathcal{M} \cap U(a)\mathcal{M}'U(a)^*$?

If it is nontrivial, one obtains a chiral component of a CFT (Guido-Longo-Wiesbrock '98).

 \Rightarrow **Scaling limit** of CFT? (c.f. Bostelmann -Lechner-Morsella '11)

(Non-)examples:

- The intersection can be trivial in general (Longo-T.-Ueda '17).

Conjecture:

 $\bullet \ {\rm SU(2)}\text{-symmetric Thirring} \Leftrightarrow {\rm SU(2)}\text{-current algebra (WZW model)}$

Example: analytic factorizing S-matrix

- analytic two-particle S-matrix (e.g. the sinh-Gordon model) $S : \mathbb{R} + i(0, \pi) \to \mathbb{C},$ $\overline{S(\theta)} = S(\theta)^{-1} = S(-\theta) = S(\theta + \pi i), \ \theta \in \mathbb{R}.$
- *S*-symmetric Fock space: $\mathcal{H}_1 = L^2(\mathbb{R}, d\theta)$, $\mathcal{H}_n = P_n \mathcal{H}_1^{\otimes n}$, where P_n is the projection onto *S*-symmetric functions: $\Psi_n(\theta_1, \cdots, \theta_n) = S(\theta_{k+1} - \theta_k)\Psi_n(\theta_1, \cdots, \theta_{k+1}, \theta_k, \cdots, \theta_n).$
- Zamolodchikov-Faddeev algebra: S-symmetrized creation and annihilation operators z[†](ξ) = Pa[†](ξ)P, z(ξ) = Pa(ξ)P, P = ⊕_n P_n.

• Wedge-local field:
$$\phi(f) = z^{\dagger}(f^+) + z(f^+)$$
.

Wedge-localization (Lechner '03)

If
$$\mathcal{M} = \overline{\{e^{i\phi(f)} : \operatorname{supp} f \subset W_{\mathrm{R}}\}}^{\mathrm{vN}}$$
, then $\overline{\mathcal{M}\Omega} = \overline{\mathcal{M}'\Omega} = \mathcal{H}$.

3

13 / 16

< □ > < 同 > < 回 > < 回 > < 回 >

Local observables

- \mathcal{H} : S-symmetric Fock space
- $U = \Gamma(U_1)$: second quantization
- Ω: Fock vacuum

•
$$\mathcal{M} = \overline{\{e^{i\phi(f)} : \operatorname{supp} f \subset W_{\mathrm{R}}\}}^{\mathrm{vN}}$$

Question: are there sufficiently many observable in $\mathcal{A}(D_{a,b}) = \mathcal{A}(W_{\mathrm{R}} + a) \cap \mathcal{A}(W_{\mathrm{L}} + b)$?

Theorem (Lechner '08)

If S is analytic, satisfies a regularity condition (not too many CDD factors) and and S(0) = -1, there are local observables in $\mathcal{A}(D_{a,b})$ for b - a sufficiently large. The **Haag-Kastler net** (\mathcal{A}, U, Ω) has S as the two-particle S-matrix.

This works also with diagonal S-matrices (Alazzawi-Lechner '17).

14 / 16

Example: scalar S-matrices with poles (bound states)

If S has a pole (e.g. the **Bullough-Dodd** model), $\phi(f) = z^{\dagger}(f^+) + z(f^+)$ is **no longer wedge-local**.

S: scalar, poles at $\theta = \frac{\pi i}{3}, \frac{2\pi i}{3}, S(\theta) = S\left(\theta + \frac{\pi i}{3}\right)S\left(\theta - \frac{\pi i}{3}\right)$ P_n : S-symmetrization, $\mathcal{H} = \bigoplus P_n \mathcal{H}_1^{\otimes n}, \mathcal{H}_1 = L^2(\mathbb{R})$,

$$(\chi_1(f))\xi(\theta) := \sqrt{2\pi|R|}f^+\left(\theta + \frac{\pi i}{3}\right)\xi\left(\theta - \frac{\pi i}{3}\right),$$

$$\chi_n(f) := n P_n (\chi_1(f) \otimes I \otimes \cdots \otimes I) P_n, \quad \chi(f) := \bigoplus \chi_n(f).$$

Theorem (Cadamuro-T. arXiv:1502.01313, Bostelmann-Cadamuro-T., in preparation)

Set $\tilde{\phi}(f) := \phi(f) + \chi(f)$, $\mathcal{M} = \overline{\{e^{i\tilde{\phi}(f)} : f = h^2, \operatorname{supp} h \subset W_R\}}^{vN}$, then $\mathcal{H}, U, \Omega, \mathcal{M}$ generates an interacting Haag-Kastler net with two-particle S-matrix S.

Conclusion

Summary:

- Some integrable QFT, including the **sinh-Gordon model**, the **Bullough-Dodd** model and others with diagonal S-matrices (with CDD factors), have been constructed in a mathematically satisfactory way (Haag-Kastler nets).
- Some of them can be realized on the same Hilbert space as the free field, by twisting the observables in wedges, thus by "perturbing" the Heisenberg algebra (CFT).

Outlook:

- Work in progress: *A_n*-affine Toda, sine-Gordon/Thirring, Gross-Neveu...
- Complete the proof of modular nuclearity for nondiagonal S-matrices (O(N)-symmetric S-matrices).
- Study the lightlike intersection (\Longrightarrow CFT from integrable models?).
- Quantum group symmetry? Yangian as observables?